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Summary. The estimation of conditional treatment effects in an observational study with a survival outcome typically
involves fitting a hazards regression model adjusted for a high-dimensional covariate. Standard estimation of the treatment
effect is then not entirely satisfactory, as the misspecification of the effect of this covariate may induce a large bias. Such
misspecification is a particular concern when inferring the hazard difference, because it is difficult to postulate additive
hazards models that guarantee non-negative hazards over the entire observed covariate range. We therefore consider a novel
class of semiparametric additive hazards models which leave the effects of covariates unspecified. The efficient score under
this model is derived. We then propose two different estimation approaches for the hazard difference (and hence also the
relative chance of survival), both of which yield estimators that are doubly robust. The approaches are illustrated using
simulation studies and data on right heart catheterization and mortality from the SUPPORT study.
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1. Introduction

In the analysis of time-to-event data, one is often interested
in the effect of an exposure A on a survival outcome T ,
subject to a censoring time C, and conditional on a set of
variables L. This adjusted association may be summarized
by the hazard difference, which can be estimated by fitting
a multivariable additive hazards model, or the hazard ratio,
commonly estimated via the Cox proportional hazards model.
For example, in the Study to Understand Prognoses and Pref-
erences for Outcomes and Risks of Treatments (SUPPORT),
Connors et al. (1996) investigated the effect of right heart
catheterization (RHC), a binary exposure, on patient mor-
tality. The exposure could also be continuous, for example,
particulate air pollution. In observational studies, the dimen-
sion of covariates to adjust for is often high. The SUPPORT
investigators used expert input from clinicians to identify 72
variables that could affect the decision of whether to use RHC
or not, which they wished to adjust for in the analysis. The
problem of bias resulting from misspecification of the hazards
regression model then becomes a dominant consideration.

Such concerns have prompted the development of
doubly robust estimators of treatment effects (Robins and
Rotnitzky, 2001). These estimators require two working mod-
els, one of which is a regression model for the outcome,

and another that relates to the treatment selection mecha-
nism. Only one of these models needs to be correct in order
to consistently estimate the treatment effect. Doubly robust
estimators are now well established for parameters in lin-
ear, log-linear, and logistic conditional mean models (Robins,
1994; Tchetgen Tchetgen et al., 2010), and are particularly
appealing when evaluating static treatment regimes or esti-
mating optimal dynamic regimes in longitudinal studies. This
is because it is challenging to specify a series of sequential
regression models for the same outcome that are all simul-
taneously correct. More recently, the usefulness of doubly
robust procedures has also been recognized in the context
of data-adaptive selection or regularization. In particular, a
number of common doubly robust estimators have turned
out to be less susceptible to regularization bias than pop-
ular alternative estimators that do not possess the doubly
robust property (Farrell, 2015). Standard confidence intervals
for these doubly robust estimators are moreover uniformly
valid, even when they ignore the use of such data-adaptive
procedures (assuming the estimators for both working models
converge sufficiently fast to the truth).

There has however been limited development of doubly
robust estimators of the parameters indexing the hazard
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regression models (additive or multiplicative) popular in
survival analysis. For semiparametric proportional hazards
models we conjecture that, partly due to the non-collapsibility
of the hazard ratio, no estimators of the treatment effect haz-
ard ratio exist that are consistent whenever the treatment
selection mechanism (more precisely, the distribution of A

given L) is known (Tchetgen Tchetgen et al., 2010). Double
robustness with respect to the treatment selection mechanism
is therefore not attainable under such models. In contrast, as
we will show in this article, doubly robust estimation strate-
gies do exist for the hazard difference under semiparametric
additive hazards models. The additional robustness is partic-
ularly advantageous for additive models; these are prone to
misspecification since they do not impose the constraint that
hazards are non-negative.

In Section 2, we introduce the new class of semiparamet-
ric additive hazards models. A theory of estimation for these
models is developed in Section 3, and the efficient score func-
tion is identified. Because it requires specification of the entire
conditional distribution of the treatment given the covariates,
we also describe a subclass of estimators which only requires
this conditional distribution to be correctly specified up to
the mean. Drawing from these results, two practical strate-
gies for the estimation of the treatment effect are proposed in
Section 4; both of which yield doubly robust estimators. In
Section 5, our estimators are compared in simulations with
standard estimators of additive hazards models, and we re-
analyze data from the SUPPORT study in Section 6.

2. The Model

We begin with some notation. The counting process corre-
sponding to the survival time T is denoted by N(t) = I(T ≥ t);
Ft is the history spanned by N(t), with R(t) = I(T ≥ t). Let L

include 1 for the intercept. For the moment, we assume there
is no censoring.

