On doubly transitive permutation groups

Cheryl E. Praeger

Abstract

Suppose that G is a doubly transitive permutation group on a finite set Ω, and that for α in Ω the stabilizer G_{α} of α has a set $\Sigma=\left\{B_{1}, \ldots, B_{t}\right\}$ of nontrivial blocks of imprimitivity in $\Omega-\{\alpha\}$. If G_{α} is 3-transitive on Σ it is shown that either G is a collineation group of a desarguesian projective or affine plane or no nonidentity element of G_{α} fixes B_{1} pointwise.

Introduction

Suppose that G is a doubly transitive but not doubly primitive permutation group on a finite set Ω. Let $\Sigma=\left\{B_{1}, \ldots, B_{t}\right\}$ be a set of nontrivial blocks of imprimitivity in $\Omega-\{\alpha\}$ for the stabilizer G_{α} of a point $\alpha \in \Omega$.

This paper completes an investigation which began with [11]. In that paper it was shown that if G_{α}^{Σ} is the alternating or symmetric group or one of the Mathieu groups in its usual representation then either G is a collineation group of a projective or affine plane or no nonidentity element of G_{α} fixes B_{1} pointwise. In subsequent papers, [10, 12], it was shown that the same conclusions are valid if we assume only that G_{α} is 3 -transitive and not faithful on Σ. The assumption that G_{α} is not

Received 1 May 1978.
faithful on Σ is unattractive but unfortunately it was crucial in the proofs given in those papers. Our aim in this paper is to show that the assumption that G_{α} is not faithful on Σ is unnecessary. We prove

THEOREM. Suppose that G is 2 -transitive on Ω of degree n, and that for $\alpha \in \Omega, G_{\alpha}$ has a set $\Sigma=\left\{B_{1}, \ldots, B_{t}\right\}$ of blocks of imprimitivity in $\Omega-\{\alpha\}$, where $t=|\Sigma| \geq 3,\left|B_{i}\right|=b>1$, $b t=n-1$. Suppose that G_{α} is 3-transitive on Σ and that G_{α} contains a nonidentity element fixing B_{1} pointwise. Then G is a collineation group of a desarguesian projective or affine plane of order $t-1$ such that the i ines containing α are precisely the sets $B_{i} \cup\{\alpha\}$, for $i=1, \ldots, t$.

We remark that the affine planes arising in the conclusions of [11] and [12] are desarguesian. This was shown in [13]. Most of the notation used here follows the conventions of Wielandt's book [14]. If a group G has a permutation representation on a set Ω then $\operatorname{fix}_{\Omega} G$ and $\operatorname{supp}_{\Omega} G$ will denote the subset of Ω fixed by G and the subset of Ω permuted nontrivially by G respectively. By a block design we shall mean a set of v points and a set of b blocks with a relation called incidence between points and blocks, such that any block is incident with k points, where $2 \leq k<v-1$, and any pair of points is incident with λ blocks, where $\lambda>0$. The number r of blocks incident with a given point is also constant and a counting argument shows $v r=b k$. It is well known that $b \geq v$ and hence that $r \geq k$.

Proof of the theorem

Let G satisfy the hypothesis of the theorem and let K_{i}, \bar{K}_{i} denote the setwise and pointwise stabilizers respectively of $B_{i} \in \Sigma$, for $i=1, \ldots, t$. By [12] and [13], Proposition D, the theorem is true if either G_{α} is not faithful on Σ or if \bar{K}_{1} is 2-transitive on $\Sigma-\left\{B_{1}\right\}$. Thus we may assume that G_{α} is faithful on Σ and \bar{K}_{1} is not 2-transitive on $\Sigma-\left\{B_{1}\right\}$. By [13], Theorem A, and since G_{α} is

3-transitive on Σ, the translates under G of $B_{1} \cup\{\alpha\}$ are the blocks of a block design with $\lambda=1$ preserved by G.

LEMMA 1. The theorem is true if K_{1} has a normal subgroup which acts reguzarly on $\Sigma-\left\{B_{1}\right\}$.

