20BIO, 20B25, 20B20

BULL. AUSTRAL. MATH. SOC. VOL. 18 (1978), 465-473.

On doubly transitive permutation groups

Cheryl E. Praeger

Suppose that G is a doubly transitive permutation group on a finite set Ω , and that for α in Ω the stabilizer G_{α} of α has a set $\Sigma = \{B_1, \ldots, B_t\}$ of nontrivial blocks of imprimitivity in $\Omega - \{\alpha\}$. If G_{α} is 3-transitive on Σ it is shown that either G is a collineation group of a desarguesian projective or affine plane or no nonidentity element of G_{α} fixes B_1 pointwise.

Introduction

Suppose that G is a doubly transitive but not doubly primitive permutation group on a finite set Ω . Let $\Sigma = \{B_1, \ldots, B_t\}$ be a set of nontrivial blocks of imprimitivity in $\Omega - \{\alpha\}$ for the stabilizer G_{α} of a point $\alpha \in \Omega$.

This paper completes an investigation which began with [11]. In that paper it was shown that if G_{α}^{Σ} is the alternating or symmetric group or one of the Mathieu groups in its usual representation then either G is a collineation group of a projective or affine plane or no nonidentity element of G_{α} fixes B_{1} pointwise. In subsequent papers, [10, 12], it was shown that the same conclusions are valid if we assume only that G_{α} is 3-transitive and not faithful on Σ . The assumption that G_{α} is not

Received 1 May 1978.

faithful on Σ is unattractive but unfortunately it was crucial in the proofs given in those papers. Our aim in this paper is to show that the assumption that G_{α} is not faithful on Σ is unnecessary. We prove

THEOREM. Suppose that G is 2-transitive on Ω of degree n, and that for $\alpha \in \Omega$, G_{α} has a set $\Sigma = \{B_1, \ldots, B_t\}$ of blocks of imprimitivity in $\Omega - \{\alpha\}$, where $t = |\Sigma| \ge 3$, $|B_t| = b > 1$, bt = n - 1. Suppose that G_{α} is 3-transitive on Σ and that G_{α} contains a nonidentity element fixing B_1 pointwise. Then G is a collineation group of a desarguesian projective or affine plane of order t - 1 such that the lines containing α are precisely the sets $B_t \cup \{\alpha\}$, for $i = 1, \ldots, t$.

We remark that the affine planes arising in the conclusions of [11] and [12] are desarguesian. This was shown in [13]. Most of the notation used here follows the conventions of Wielandt's book [14]. If a group Ghas a permutation representation on a set Ω then $\operatorname{fix}_{\Omega} G$ and $\operatorname{supp}_{\Omega} G$ will denote the subset of Ω fixed by G and the subset of Ω permuted nontrivially by G respectively. By a block design we shall mean a set of v points and a set of b blocks with a relation called incidence between points and blocks, such that any block is incident with k points, where $2 \le k < v-1$, and any pair of points is incident with λ blocks, where $\lambda > 0$. The number r of blocks incident with a given point is also constant and a counting argument shows vr = bk. It is well known that $b \ge v$ and hence that $r \ge k$.

Proof of the theorem

Let G satisfy the hypothesis of the theorem and let K_i , \overline{K}_i denote the setwise and pointwise stabilizers respectively of $B_i \in \Sigma$, for $i = 1, \ldots, t$. By [12] and [13], Proposition D, the theorem is true if either G_{α} is not faithful on Σ or if \overline{K}_1 is 2-transitive on $\Sigma - \{B_1\}$. Thus we may assume that G_{α} is faithful on Σ and \overline{K}_1 is not 2-transitive on $\Sigma - \{B_1\}$. By [13], Theorem A, and since G_{α} is 3-transitive on Σ , the translates under G of $B_1 \cup \{\alpha\}$ are the blocks of a block design with $\lambda = 1$ preserved by G.