Consider an additive hazards model of the form

E
{
dN(t)|Ft , L, A

} = {
d�(t)T L + ψAdt

}
R(t),

where d�(t)T is a vector of coefficients that are allowed to
depend on time (McKeague and Sasieni, 1994). This model
imposes restrictions on the effect of L on the hazard at any
time point t; such restrictions are undesirable, because mis-
specification of an additive hazards model may be inevitable
when L is high-dimensional and has continuous components.
Incorrectly specifying the effect of L can then induce bias in
estimation of ψ. We therefore further relax the model restric-
tions by developing inference for the semiparametric additive
hazards model M, defined by

E
{
dN(t)|Ft , L, A

} = {
d�(t, L) + ψAdt

}
R(t), (1)

where d�(t, L) denotes the effect of time and the covariates
on the hazard and is left unspecified. Restrictions are now
only imposed on the association between A and the hazard.
A further relaxation of model M is

E
{
dN(t)|Ft , L, A

} = {
d�(t, L) + d�(t)A

}
R(t), (2)

where d�(t) is an unknown locally integrable function of time.
In Web Appendix A, we extend our results on estimation to
model (2) (denoted by MTV ), but otherwise assume that the
effect of A is constant. To simplify the exposition, we will also
assume there is no effect modification by Z, where Z = z(L)
is a vector function of L, and give details on extensions for
multivariate ψ in the discussion.

By the equality

pr(T > t|A, L)

pr(T > t|A = 0, L)
= exp(−ψAt),

which is implied by (1), it follows that exp(−ψAt) can be
interpreted as the adjusted relative change in the probability
of surviving time t per unit increase in the exposure. This rel-
ative chance of survival is potentially easier to communicate
than the hazard difference (or ratio). The reason is that con-
trasts between hazards lack a causal interpretation because
they compare, at each time t, individuals who have not yet
failed at that time. These individuals may not be exchange-
able between treatment arms, even when the treatment is
randomly assigned (Hernán, 2010).

3. Theory of Semiparametric Estimation

3.1. The Efficient Score for ψ

In this section, we develop a theory of estimation for ψ. We
first give the semiparametric efficient score for ψ under model
M and discuss the properties of an efficient estimator. The
derivation of all results is left to Web Appendix A.

Let �(t, L) = ∫ t

0
d�(s, L), λ(t|A, L;ψ) = d�(t, L)/dt + ψA

and dM(t;ψ) = dN(t) − λ(t|A, L;ψ)R(t)dt be the increment at
time t of a local square-integrable martingale. Then the locally
efficient score for ψ under model M is

Seff =
∫ ∞

0

[
A − E{λ−1(t|A, L;ψ)A exp(−ψAt)|L}

E{λ−1(t|A, L;ψ) exp(−ψAt)|L}

]
dM(t;ψ)

λ(t|A, L;ψ)

(3)

The solution ψ̂ for ψ to the equation

0=
n∑

i=1

∫ ∞

0

[
Ai− E{λ−1(t|Ai, Li;ψ)Ai exp(−ψAit)|Li}

E{λ−1(t|Ai, Li;ψ) exp(−ψAit)|Li}

]
dMi(t;ψ)

λ(t|Ai,Li;ψ)

thus has an asymptotic variance which attains the semipara-
metric efficiency bound for ψ under model M, when f (A|L) is
known and �(t, L) is correctly specified (Bickel et al., 1993).

In practice, the law f (A|L) will usually be unknown,
and thus so will E{λ−1(t, A, L)A exp(−ψAt)|L} and
E{λ−1(t, A, L) exp(−ψAt)|L}. One may then postulate
a parametric model AD for the population distribution
f (A|L) = f (A|L;α), where f (A|L;α) is a known function
smooth in an unknown finite-dimensional parameter α. In
practice, α can be estimated using maximum likelihood.
Since f (A|L) is ancillary to ψ, the efficiency bound for ψ is
the same whether f (A|L) is estimated or known. The score
(3) is thus efficient under the intersection model M ∩ AD.
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Implementation of an efficient estimator also requires
knowledge of d�(t, L). In the semiparametric model M, this
function is left unspecified and is unknown to the data ana-
lyst. One option then is to estimate it via a working model B,
such as d�(t, L) = d�{L;�(t)} where d�{L;�(t)} is a known
function, smooth at each time point t in an unknown finite-
dimensional parameter �(t). With a slight abuse of notation,
let L̄ denote the set of covariates that are included in the
model B; for example, if L = (1, L1)

T , then a potential choice
could be L̄ = (1, L1, L

2
1)

T . We will postulate a linear model
d�{L;�(t)} = d�(t)T L̄. The parameters �(t) can then be con-
sistently estimated using Aalen least-squares (Aalen, 1980),
upon changing the increments dN(t) to dN(t) − d�̂init(t)A,
with d�̂init(t) being a consistent estimator of the time varying
effect d�init(t) under the initial model E

{
dN(t)|Ft , L, A

} =
[d�{L;�(t)} + d�init(t)A]R(t).

We therefore arrive at the estimating function

∫ ∞

0

(
A − E[λ−1{�(t), ψ}A exp(−ψAt)|L;α]

E[λ−1{�(t), ψ} exp(−ψAt)|L;α]

)

× [dN(t) − d�{L;�(t)} − ψAdt]R(t)

λ{�(t), ψ} , (4)

where λ{�(t), ψ} = d�{L;�(t)}/dt + ψA. Then the population
expectation of (4) converges to

∫ ∞

0

E

[
E

{(
A − E[λ−1{�(t), ψ}A exp(−ψAt)|L;α]

E[λ−1{�(t), ψ} exp(−ψAt)|L;α]

)

× λ−1{�(t), ψ} exp(−ψAt)

∣∣∣∣L
}

× exp{−�(t, L)} [d�(t, L) − d�{L;�(t)}]
]

It follows that the function in (4) has mean zero when, in
addition to M, either model AD or B is correct. The efficient
estimator under model M ∩ AD is therefore doubly robust
(Robins and Rotnitzky, 2001). The semiparametric efficiency
bound under model M ∩ AD is only met when model B is
correctly specified and thus attained locally.

