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1. Introduction

Let G be a doubly transitive permutation group on a finite set Q and 0.
Using the notation of [9], we denote a normal subgroup of G, by N®. Then,
for B other, we define N so that g~ NPg=N" where v=0°.

In this paper we shall prove the following:

Theorem 1. Let G be a doubly transitive permutation group on a finite set
Q. Suppose that a is an element of Q. If G, has a normal simple subgroup N*®
which is isomorphic to PSL(2, q), Sz(q) or PSU(3, q) with ¢=2", n>2, then one
of the following holds:
(i) 1Q|=6, G=4, or S5 and N*~=PSL(2, 4).
(i) (Q|=11, G=PSL(2, 11) and N*=PSL(2, 4).
(i) G has a regular normal subgroup.

We introduce some notations: Let G be a permutation group on Q. For
X <G and ACQ, we define F(X)={acQ|a*=a for all xe X}, X(A)= {x=X]|
A*=A}, X,={xeX|a*=a for all a=A} and X*=X(A)/X,, the restriction
of X on A. If p is a prime, we denote by O?(X), the subgroup of X generated
by all p’-elements in X. Other notations are standard ([6], [16]).

2. Preliminary results

Lemma 2.1. Let G be a doubly transitive permutation group on Q of even
degree and N® a nonabelian simple normal subgroup of G, with a € Q. If
Co(N®)£1, then Ng=N"NNP? for a B Q and C;(N®) is semi-regular on
Q—{a}.

Proof. Set C*=C¢(N®). By Corollary B3 and Lemma 2.8 of [17], C*is
semi-regular on Q— {a} or N®isa T.I. setin G. Since |Q| is even and N® is
L-transitive on Q— {a}, |[N®: N§| is odd for a =8 Q. Hence N® is not
semiregular on Q— {a}. By Theorem A of [9], N® is not a T.I. set in G.
Hence C? is semi-regular on Q— {«}.

Set A=F(N§). Since C*<G(A), [C% G,]1<C*NG,=1. By Corollary
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Bl of [17], NE<G,and so [C?,NB]=1. Let 1=x=C” and set B8*=7. Then
NE=x"'NBx=N). Hence NE<N4. Since 8% and G is doubly transitive
on Q, [N8|=|N%|. Hence N8=N$. Similarly we have N?=N}. Hence
N&=NY}and so NE=NPNN". Since G is doubly transitive on O, N§=N*NNP.

Lemma 2.2. Let G be a transitive permutation group on a set Q, H a sta-
bilizer of a point of Q) and M a nonempty subset of G. Then

|F(M)| = |[Ng(M)| X |ecl(M)NH|[|H]| .
Here ccl,(MYNH={g'Mg|g'Mg<H, g=G}.

Proof. Set W={(L, a)|L&ccl,(M), a cF(L)} and W,={L|LEccly(M),
F(L)>a}. By the transitivity of G, |W,|=|W;| holds for every a, B € Q.
Counting the number of elements of W in two ways, we obtain |G: Ny(M)| x
|F(M)|=|G: H| X |eclg(M)NH|. Thus we have Lemma 2.2.

Lemma 2.3. Let G=PSL(2, q), Sz(q) or PSU(3, q) with q=2">2 and
suppose that G is a transitive permutation group on a set Q of odd degree. Let H
be a stabilizer of a point of Q). Then we have the fcllowing:

(1) H has a unique Sylow 2-subgroup S of G and H=DS for a Hall
2'-subgroup D of H where D7 2_,.
(if) Let L be a subgroup of G such that |L|=|H|. Then L&ccl;(H).

(i) S is semi-regular on Q—F(S) and |F(S)|=|F(H)|=|NS): H|.

(iv) Set D=V XK where V<Z, ., K<Z,,. Then K acts semiregularly
on Q—F(K) and if K1, |F(K)|=2|F(S)|.

Proof. Since G is generated by its two distinct Sylow 2-subgroups and
1% |G: H| is odd, H contains a unique Sylow 2-subgroup S of G where S=
O,(H). By the structure of Ny(S) we have (i) (cf. § 3 of [2]).

To prove (ii) we may assume that S<L. As above S=O0,(L) and L=D,S
where D, <Z;_,. Since Ny(S)/S is cyclic and |H |=|L|, we get H=L. Thus
(ii) holds.