LEMMA 1. The theorem is true if K_{\perp} has a normal subgroup which acts regularly on $\Sigma = \{B_{\perp}\}$.

Proof. Suppose that K_{\perp} has a normal subgroup N which is regular on $\Sigma - \{B_{\perp}\}$. By [5] and since G_{α} is 3-transitive on Σ , it follows that either G_{α}^{Σ} is a normal extension of PSL(2, q) of degree q + 1 or G_{α} has a normal subgroup M which is regular on Σ . In the latter case, by [14], 11.3, either t = |M| = 3 or M is elementary abelian of order 2^{α} for some $a \ge 2$. If t = 3, then $G_{\alpha} \simeq S_{3}$ and hence $K_{\perp} \simeq Z_{2}$. Since K_{\perp} is transitive on B_{\perp} , b = 2 and n = 7. However there is no 2-transitive group G of degree 7 with $G_{\alpha} \simeq S_{3}$. If $|M| = 2^{\alpha}$ then by [4] and since G_{α} is 3-transitive on Σ , it follows that G_{\perp} has a regular normal subgroup L, say. Then ML is a Frobenius group with Frobenius complement M. However a Frobenius complement contains at most one involution and so we have a contradiction (see [3], 10.3.1). Thus G_{α}^{Σ} is a normal extension of PSL(2, q) with t = q + 1.

Now K_1 has a normal subgroup V of order q which is regular on $\Sigma - \{B_1\}$, and since \overline{K}_1 is nontrivial, $V \subseteq \overline{K}_1$. Then $K_1 = \{K_1 \cap K_2\}\overline{K}_1$, so that $K_1^{B_1} = (K_1 \cap K_2)^{B_1}$, which is metacyclic. If Z is the largest cyclic normal subgroup of $K_1 \cap K_2$, then Z has order q - 1 or (q-1)/2. Let $Y = Z \cap \overline{K}_1$ and suppose that Y is nontrivial. Then Y is semiregular on $\Sigma - \{B_1, B_2\}$, so that $\operatorname{fix}_{\Omega} Y \subseteq \{\alpha\} \cup B_1 \cup B_2$. Moreover Y, Z are characteristic subgroups of Z, $K_1 \cap K_2$ respectively.

Now there is an element g in G_{α} which interchanges B_1 and B_2 and hence normalises $K_1 \cap K_2$. It follows that g normalises Y and Z, and hence that $Y = Z \cap \overline{K}_2$. Thus $Y \leq \overline{K}_1 \cap \overline{K}_2$ and so fix $Y = \{\alpha\} \cup B_1 \cup B_2$.

If $\Sigma(\beta)$ is the set of blocks of imprimitivity of G_{β} corresponding to Σ , then $C = (B_1 - \{\beta\}) \cup \{\alpha\}$ is the block in $\Sigma(\beta)$ containing α and \overline{K}_1 is the pointwise stabilizer of $\{\beta\} \cup C$. Now V must be regular on both $\Sigma(\beta) - \{C\}$ and $\Sigma - \{B_1\}$, so that the representations of \overline{K}_1 on $\Sigma(\beta) - \{C\}$ and $\Sigma - \{B_1\}$ are equivalent. Thus $\overline{K}_1 \cap K_2$ is the stabilizer in \overline{K}_1 of an element C', say, of $\Sigma(\beta) - \{C\}$. By a similar argument Y fixes C' pointwise, so that $C' = B_2$, which is a contradiction, since $\{\alpha\} \cup B_2$ and $\{\beta\} \cup C'$ are distinct blocks of the block design. Thus Y = 1, and Z is faithful and hence semi-regular on B_1 . Therefore b is divisible by |Z|.