We have argued that the score (3) is efficient under M ∩
AD. However, the same score in (3) also delivers an effi-
cient doubly robust estimator; specifically, it is efficient under
the union model M ∩ (AD ∪ B) at the intersection submodel
M ∩ AD ∩ B. This follows from a general result in Robins and
Rotnitzky (2001); however, the efficiency bound under M ∩ B
may be lower than the bound under the union model.

3.2. Efficiency in a Subclass of Estimators

A drawback of the efficient score derived in the previous
section is that it requires postulation of a model for the
entire conditional distribution f (A|L). In Web Appendix A,
we therefore derive the subclass of influence functions which
have mean zero when the conditional mean E(A|L) is known.
When A is binary, this conditional mean is known as the
propensity score (Rosenbaum and Rubin, 1983). We are then

lead to the class of estimating functions

∫ ∞

0

d(t, L)
{
A − E(A|L)

}
R(t) exp(ψAt)

×{
dN(t) − d�∗(t, L) − ψAdt

}
, (5)

where d(t, l) and d�∗(t, L) are arbitrary functions of t and l
with finite variance. Note indeed that (5) no longer depends
on f (A|L) but only on the conditional mean E(A|L). The
term R(t) exp(ψAt) can be interpreted as the removal of the
treatment effect (in expectation) from the at-risk indicators
(Martinussen et al., 2011). That (5) has mean zero under
model M when E(A|L) is known can be seen as follows:

E
[
d(t, L)

{
A − E(A|L)

}
R(t) exp(ψAt)

{
dN(t)− d�∗(t, L)− ψAdt

}]
= E[d(t, L) exp{−�(t, L)}{d�(t, L)− d�∗(t, L)}E{A − E(A|L)|L}] = 0

for all d(t, L). It is shown in Web Appendix A that the
optimal choice of d(t, L) for efficiency is

deff(t, L) = var(A|L)

E[{A − E(A|L)}2 exp(ψAt)λ(t|A, L)|L]
; (6)

for d�∗(t, L), it is equal to d�(t, L). The efficient estimator
within this subclass is obtained by solving the equations

0 =
n∑

i=1

∫ ∞

0

var(Ai|Li)

E[{Ai − E(Ai|Li)}2 exp(ψAit)λ(t|Ai, Li)|Li]

×{
Ai − E(Ai|Li)

}
Ri(t) exp(ψAit)

×{
dNi(t) − d�(t, Li) − ψAidt

}
(7)

The conditional expectation E(A|L) is typically unknown.
It can be estimated under a parametric model AE for the
conditional mean E(A|L) = E(A|L;β), where E(A|L;β) is a
known function, smooth in an unknown finite-dimensional
parameter β. Under model AE, β can be estimated using
maximum likelihood.

Estimation of model AE does not affect the efficiency bound
for the class of estimators identified by (5). Furthermore, mis-
specification does not induce bias when d�∗(t, L) = d�(t, L) is
consistently estimated, since the estimating function in (7) is
unbiased under the union model M ∩ (AE ∪ B) and therefore
doubly robust.

4. Implementation

4.1. Estimation via f (A|L)

In this section, we will build on the efficiency theory of the pre-
vious section and outline two potential estimation strategies
for ψ. All of the estimators are consistent and asymptotically
normal and accompanying variance estimators, unless stated
otherwise, are given in Web Appendix B.

From the perspective of maximizing efficiency, a reasonable
approach to take is to construct an estimator based on the effi-
cient score (3). We note first that the score requires inverse
weighting by the hazard function; this is also the case for
efficient estimators of the parameters indexing other additive
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hazards models (McKeague and Sasieni, 1994). In practice,
this can lead to estimators with unstable performance in
small-samples. If the hazard weights are removed from (3), as
is common in standard fitting strategies for additive hazards
models, we are left with the estimating function

∫ ∞

0

[
A− E{A exp(−ψAt)|L}

E{exp(−ψAt)|L}

]
R(t)

{
dN(t) − d�(t, L) − ψAdt

}
(8)

The ratio

E{A exp(−ψAt)|L}
E{exp(−ψAt)|L} (9)

is the first order derivative of the cumulant generating func-
tion for f (A|L), evaluated at −ψt. Under some model AD, one
may evaluate this ratio directly or using Monte Carlo integra-
tion. Estimators of the asymptotic variance can be derived
following standard M-estimation arguments.

However, specifying a correct model for a distribution in
this fashion is unappealing, as it is difficult to formulate
plausible models and any resulting misspecification may then
have a potentially large impact on subsequent inference. Also,
Monte Carlo integration may be computationally inconve-
nient as the integration needs to be done at all parameter
values through which one iterates when numerically solving
the equation. In light of these limitations, we will pursue
alternative strategies in the remainder of this section.