Proof. Suppose that K_{1} has a normal subgroup N which is regular on $\Sigma-\left\{B_{1}\right\}$. By $[5]$ and since G_{α} is 3-transitive on Σ, it follows that either G_{α}^{Σ} is a normal extension of $\operatorname{PSL}(2, q)$ of degree $q+1$ or G_{α} has a normal subgroup M which is regular on Σ. In the latter case, by [14], 11.3, either $t=|M|=3$ or M is elementary abelian of order 2^{a} for some $a \geq 2$. If $t=3$, then $G_{\alpha} \simeq S_{3}$ and hence $K_{1} \simeq Z_{2}$. Since K_{1} is transitive on $B_{1}, b=2$ and $n=7$. However there is no 2-transitive group G of degree 7 with $G_{\alpha} \simeq S_{3}$. If $|M|=2^{a}$ then by [4] and since G_{α} is 3-transitive on Σ, it follows that G. has a regular normal subgroup L, say. Then $M L$ is a Frobenius group with Frobenius complement M. However a Frobenius complement contains at most one involution and so we have a contradiction (see [3], 10.3.1). Thus G_{α}^{Σ} is a normal extension of $\operatorname{PSL}(2, q)$ with $t=q+1$.

Now K_{1} has a normal subgroup V of order q which is regular on $\Sigma-\left\{B_{1}\right\}$, and since \bar{K}_{1} is nontrivial, $V \subseteq \bar{K}_{1}$. Then $K_{1}=\left(K_{1} \cap K_{2}\right) \vec{K}_{1}$, so that $K_{1}^{B_{1}}=\left(K_{1} \cap K_{2}\right)^{B_{1}}$, which is metacyclic. If Z is the largest cyclic normal subgroup of $K_{1} \cap K_{2}$, then Z has order $q-1$ or $(q-1) / 2$. Let $Y=Z \cap \bar{K}_{\perp}$ and suppose that Y is nontrivial. Then Y is semiregular on $\Sigma-\left\{B_{1}, B_{2}\right\}$, so that fix ${ }_{\Omega} \subseteq\{\alpha\} \cup B_{1} \cup B_{2}$. Moreover Y, Z are characteristic subgroups of $2, K_{1} \cap K_{2}$ respectively.

Now there is an element g in G_{α} which interchanges B_{1} and B_{2} and hence normalises $K_{1} \cap K_{2}$. It follows that g normalises Y and Z,
and hence that $Y=Z \cap \bar{K}_{2}$. Thus $y \leq \bar{K}_{I} \cap \bar{K}_{2}$ and so $\operatorname{fix}_{\Omega} Y=\{\alpha\} \cup B_{1} \cup B_{2}$.

If $\Sigma(\beta)$ is the set of blocks of imprimitivity of G_{β} corresponding to Σ, then $C=\left(B_{1}-\{\beta\}\right) \cup\{\alpha\}$ is the block in $\Sigma(\beta)$ containing α and \bar{K}_{1} is the pointwise stabilizer of $\{B\} \cup C$. Now V must be regular on both $\Sigma(B)-\{C\}$ and $\Sigma-\left\{B_{1}\right\}$, so that the representations of \bar{K}_{1} on $\Sigma(\beta)-\{C\}$ and $\Sigma-\left\{B_{1}\right\}$ are equivalent. Thus $\bar{K}_{1} \cap K_{2}$ is the stabilizer in \bar{K}_{1} of an element C^{\prime}, say, of $\Sigma(B)-\{C\}$. By a similar argument Y fixes C^{\prime} pointwise, so that $C^{\prime}=B_{2}$, which is a contradiction, since $\{\alpha\} \cup B_{2}$ and $\{\beta\} \cup C^{\prime}$ are distinct blocks of the block design. Thus $Y=I$, and Z is faithful and hence semi-regular on B_{1}. Therefore b is divisible by $|Z|$.