Now the size 1 + b of a block of the block design is at most the number t = q + 1 of blocks containing α , and hence b is q - 1 or (q-1)/2. If b is q-1, the design is an affine plane, which can be shown to be desarguesian as in [13]. So assume that b = (q-1)/2 = |Z|. Then q is odd and $G_{\alpha} \stackrel{1}{\Rightarrow} \mathrm{PGL}(2, q)$. In this case V has odd order q, and if $\beta \in B_1$, $G_{\alpha\beta}/V$ is cyclic. Thus a Sylow 2-subgroup of $G_{\alpha\beta}$ is cyclic or trivial. By [1] and [2], respectively, it follows that G has a regular normal subgroup L, say. Now $PSL(2, q) \leq G_{\alpha} \leq P\GammaL(2, q)$. Let M be a subgroup of PSL(2, q), which is elementary abelian of order 4, $M \leq G_{lpha}$. An involution g in M fixes either 0 or 2 elements of Σ . In the former case g fixes only the point lpha of Ω . In the latter case we may assume that $g \in K_1 \cap K_2$ and hence that $g \in Z$. We showed above that Z is semi-regular on B_1 and similarly Z is semi-regular on B_2 . Thus in this case, also, fix₀ $g = \{\alpha\}$. Thus M acts fixed point freely on L and so is a Frobenius complement, whereas a Frobenius complement of even order contains only one involution (see [3], 10.3.1). Thus the lemma is proved.

We may assume therefore that K_1 has no normal subgroup acting

regularly on $\Sigma = \{B_1\}$; in particular \overline{K}_1 is not regular on $\Sigma = \{B_1\}$.

LEMMA 2. The theorem is true if $K_1 \cap K_2$ has a nontrivial abelian normal subgroup.

Proof. Suppose that $K_1 \cap K_2$ has a nontrivial abelian normal subgroup. By [9], Lemma 1, and [10], the theorem is true unless G_{α}^{Σ} has a regular normal elementary abelian 2-subgroup. Thus we may assume that G_{α} has an elementary abelian normal 2-subgroup M of order $t \ge 4$ which is semiregular on $\Omega - \{\alpha\}$. By [4], G has a regular normal subgroup L, and so M is a Frobenius complement. However, as Frobenius complements contain at most one involution, this is a contradiction (see [3], 10.3.1), and Lemma 2 is proved.

Thus we may assume that $K_1 \cap K_2$ has no nontrivial abelian normal subgroups. By [8], Theorem A, $K_1 \cap K_2$ has a unique minimal normal subgroup S which is a nonabelian simple group and hence has even order. Since \overline{K}_1 is not regular on $\Sigma - \{B_1\}$, $\overline{K}_1 \cap K_2$ and similarly $K_1 \cap \overline{K}_2$ are nontrivial normal subgroups of $K_1 \cap K_2$. Thus

$$S \subseteq (\overline{K}_1 \cap K_2) \cap (K_1 \cap \overline{K}_2) = \overline{K}_1 \cap \overline{K}_2 = X ,$$

say. Since $K_1 \cap K_2$ is transitive on $\Sigma - \{B_1, B_2\}$, X is $\frac{1}{2}$ -transitive on $\Sigma - \{B_1, B_2\}$ with orbits of length, say, x, where x > 1, and x divides t - 2.

LEMMA 3. $X = \overline{K}_1 \cap \overline{K}_2$ is not semi-regular on $\Sigma - \{B_1, B_2\}$.