We return to the estimating function (8). By Bayes rule, it
follows that under model M,

f (A|T ≥ t, L = l) = exp(−ψAt)f (A|L = l)

E{exp(−ψAt)|L = l}

for all l. Therefore,

E(A|T ≥ t, L) = E{A exp(−ψAt)|L}
E{exp(−ψAt)|L} (10)

which suggests that the unbiased estimating function (8) can
also be written as

∫ ∞

0

{
A − E(A|T ≥ t, L)

}
R(t)

{
dN(t) − d�(t, L) − ψAdt

}
(11)

Rather than modeling (8) indirectly via a model for the distri-
bution of A given L, we may choose to instead specify a model
ATV for the time-varying propensity score E(A|T ≥ t, L). A
question then is how to specify a model at each time t that is
congenial with model M. Specifically, a parameterization of
ATV is congenial with model M if for each element in ATV and
M, there exists a distribution f (A|L) such that the equality
(10) holds. If no such distribution exists, then we know before
even seeing the data that the proposed models for M and ATV

cannot both be correct. In Web Appendix A, we show that

the following generalized linear model

E(A|T ≥ t, L) = E{A|T ≥ t, L; θ(t)} = g−1{θ(t)T L̃}

is always congenial with M when the dispersion parameter
for f (A|L) does not depend on L. Here, g() is a canonical link
function; and L̃ is the vector of covariates that are included in
the model ATV . A similar estimating function to (11) appears
in Kang et al. (2018); however, they use a different param-
eterization of ATV to the one we give above, which requires
estimation of P(T ≥ t|A, L), P(T ≥ t|L), and E(A|L). Para-
metric models for P(T ≥ t|A, L) and P(T ≥ t|L) may not be
congenial with model M ∩ B, which undermines the feasibil-
ity of doubly robust inference. Their proposal therefore relies
on kernel density estimators, which are not suitable when L

is high-dimensional.
An advantage of our parameterization of ATV is that it

admits a closed-form estimator of ψ, which is defined as

ψ̂TVPS−DR =
∑n

i=1

∫ ∞
0

�i{θ̂(t)}Ri(t)J(t)[dNi(t) − d�{Li; �̂(t)}]∑n

i=1

∫ ∞
0

�i{θ̂(t)}Ri(t)Aidt

(12)

Here, �{θ(t)} = A − E{A|T ≥ t, L; θ(t)} and J(t) = 1 if both
Y(t) and L̃(t) have full rank and zero otherwise, where Y(t)
denotes a matrix with ith row Ri(t)(L̄

T
i , Ai) and similarly for

L̃(t). It follows from the theory of M-estimation that this esti-
mator is consistent and asymptotically normal under model
M ∩ (ATV ∪ B).

When L̄ = L̃ (we hereby denote the common set of covari-
ates by L̇), the previous expressions can be further simplified.
Given the use of the canonical link function, θ(t) can be esti-
mated at time t as the solution to the estimating equations

0 =
n∑

i=1

L̇T
i Ri(t)[Ai − E{Ai|Ti ≥ t, Li; θ̂(t)}]

By estimating θ(t) in this way, we ensure that the estimating
equations for ψ reduce to

0 =
n∑

i=1

∫ ∞

0

�i{θ(t)}Ri(t){dNi(t) − ψAidt} (13)

and ψ can be estimated in closed-form as

ψ̂TVPS−DR =
∑n

i=1

∫ ∞
0

�i{θ̂(t)}dNi(t)J(t)∑n

i=1

∫ ∞
0

�i{θ̂(t)}Ri(t)Aidt
(14)

Surprisingly, estimation of �(t) is no longer required, yet the
doubly robust property is retained. To see why, note that
when model ATV is misspecified, the expectation of (13) will
converge to

∫ ∞

0

E ([E(A|T ≥ t, L) − E{A|T ≥ t, L; θ∗(t)}]R(t)d�(t, L)) ,
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where θ∗(t) is the limiting value of θ̂(t). Because of how
θ(t) is estimated, the above display will equal zero when
d�(t, L) = d�{L;�(t)}, thus demonstrating double robustness.
This strategy is related to bias-reduced doubly robust esti-
mation, as proposed by Vermeulen and Vansteelandt (2015);
further discussion is given in Web Appendix A.

Vansteelandt et al. (2014) showed that Aalen least-squares
estimators are robust to misspecification of the additive haz-
ards model when A is normal with a mean that is linear in
L̄ = L̃ and constant variance. Indeed, in this scenario, it fol-
lows from the Appendix of Vansteelandt et al. (2014) that the
Aalen least-squares estimator is equivalent to the estimator
given in (14). Using a Taylor expansion around (9),

E{A exp(−ψAt)|L}
E{exp(−ψAt)|L} = E(A|L) + var(A|L)ψt

+E(A3|L) − 3E(A|L)E(A2|L) + 2E(A|L)3

2!
ψ2t2 + ...,

it follows that this robustness holds more generally so long
as the mean and central moments of f (A|L) are linear in L.
This assumption would not generally hold if A is binary; how-
ever, our estimator given in (12) generalizes the robustness
properties of Aalen least-squares to arbitrary exposure distri-
butions. Furthermore, if the true treatment effect ψ∗(t, L) is a
function of t and L, such that model M no longer holds, then
the estimator defined in (12) continues to have a useful inter-
pretation. Assuming model ATV is correct, then the estimator
converges to

∫ ∞
0

E{var(A|T ≥ t, L)R(t)ψ∗(t, L)}dt∫ ∞
0

E{var(A|T ≥ t, L)R(t)}dt
,

which is a weighted average of the treatment effects at dif-
ferent times and covariate values. In contrast, the Aalen
least-squares estimator of ψ in the corresponding additive
hazards model is not generally a convex combination of the
time/covariate-specific treatment effects, even when L is cor-
rectly modeled. It is in particular not guaranteed to lie within
the range of time/covariate-specific treatment effects.