Now the size $1+b$ of a block of the block design is at most the number $t=q+1$ of blocks containing α, and hence b is $q-1$ or $(q-1) / 2$. If b is $q-1$, the design is an affine plane, which can be shown to be desarguesian as in [13]. So assume that $b=(q-1) / 2=|2|$. Then q is odd and $G_{\alpha} \not ⿻ \operatorname{PGL}(2, q)$. In this case V has odd order q, and if $\beta \in B_{\perp}, G_{\alpha \beta} / V$ is cyclic. Thus a Sylow 2 -subgroup of $G_{\alpha \beta}$ is cyclic or trivial. By [1] and [2], respectively, it follows that G has a regular normal subgroup L, say. Now $\operatorname{PSL}(2, q) \leq G_{\alpha} \leq P \Gamma L(2, q)$. Let. M be a subgroup of $\operatorname{PSL}(2, q)$, which is elementary abelian of order 4 , $M \leq G_{\alpha}$. An involution g in M fixes either 0 or 2 elements of Σ. In the former case g fixes only the point α of Ω. In the latter case we may assume that $g \in K_{1} \cap K_{2}$ and hence that $g \in Z$. We showed above that Z is semi-regular on B_{1} and similarly Z is semi-regular on B_{2}. Thus in this case, also, $\mathrm{fix}_{\Omega} g=\{\alpha\}$. Thus M acts fixed point freely on L and so is a Frobenius complement, whereas a Frobenius complement of even order contains only one involution (see [3], 10.3.1). Thus the lemma is proved.

We may assume therefore that K_{l} has no normal subgroup acting
regularly on $\Sigma-\left\{B_{1}\right\}$; in particular \bar{K}_{1} is not regular on $\sum-\left\{B_{1}\right\}$.
LEMMA 2. The theorem is true if $K_{1} \cap K_{2}$ has a nontrivial abelian normal subgroup.

Proof. Suppose that $K_{1} \cap K_{2}$ has a nontrivial abelian normal subgroup. By [9], Lemma 1, and [10], the theorem is true unless G_{α}^{J} has a regular normal elementary abelian 2 -subgroup. Thus we may assume that G_{α} has an elementary abelian normal 2-subgroup M of order $t \geq 4$ which is semiregular on $\Omega-\{\alpha\}$. By [4], G has a regular normal subgroup L, and so M is a Frobenius complement. However, as Frobenius complements contain at most one involution, this is a contradiction (see [3], 10.3.1), and Lemma 2 is proved.

Thus we may assume that $K_{1} \cap K_{2}$ has no nontrivial abelian normal subgroups. By [8], Theorem A, $K_{1} \cap K_{2}$ has a unique minimal normal subgroup S which is a nonabelian simple group and hence has even order. Since \bar{K}_{1} is not regular on $\Sigma-\left\{B_{1}\right\}, \bar{K}_{1} \cap K_{2}$ and similarly $K_{1} \cap \bar{K}_{2}$ are nontrivial normal subgroups of $K_{1} \cap K_{2}$. Thus

$$
S \subseteq\left(\bar{K}_{1} \cap K_{2}\right) \cap\left(K_{1} \cap \bar{K}_{2}\right)=\bar{K}_{1} \cap \bar{K}_{2}=x,
$$

say. Since $K_{1} \cap K_{2}$ is transitive on $\Sigma-\left\{B_{1}, B_{2}\right\}, X$ is $\frac{3}{2}$-transitive on $\Sigma-\left\{B_{1}, B_{2}\right\}$ with orbits of length, say, x, where $x>1$, and x divides $t-2$.

LEMMA 3. $X=\bar{K}_{1} \cap \bar{K}_{2}$ is not semi-regular on $\Sigma-\left\{B_{1}, B_{2}\right\}$.
Proof. If X is semi-regular on $\Sigma-\left\{B_{1}, B_{2}\right\}$, then, since $|X|$ is even, it follows from [3] and Lemma 1 that $K_{1} \sum_{1}\left\{B_{1}\right\}$ has a unique normal subgroup, say X^{1}, which is 2-transitive and simple. Then $X^{I} \leq \bar{K}_{1}^{\sum-\left\{B_{1}\right\}}$ which is a contradiction, since \bar{K}_{1} is not 2-transitive on $\Sigma-\left\{B_{1}\right\}$.