Proof. If X is semi-regular on $\Sigma - \{B_1, B_2\}$, then, since |X| is even, it follows from [3] and Lemma 1 that K_1 has a unique normal subgroup, say X^1 , which is 2-transitive and simple. Then $X^1 \leq \overline{K}_1 = \frac{\Sigma - \{B_1\}}{1}$ which is a contradiction, since \overline{K}_1 is not 2-transitive on $\Sigma - \{B_1\}$. Let $\Sigma(\beta)$ be the set of blocks of imprimitivity for G_R corresponding to Σ , where $\beta \in B_1$. Then the element of $\Sigma(\beta)$ containing α is $C = (B_1 - \{\beta\}) \cup \{\alpha\}$. Let $C^1 \in \Sigma(\beta) - \{C\}$ be chosen so that $C^1 \cap B_2$ is non-empty. Then as $\{\beta\} \cup C^1$ and $\{\alpha\} \cup B_2$ are distinct blocks of the block design, $C^1 \cap B_2 = \{\gamma\}$, say. Let γ be the pointwise stabilizer of C^1 in $\overline{K_1}$. Then γ is conjugate to χ in G(for $\overline{K_1}$ is normal in $G_{\{\alpha,\beta\}}$, so if $g \in G_{\{\alpha,\beta\}} - G_{\alpha\beta}$, then $\gamma^{\mathcal{G}} = \overline{K_1} \cap \overline{K_2}$ where $(C^1)^{\mathcal{G}} = B_i$, and there is an h in $\overline{K_1}$ such that $B_i^h = B_2$ and hence $\gamma^{\mathcal{G}h} = \overline{K_1} \cap \overline{K_2} = \chi$). It follows that $\operatorname{fix}_{\Omega} \gamma = \{\alpha\} \cup B_1 \cup C^1$, and all γ -orbits in $\operatorname{supp}_{\Omega} \gamma$ have length a multiple of x. Since γ fixes γ , γ fixes B_2 setwise, and clearly $B_2 - \{\gamma\} \subseteq \operatorname{supp}_{\Omega} \gamma$. Therefore $b - 1 = |B_2 - \{\gamma\}|$ is a multiple of x.

LEMMA 4. The subset of Σ fixed by Y is precisely

 $\operatorname{fix}_{\Sigma} Y = \{B_{1}\} \cup \{B \in \Sigma; B \cap C^{1} \neq \emptyset\},\$

and $\operatorname{fix}_{\Sigma}Y$ is a union of X-orbits in Σ .

Proof. Clearly $\{B_1\} \cup \{B \in \Sigma; B \cap C^1 \neq \emptyset\} \subseteq \operatorname{fix}_{\Sigma} Y$, and is the subset of $\operatorname{fix}_{\Sigma} Y$ of those elements of Σ which contain a point of $\operatorname{fix}_{\Omega} Y$. If $\operatorname{fix}_{\Sigma} Y$ contains an additional element B, then $B \subseteq \operatorname{supp}_{\Omega} Y$, and so B is a union of nontrivial Y-orbits; that is, b is divisible by x. However b - 1 is divisible by x and x > 1, so we conclude that $\operatorname{fix}_{\Sigma} Y = \{B_1\} \cup \{B \in \Sigma; B \cap C^1 \neq \emptyset\}$.

Now let $B \in \operatorname{fix}_{\Sigma} Y - \{B_1, B_2\}$ and let Δ be the X-orbit in Σ containing B. It is sufficient to show that $\Delta \subseteq \operatorname{fix}_{\Sigma} Y$. Let $B \cap C^1 = \{\delta\}$ and let Δ' be the X-orbit in Ω containing δ . Then $|\Delta| = x$ and $|\Delta'| = xy$, where $y = |\Delta' \cap B| \ge 1$. Now $Y \subseteq K_1 \cap K_2$, and so Y normalises X. Therefore Y fixes $\Delta' = \{\delta^x; x \in X\}$ setwise (for if $y \in Y$, then $\delta^{xy} = \delta^{y^{-1}xy} \in \Delta'$). Thus Y fixes $B \cap \Delta'$ setwise, and so $(B \cap \Delta') = \{\delta\}$ is a union of nontrivial Y-orbits, that is $y - 1 = |(B \cap \Delta') - \{\delta\}| \equiv 0 \pmod{x}$.

Let $a = |\operatorname{supp}_{\Sigma} Y \cap \Delta|$. Then $0 \le a < x$. If a > 0, then $U\{B' \cap \Delta'; B' \in \operatorname{supp}_{\Sigma} Y \cap \Delta\}$ is a union of nontrivial Y-orbits and is a set of ay points. Thus $ay \equiv 0 \pmod{x}$, and so $a \equiv 0 \pmod{x}$, which is a contradiction, since 0 < a < x. Thus a = 0 and $\Delta \subseteq \operatorname{fix}_{\Sigma} Y$.