4.2. Estimation via E(A|L)

In Section 3.2, we identified a subclass of estimators that are
consistent under a correctly specified model of the conditional
mean of the exposure. We now exploit these results in order
to develop inference for ψ.

Consider the estimating equations for ψ suggested by the
function (5):

0 =
n∑

i=1

∫ ∞

0

d(t, Li)
{
Ai − E(Ai|Li)

}
Ri(t) exp(ψAit)

×{
dNi(t) − d�(t, Li) − ψAidt

}
(15)

In evaluating the integral in (15), note that the function
d(t, L) impacts only the variance, rather than the unbiased-
ness of the estimating equations. The efficient choice (6)
depends on the conditional distribution of the treatment A,

and in certain cases may lead to the integral becoming ana-
lytically intractable. We therefore set d(t, L) to 1, leaving
the search for efficient yet computationally feasible choices
to future work.

Letting 
(β) denote
{
A − E(A|L;β)

}
, the estimating equa-

tion becomes

0 =
n∑

i=1

∫ ∞

0


i(β)Ri(t) exp(ψAit)
{
dNi(t) − d�(t, Li) − ψAidt

}

ane ψ can therefore be estimated as a solution to the equations

0 =
n∑

i=1


i(β̂)

{
1 −

∫ Ti

0

d�(s, Li) exp(ψAis)

}
(16)

It is vital for identification that the arbitrary function d�(t, L)
is non-zero over a set of times t with positive Lebesgue mea-
sure. Otherwise, as we integrate to ∞, all information about
the parameter ψ is lost. Therefore, d�(t, L) can be seen as
weighting term that prevents the integral in (15) from equal-
ing zero at all ψ.

Setting d�(t, Li) = 1 for all t > 0, the above equations
reduce to 0 = ∑n

i=1
Ui(ψ, β̂), where

Ui(ψ, β̂) =
{


i(β̂){exp(ψAiTi) − 1}/ψAi if ψAi �= 0


i(β̂)Ti if ψAi = 0

It follows from the theory of M-estimation that under stan-
dard regularity conditions, the solution ψ̂BPS to equation (15)
delivers an estimator which is consistent and asymptotically
normal under model M ∩ AE.

Doubly robust extensions to the previous proposal can also
be made. Returning to equation (15), then rather than set-
ting d�(t, Li) = 1 for all t > 0, we now postulate a model
B for d�(t, L), such as d�(t, L) = d�{L;�(t)}. After setting
d(t, Li) = 1 again for all t > 0, it follows that ψ can be esti-
mated as the solution to

0 =
n∑

i=1


i(β̂)
{(∫ Ti

0

J(s) exp(ψAis)[dNi(s)

−d�{Li; �̂(s)}]
)

− exp(ψAiTi)
}

(17)

The resulting solution ψ̂BPS−DR is consistent and asymptoti-
cally normal under the model M ∩ (AE ∪ B).

It is straightforward to show that the efficient subclass
score (7) is invariant to centering A by its conditional mean;
if we are willing to work with an non-efficient estimator, it
is also desirable that it has this property. We therefore rec-
ommend that A be substituted by 
(β) in (16) and (17),
such that the estimating equations implied by (16) reduce
to Ui(ψ, β̂) = [exp{ψ
i(β̂)Ti} − 1]/ψ if 
i(β̂) �= 0 and 
i(β̂)Ti

otherwise. Centering will prevent the exponential terms in the
estimating equations from becoming large at later time points,
which could lead to improved finite-sample performance.
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Solving the equation U(ψ, β̂) for the singly robust estima-
tor could also be a computationally-fast first step towards
an estimator that is nearly efficient (in the general class),
if one is willing to specify the distribution f (A|L). This is
because an initial estimate ψ̂init could be plugged into ratio
term (9) in the estimating function (8), making it linear in ψ.
Under model M, the resulting two-step estimator is consis-
tent and asymptotically normal if either or both of the models
AD or B hold.

4.3. Censoring

When the survival time is censored by C, all of the approaches
described above are valid under the assumption that censoring
is independent of T and A, conditional on L, in the sense
that C ⊥⊥ (T, A)|L. All approaches are thus consistent when
censoring depends only on L. The doubly robust estimators
are moreover consistent when censoring depends additionally
on A, and the additive hazards model is correctly specified.
We can relax these assumptions by using inverse probability
of censoring weighting (Scharfstein and Robins, 2002), under
a model for the censoring mechanism:

E
{
dNC(t)|T ≥ t, C ≥ t, L, A, V̄t

} = a(t, L, A, V̄t ;π),

Here, NC(t) is the counting process for the censoring time;
V̄t = {Vs : s < t}, where Vs is a collection of covariates mea-
sured at time s; and a(t, L, A, V̄t ;π) is a known function,
smooth in an unknown parameter π. An additive or mul-
tiplicative hazards model could be postulated here. An
individual’s contribution to the estimating function (12) at
time t is then weighted by