Let $\Sigma(\beta)$ be the set of blocks of imprimitivity for G_{β}
corresponding to Σ, where $\beta \in B_{1}$. Then the element of $\Sigma(\beta)$
containing α is $C=\left(B_{1}-\{\beta\}\right) \cup\{\alpha\}$. Let $C^{l} \in \Sigma(\beta)-\{C\}$ be chosen so that $C^{1} \cap B_{2}$ is non-empty. Then as $\{\beta\} \cup C^{1}$ and $\{\alpha\} \cup B_{2}$ are distinct blocks of the block design, $C^{l} \cap B_{2}=\{\gamma\}$, say. Let y be the pointwise stabilizer of C^{l} in \bar{K}_{1}. Then Y is conjugate to X in G (for \bar{K}_{1} is normal in $G_{\{\alpha, \beta\}}$, so if $g \in G_{\{\alpha, \beta\}}-G_{\alpha \beta}$, then $y^{g}=\bar{K}_{1} \cap \bar{K}_{i}$ where $\left(C^{1}\right)^{g}=B_{i}$, and there is an h in \bar{K}_{1} such that $B_{i}^{h}=B_{2}$ and hence $\left.y^{g^{\boldsymbol{h}}}=\bar{K}_{1} \cap \bar{K}_{2}=X\right)$. It follows that $\operatorname{fix}_{\Omega} Y=\{\alpha\} \cup B_{1} \cup C^{l}$, and all Y-orbits in $\operatorname{supp}_{\Omega} Y$ have length a multiple of x. Since Y fixes γ, Y fixes B_{2} setwise, and clearly $B_{2}-\{\gamma\} \subseteq \operatorname{supp}_{\Omega} Y$. Therefore $b-I=\left|B_{2}-\{\gamma\}\right|$ is a multiple of x.

LEMMA 4. The subset of Σ fixed by Y is precisely

$$
\operatorname{fix}_{\Sigma} Y=\left\{B_{1}\right\} \cup\left\{B \in \Sigma ; B \cap C^{1} \neq \emptyset\right\}
$$

and $\operatorname{fix}_{\Sigma} Y$ is a union of X-orbits in Σ.

Proof. Clearly $\left\{B_{1}\right\} \cup\left\{B \in \Sigma ; B \cap C^{\mathcal{l}} \neq \emptyset\right\} \subseteq \operatorname{fix}_{\Sigma} Y$, and is the subset of fix Y of those elements of Σ which contain a point of fix ${ }_{\Omega} Y$. If $\operatorname{fix}_{\Sigma} Y$ contains an additional element B, then $B \subseteq \operatorname{supp}_{\Omega} Y$, and so B is a union of nontrivial Y-orbits; that is, b is divisible by x. However $b-l$ is divisible by x and $x>1$, so we conclude that $\operatorname{fix}_{\Sigma} Y=\left\{B_{1}\right\} \cup\left\{B \in \Sigma ; B \cap C^{1} \neq \emptyset\right\}$.

Now let $B \in \operatorname{fix}_{\Sigma} Y-\left\{B_{1}, B_{2}\right\}$ and let Δ be the X-orbit in Σ containing B. It is sufficient to show that $\Delta \subseteq \mathrm{fix}_{\Sigma} Y$. Let
$B \cap C^{l}=\{\delta\}$ and let Δ^{\prime} be the X-orbit in Ω containing δ. Then $|\Delta|=x$ and $\left|\Delta^{\prime}\right|=x y$, where $y=\left|\Delta^{\prime} \cap B\right| \geq 1$. Now $Y \subseteq K_{1} \cap K_{2}$, and so Y normalises X. Therefore Y fixes $\Delta^{\prime}=\left\{\delta^{x} ; x \in X\right\}$ setwise (for
if $y \in Y$, then $\delta^{x y}=\delta^{y^{-1} x y} \in \Delta^{\prime}$). Thus Y fixes $B \cap \Delta^{\prime}$ setwise, and so $\left(B \cap \Delta^{\prime}\right)-\{\delta\}$ is a union of nontrivial Y-orbits, that is $y-1=\left|\left(B \cap \Delta^{\prime}\right)-\{\delta\}\right| \equiv 0(\bmod x)$.