LEMMA 5. $X \cap Y = 1$.

Proof. If $X \cap Y$ is nontrivial, then it follows from Lemma 4 that X does not act faithfully on its orbits in $\Sigma - \{B_1, B_2\}$, and so by $[\delta]$,

 $\begin{array}{c} \Sigma - \left\{ B_1 \right\} \\ \text{Proposition 4, } K_1 & \text{is a normal extension of } L_p(q) \text{, for some } r \geq 3 \\ \text{and prime power } q \text{, in its natural representation. Then } \overline{K}_1 \supseteq L_p(q) \text{ and} \\ \text{hence is 2-transitive on } \Sigma - \left\{ B_1 \right\} \text{, which is a contradiction.} \end{array}$

Thus $X \cap Y = 1$ and Y normalises X. Similarly since X fixes Cand C^1 setwise, X normalises Y. It follows that X and Ycentralise each other. Thus, by Lemma 3, the centraliser of X in K_1 is not semiregular on $\Sigma - \{B_1, B_2\}$, and it follows from [6], Corollary B3, and Lemma 2.8 that X is a T.I. set in K_1 (that is distinct conjugates of X by elements of K_1 intersect only in the identity). Thus by [7], $\Sigma - \{B_1\}$ Theorem A, and since X is not semiregular on $\Sigma - \{B_1, B_2\}$, K_1 is a normal extension of $L_p(q)$ in its natural representation for some $r \ge 3$ and prime power q. This is impossible, as \overline{K}_1 is not 2-transitive on $\Sigma - \{B_1\}$.

Thus the theorem is proved.

References

- [1] Michael Aschbacher, "2-transitive groups whose 2-point stabilizer has
 2-rank 1 ", J. Algebra 36 (1975), 98-127.
- [2] Helmut Bender, "Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt", J. Algebra 17 (1971), 527-554.
- [3] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
- [4] Christoph Hering, "On subgroups with trivial normalizer intersection", J. Algebra 20 (1972), 622-629.
- [5] Christoph Hering and William M. Kantor and Gary M. Seitz, "Finite groups with a split BN-pair of rank 1. I", J. Algebra 20 (1972), 435-475.
- [6] Michael O'Nan, "A characterization of $L_n(q)$ as a permutation groups", *Math. Z.* 127 (1972), 301-314.
- [7] Michael E. O'Nan, "Normal structure of the one-point stabilizer of a doubly-transitive permutation group. I", Trans. Amer. Math. Soc. 214 (1975), 1-42.
- [8] Michael E. O'Nan, "Normal structure of the one-point stabilizer of a doubly-transitive permutation group. II", Trans. Amer. Math. Soc. 214 (1975), 43-74.
- [9] Michael E. O'Nan, "Triply-transitive permutation groups whose twopoint stabilizer is local", submitted.
- [10] Chery! E. Praeger, "Doubly transitive permutation groups involving the one-dimensional projective special linear group", Bull. Austral. Math. Soc. 14 (1976), 349-358.
- [11] Cheryl E. Praeger, "Doubly transitive permutation groups which are not doubly primitive", J. Algebra 44 (1977), 389-395.
- [12] Cheryl E. Praeger, "Doubly transitive permutation groups in which the one-point stabilizer is triply transitive on a set of blocks", J. Algebra 47 (1977), 433-440.

[13] Cheryl E. Praeger, "Doubly transitive automorphism groups of block designs", J. Combinatorial Theory Ser. A (to appear).

[14] Helmut Wielandt, Finite permutation groups (translated by R. Bercov. Academic Press, New York, London, 1964).

Department of Mathematics, University of Western Australia, Nedlands, Western Australia.