1

exp{− ∫ t

0
a(s, L, A, V̄s;π)ds}

,

such that ψ can be estimated as the solution to

0 =
n∑

i=1

∫ ∞

0

[
1

exp{− ∫ t

0
a(s, Li, Ai, V̄si; π̂)ds}

]
�i{θ̂(t)}Ri(t)J(t)

×[dNi(t) − d�{Li; �̂(t)} − ψAidt] (18)

Weights can also be added to the estimating equations in (15),
such that ψ can be estimated as the solution to

0 =
n∑

i=1


i(β̂)

(
1 −

∫ Ti

0

[
1

exp{− ∫ s

0
a(u, Li, Ai, V̄ui;π)du}

]

× d�(s, Li) exp(ψAis)ds) ,

and likewise for the doubly robust estimator given by (17).
When the resulting weights are highly variable, stabilized

inverse probability weights can be obtained under an addi-
tional model for the censoring mechanism:

E
{
dNC(t)|T ≥ t, C ≥ t, L

} = a(t, L; κ),

where a(t, L; κ) is a known function, smooth in an
unknown parameter κ. Misspecification of the latter model

does not affect the consistency of the estimator of ψ

(Robins et al., 2000).

5. Simulation Study

We considered 4 estimators: i) the singly robust estimator
ψ̂BPS described in Section 4.2 that is consistent under model
M ∩ AE; ii) the doubly robust estimator ψ̂BPS−DR based on
display (17) that is consistent under model M ∩ (AE ∪ B);
iii) the doubly robust estimator ψ̂TVPS−DR given in closed-form
in (12) that is consistent under model M ∩ (ATV ∪ B); and iv)
the Aalen least-squares estimator ψ̂ALS of the time-constant
treatment coefficient from a covariate-adjusted additive haz-
ards model (where the effects of the baseline covariates were
allowed to vary over time) that is consistent under model
M ∩ B. Model-based standard errors were used to construct
95% confidence intervals for ψ̂ALS (the variance estimators
used to construct the other 95% confidence intervals are
described in Web Appendix B).

In order to evaluate the four different estimators, we con-
sidered eight different experiments. For each experiment, we
simulated 1000 data sets of 1000 observations. We generated
covariates L1 and L2, and exposure A, event time T and cen-
soring time C; an individual’s follow up time was taken as
min(T, C). In experiments 1–4, the exposure A was continu-
ous (e.g., the increase in the dose of a drug), whereas it was
binary in experiments 5–8 (see Table 1 for a descriptions of
the data generating mechanisms). In experiments 1, 2, 5, and
6, all working models included only terms for L1, L2, and an
intercept. In experiments 1 and 5, all models were correctly
specified, whereas in experiments 2 and 6, the models AE and
ATV were misspecified, as they excluded an interaction term.
In experiments 3 and 7, the models AE and ATV correctly
included an interaction term, whereas this term was excluded
in experiments 4 and 8 (all models are wrong). In experi-
ments 1, 2, 5, and 6, those for whom min(T, C) >= 1.6 were
censored at t = 1.6, corresponding to the study being closed
at this time point. The same was done in experiments 3, 4,
7 and 8 at t = 1.3. For all experiments, the chosen censoring
mechanisms lead to 25–30% of subjects being censored (with
around 10% censored at the end of the study).

The results of the simulations are given in Table 2, and
largely corroborate the theory. The doubly robust estimators
were empirically unbiased when either of the working models
was correctly specified, and when both models were correctly
specified, they were more efficient than the estimator ψ̂BPS .
There was little difference in efficiency between the estima-
tors, and they also behaved similarly in terms of bias when
both working models were misspecified. In general, the stan-
dard errors performed well. When the treatment was normal
however, under misspecification of model AE, performance of
the standard errors for ψ̂BPS and ψ̂BPS−DR was less than opti-
mal because the distribution of the estimation function was
characterized by outlying values.

6. Data Analysis

We applied our methods to data from the five-center
SUPPORT study that took place between 1989 and 1994. Pre-
viously, Connors et al. (1996) analyzed the dataset in order
to evaluate the effect of right heart catheterization (RHC)
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Table 1
A description of the data-generating mechanisms behind experiments 1–8. In experiments 1–4, we standardized the exposure

to give it mean zero and standard deviation 1. B(1, p): Bernoulli distribution with expectation p; N (μ, σ2): normal
distribution with expectation μ and variance σ2; Exp(λ): exponential distribution with rate λ; unif(a, b): uniform distribution

with minimum and maximum values a and b, respectively. We use L = (1, L1, L2)
T ; in all settings, for model B, we fitted

E
{
dN(t)|Ft , L, A = 0

} = d�(t)T LR(t).