Let $a=\left|\operatorname{supp}_{\Sigma} Y \cap \Delta\right|$. Then $0 \leq a<x$. If $\alpha>0$, then
$U\left\{B^{\prime} \cap \Delta^{\prime} ; B^{\prime} \in \operatorname{supp}_{\Sigma} Y \cap \Delta\right\}$ is a union of nontrivial Y-orbits and is a set of ay points. Thus $a y \equiv 0(\bmod x)$, and so $a \equiv 0(\bmod x)$, which is a contradiction, since $0<a<x$. Thus $a=0$ and $\Delta \subseteq \operatorname{fix}_{\Sigma} Y$.

LEMMA 5. $X \cap Y=1$.
Proof. If $X \cap Y$ is nontrivial, then it follows from Lemma 4 that X does not act faithfully on its orbits in $\Sigma-\left\{B_{1}, B_{2}\right\}$, and so by [8], Proposition 4, $K_{1}^{\sum-\left\{B_{1}\right\}}$ is a normal extension of $L_{p}(q)$, for some $r \geq 3$ and prime power q, in its natural representation. Then $\bar{K}_{1} \supseteq L_{p}(q)$ and hence is 2 -transitive on $\Sigma-\left\{B_{1}\right\}$, which is a contradiction.

Thus $X \cap Y=1$ and Y normalises X. Similarly since X fixes C and C^{1} setwise, X normalises Y. It follows that X and Y centralise each other. Thus, by Lemma 3 , the centraliser of X in K_{1} is not semiregular on $\Sigma-\left\{B_{1}, B_{2}\right\}$, and it follows from [6], Corollary B3, and Lemma 2.8 that X is a T.I. set in K_{1} (that is distinct conjugates of X by elements of K_{1} intersect only in the identity). Thus by [7], Theorem A, and since X is not semiregular on $\Sigma-\left\{B_{1}, B_{2}\right\}, K_{1}^{\sum-\left\{B_{1}\right\}}$ is a normal extension of $L_{p}(q)$ in its natural representation for some $r \geq 3$ and prime power q. This is impossible, as \bar{K}_{1} is not 2 -transitive on $\Sigma-\left\{B_{1}\right\}$.

Thus the theorem is proved.

References

[1] Michael Aschbacher, "2-transitive groups whose 2-point stabilizer has 2-rank $l^{\prime \prime}$, J. Algebra 36 (1975), 98-127.
[2] Helmut Bender, "Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt", J. Algebra 17 (1971), 527-554.
[3] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
[4] Christoph Hering, "On subgroups with trivial normalizer intersection", J. Algebra 20 (1972), 622-629.
[5] Christoph Hering and william M. Kantor and Gary M. Seitz, "Finite groups with a split $B N$-pair of rank I . I", J. ALgebra 20 (1972), 435-475.
[6] Michael O'Nan, "A characterization of $L_{n}(q)$ as a permutation groups", Math. Z. 127 (1972), 301-314.
[7] Michael E. O'Nan, "Normal structure of the one-point stabilizer of a doubly-transitive permutation group. I', Trans. Amer. Math. Soc. 214 (1975), 1-42.
[8] Michael E. O'Nan, "Normal structure of the one-point stabilizer of a doubly-transitive permutation group. II", Trans. Amer. Math. Soc. 214 (1975), 43-74.
[9] Michael E, O'Nan, "Triply-transitive permutation groups whose twopoint stabilizer is local", submitted.
[10] Cheryl E. Praeger, "Doubly transitive permutation groups involving the one-dimensional projective special linear group", Bull. Austral. Math. Soc. 14 (1976), 349-358.
[11] Cheryl E. Praeger, "Doubly transitive permutation groups which are not doubly primitive", J. Algebra 44 (1977), 389-395.
[12] Cheryl E. Praeger, "Doubly transitive permutation groups in which the one-point stabilizer is triply transitive on a set of blocks", J. AZgebra 47 (1977), 433-440.
[13] Cheryl E. Praeger, "Doubly transitive automorphism groups of block designs", J. Combinatomial Theory Ser. A (to appear).
[14] Helmut Wielandt, Finite permutation groups (translated by R. Bercov. Academic Press, New York, London, 1964).

Department of Mathematics, University of Western Australia, Ned lands, Western Australia.