Exp. Data-generating mechanism Fitted exposure model

1 L1 ∼ B(1, 0.6) AE : βT L

L2 ∼ B{1, expit(0.5L1)} ATV : θ(t)T L
A ∼ N {−1 + 0.25(L1 − L2), 0.09}
T ∼ Exp(0.5 + 0.5L1 + L2 + 0.1A)
C ∼ unif(0, 3.5)

2 L1 ∼ B(1, 0.6) AE : βT L

L2 ∼ B{1, expit(0.5L1)} ATV : θ(t)T L
A ∼ N {−1 + 0.25(L1 − L2)
+0.5L1L2, 0.09}
T ∼ Exp(0.5 + 0.5L1 + L2 + 0.1A)
C ∼ unif(0, 3.5)

3, 4 L1 ∼ N (0, 1) 3 - AE : βT
1L + β2L1L2

L2 ∼ N (L1, 1) ATV : θ1(t)
T L + θ2(t)L1L2

A ∼ N {−1 + 0.25(L1 − L2) 4 - AE : βT L

+0.5L1L2, 0.09)} ATV : θ(t)T L
T ∼ Exp{0.3 + |L1|+log(1 + |L2|) + 0.1A}
C ∼ unif(0, 3)

5 L1 ∼ B(1, 0.6) AE : expit(βT L)
L2 ∼ B{1, expit(0.5L1)} ATV : expit{θ(t)L}
A ∼ B[1, expit{−1 + 0.25(L1 − L2)}]
T ∼ Exp(0.5 + 0.5L1 + L2 + 0.1A)
C ∼ unif(0, 3.5)

6 L1 ∼ B(1, 0.6) AE : expit(βT L)
L2 ∼ B{1, expit(0.5L1)} ATV : expit{θ(t)T L}
A ∼ B[1, expit{−1 + 0.25(L1 − L2)
+0.5L1L2}]
T ∼ Exp(0.5 + 0.5L1 + L2 + 0.1A)
C ∼ unif(0, 3.5)

7, 8 L1 ∼ N (0, 1) 7 - AE : expit(βT
1L + β2L1L2)

L2 ∼ N (L1, 1) ATV : expit{θ1(t)
T L + θ2(t)L1L2}

A ∼ B[1, expit{−1 + 0.25(L1 − L2) 8 - AE : expit(βT L)
+0.5L1L2}] ATV : expit{θ(t)T L}
T ∼ Exp{0.3 + |L1|+log(1 + |L2|) + 0.1A}
C ∼ unif(0, 3)

Table 2
Simulation results from experiments 1 to 8. Monte Carlo bias multiplied by 10 (bias); Monte Carlo standard deviation

multiplied by 10 (SD); coverage of 95% Wald confidence intervals (Cov).

ψ̂BPS ψ̂BPS−DR ψ̂TVPS−DR ψ̂ALS

Exp Bias SD Cov Bias SD Cov Bias SD Cov Bias SD Cov

1 −0.00 0.6 95.4 0.00 0.5 95.0 −0.00 0.5 94.9 −0.00 0.5 95.3
2 −0.57 0.6 86.4 −0.07 0.5 93.9 0.02 0.6 94.5 0.02 0.6 94.6
3 0.03 2.1 94.7 0.04 1.8 94.9 −0.00 1.8 95.3 7.19 1.1 0.0
4 7.80 1.8 0.0 7.86 1.8 0.0 7.17 1.1 0.0 7.17 1.1 0.0
5 0.01 1.2 94.9 0.05 1.1 94.8 0.04 1.1 94.8 0.04 1.1 94.7
6 −0.10 1.1 94.2 0.03 1.0 95.4 0.02 1.0 95.4 0.02 1.0 95.7
7 −0.01 1.5 95.0 0.03 1.3 95.0 −0.02 1.4 94.5 3.80 1.4 17.3
8 3.91 1.5 25.8 3.68 1.3 19.1 3.70 1.3 19.3 3.75 1.4 18.2
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on patient mortality. Many cardiologists believed that RHC
was beneficial, but due to ethical concerns, this benefit had
not been demonstrated via a randomized controlled trial.
Connors et al. (1996) constructed propensity scores using 72
potential confounders identified by clinicians. As part of the
original analysis, Connors et al. (1996) evaluated the asso-
ciation between RHC and survival by fitting a Cox model,
adjusted for treatment (RHC), the propensity score and a
reduced set of outcome adjustment variables. They consid-
ered only the first thirty days after entry into the study, such
that people who survived beyond thirty days were consid-
ered administratively censored. Surprisingly, the investigators
found that undergoing RHC (compared with no RHC) led to
a decrease in survival.

We attempted to fit an additive hazards model using Aalen
least-squares, adjusting for treatment and all 72 covariates.
Random noise from a uniform distribution on (0,0.001) was
first added to the survival times in order to break ties.
We also forced the effects of all covariates (excluding the
intercept) to be constant over time. The estimate of the coef-
ficient for treatment in the final adjusted model was 0.00365
(SE=0.00077, 95%CI 0.00213–0.00516). To assess the fitted
model, we obtained predicted hazards at each time point
(day 1, 2,..., 30); over 99% of the predicted hazards at the
25th, 50th, and 75th percentiles of the distribution of sur-
vival times were less than zero. We would be cautious about
drawing inferences from such a model, as the misspecification
(suggested by the invalid predictions) could lead to biased
estimates of the treatment effect and misleading model-based
standard errors. In view of this, we will next report estimates
that rely on propensity scores instead.

We fitted a logistic regression model for treatment, adjust-
ing for all 72 covariates. We obtained the predicted values
from this model in order to estimate the effect of RHC using
the estimator ψ̂BPS . We also postulated a simplified additive
hazards model, which included treatment and the outcome
adjustment variables listed above, and allowed their effects
to depend on time. The purpose of fitting this model was to

construct the doubly robust estimators ψ̂BPS−DR and ψ̂TVPS−DR.
For ψ̂TVPS−DR, we obtained the predictions after fitting a logis-
tic regression model that included all 72 variables at each
event time. R code is available in the Supplementary Materials
(see also Web Appendix C).

The estimated hazard difference from the singly-robust
estimator ψ̂BPS was 0.00406 (SE=0.00084, 95%CI 0.00241–
0.0057). The doubly robust estimator ψ̂BPS−DR gave a hazard
difference of 0.00334 (SE=0.00074, 95%CI 0.0019–0.00479),
and the estimator ψ̂TVPS−DR gave 0.00363 (SE=0.00078,
95%CI 0.0021–0.00515). We also computed E{pr(T ≥ t|A =
a, L)}, the average survival probability at time t if every-
one received treatment a, standardized with respect to the
observed distribution of L. This was done by taking sam-
ple averages of R(t) exp{ψ̂(A − a)t}. The adjusted survival
curves are plotted in Figure 1; compared with the standard
Kaplan–Meier estimates, the difference between the treatment
groups is slightly shrunken towards the null. This is consistent
with the results of Connors et al. (1996) and Vermeulen and
Vansteelandt (2015), where small differences between unad-
justed and adjusted treatment effect estimates (in the same
direction) were observed.

7. Discussion

In this article, we have developed a theory of estimation
for the adjusted hazard difference/relative chance of sur-
vival using semiparametric additive hazards models. We
have used this theory to develop several classes of dou-
bly robust estimators, each strategy with its own strengths
and limitations. The closed-form estimators described in Sec-
tion 4.1, which are consistent and asymptotically normal
under model M ∩ (ATV ∪ B), have several important advan-
tages over competing strategies: under omitted interactions
and/or time effects in model M, they converge to a con-
vex combination of time/covariate-specific treatment effects
(assuming that model ATV is correct); since the term exp(ψAt)
does not appear in the estimating functions, their behavior

Figure 1. Thirty-day survival curves. ψ̂BPS , ψ̂BPS−DR and ψ̂TVPS−DR were used to compute E[pr(T ≥ t|A = a, L)], the average
survival probability at time t if everyone received treatment a (RHC or no RHC), standardized with respect to the observed
distribution of the covariates L.
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is likely to be more stable; and simulations suggest that
these estimators are reasonably efficient (although informa-
tion may be lost by ignoring the fact that model ATV contains
information about ψ). In Web Appendix D, we compare
these estimators with those of Kang et al. (2018) in addi-
tional simulations, and find ours to be more efficient in a
low-dimensional setting.

Although for simplicity we have considered a scalar treat-
ment effect, in many settings ψ will be a vector of parameters.
For instance, when the effect of A on the hazard is mod-
ified by Z, then the semiparametric model is now defined
by the restriction

E
{
dN(t)|Ft , L, A

} = {
d�(t, L) + (ψ1 + ψT

2Z)Adt
}

R(t)

where ψ2 is a vector, and ψ1 and ψ2 give the adjusted
effect of A within different levels of Z. We note that unlike
the estimators of Wang et al. (2017), all of our proposals
remain doubly robust outside of the ‘no treatment hetero-
geneity’ model (and are considerably more efficient under the
homogeneous model by avoiding inverse probability weight-
ing). If the vector-valued ψ = (ψ1, ψ2)

T is estimated via the
approach described in Section 4.1 that requires a model for
E(A|T ≥ t, L), then to ensure a congenial model specification,
the model ATV must now also include Z, with its regression
coefficient(s) allowed to depend on time.

The proposals described in this article are closely related
to the method of G-estimation (Robins and Tsiatis, 1991;
Robins, 1994). Picciotto et al. (2012) recently introduced the
class of discrete-time structural cumulative failure time mod-
els, along with accompanying G-estimators. They postulate a
multiplicative model for the probability of failure, rather than
survival. Note that all of the methods described above can be
adjusted in order to estimate the relative chance of failure.
In Web Appendix A, we further investigate the efficiency of
Picciotto et al.’s estimators.

In future work, the new class of semiparametric additive
hazards models and the accompanying doubly robust estima-
tors will be extended to estimate controlled direct effects in
the presence of mediators and/or time varying confounders.
Regarding mediation problems, Martinussen et al. (2011)
previously considered the estimation of direct effects using
additive hazards models; however, their approach was lim-
ited to settings with binary, randomly assigned treatments.
By taking a semiparametric approach, the methods described
in this article would be able to accommodate different types
of treatment and adjustment for baseline covariates. Regard-
ing the problem of time-varying confounding, such extensions
would be useful in light of issues facing the two princi-
pal approaches used in survival analysis, marginal structural
models (Robins et al., 2000) and structural accelerated fail-
ure time models (Robins and Tsiatis, 1991). Inference for
the former requires inverse probability weighting; estimators
can suffer heavily from large finite-sample bias and impre-
cision due to highly variable weights. Marginal structural
models also prohibit investigation into effect modification
by time-varying covariates. G-estimation has turned out to
be problematic for structural accelerated failure time mod-
els, because administrative censoring is dealt with through

an artificial recensoring process which can induce a lack of
smoothness in the estimating equations.

8. Supplementary Materials

Web Appendices referenced in Sections 2–7 are available with
this article at the Biometrics website on Wiley Online Library.
R code is for the data analysis is also available here.
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