Let t<I(S). Applying Lemma 2.2, |F(t)| = |Ng(t)| X |ccls((YNH |[|H |
= (INs(®)] X |ecle () AN [ INo(S) )X (ING(S) /I HI). Since Ng(S) is a
stabilizer of the usual doubly transitive permutation representation of G, we
have |Ng(2)| X |eclc()) NNG(S)|/INLS)|=1, hence |F(¢)|=|NgS): H|. On
the other hand, |F(S)|=|N(S)| X |cclz(SYNH |/|H|=|NgS): H|. There-
fore S acts semi-regularly on Q—F(S). As Ng(H)=N(S), similarly we have
|F(S)|=|F(H)|. Thus (iii) holds.

Let x be a nontrivial element of K. Then we have | F(<{aD>)| = | Ng({aD)| X
leclo (<) NH | | H | =(INo ()] X [eclo(<a>) N No(S)] | INo(S) ) No(S IHD-
As before we have | Ng(<x)) | X [eelg(<x0) NN(S)|/INg(S)|=2. Hence |F(x)|
=2+|Ng(S): H| and this is independent of the choice of xK* Thus (iv)
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holds.

Lemma 2.4. Let G=PSL(2, q), Sz(q) or PSU(3, q) with q=2">2 and S
be a Sylow 2-subgroup of G, H=NS), t an involution outside H, D=H N H',
V=Cp(t) and K={d=D|d*=d™}. Then the following hold:
(i) N (KkD)=<t>)D whenever 1 k& K.
(ii) If G=PSU(3, q) and 1%=U is a subgroup of V, then N (U)=CV)
=NXV where N is a subgroup of G isomorphic to PSL(2, g).

Proof. (i) follows from the structure of PSL(2, q), Sz(q) or PSU(3, q)
(§3 of [2]).

We now regard PSU(3, ¢) as a usual doubly transitive permutation group
on a set  with ¢*+1 points. Then V is semi-regular on Q—F(V) and
G(F(U))/Gra» is doubly transitive on F(U)=F(V). Clearly Ny(U)<XG(F(U))
and Gypn=V. Hence Nj(U)<N4(V). Since Vis cyclic, No(V)<N(U) and
s0 Ng(U)=NV). We now set M=0%(NyV)). Then as [Z(S), V]=1 and
Z(S) is a Sylow 2-subgroup of Ny(V), M centralizes V. By the Frattini
argument N o(V)=(N(V)NNZ(S))M=Nyz(V)M=DZ(S)-M <C¢V). Hence
Ny(V)=CyV). By the direct computation, we obtain (ii).

Lemma 2.5. Let G==PSL(2, q), Sz(q) cr PSU(3, q) with q=2">2 and
let S be a Sylow 2-subgroup of G.

(1) If T is a maximal subgroup of S, then N (T)=S.

(1) Unless G=PSU(3, q) where q=2" and n is odd, then by conjugation
N (S) acts regularly on the set of all maximal subgroups of S.

Proof. Since Ny(S) is strongly embedded in G, S<NHT)<N4(S) and
80 N¢(T)=RS where R is a Hall 2’-subgroup of Ny(T). As |S: T|=2, R
centralizes S/T'=Z, and hence there exists an element t=Cy(R)—T. If G=
PSL(2, q) or Sz(q), then R=1 (§3 of [2]). If G=PSU(3, ¢q) and R=1, then
by (ii) of Lemma 2.4, & 1(S)=0Q,(S)< T, a contradiction. Thus (i) holds.

Let T be the set of all maximal subgroups of S. Then by conjugation,
N¢(S) acts on T" and (N(S));=S for T T by (i). Under the assumption of
(ii), we can easily verify |T'|=|NS): S|. From this (ii) follows at once.

Lemma 2.6. Le¢t G=PSL(2, q), Sz(q) or PSU(3, q) with g=2">2 and A
be the full automorphism gruop of G. Let S be a Sylow 2-subgroup of G. Then
C4(S)=Z(S). Here we identify G with the inner automorphism group of G.

Proof. Let Q be the set of all Sylow 2-subgroups of G. Then A acts
faithfully on Q and the action of G on £ is the same as the usual doubly transi-
tive permutation representation. Hence S is regular on Q— {S} and so C 4(S)
is a 2-subgroup of 4. If G=S82(q), A/G is cyclic of odd order and so C,(S)<G.
Hence C 4(S)=C4(S)=Z(S). If G=PSL(2, g), S is abelian, so that C,(S)=.S
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=2Z(S). If G=PSU(3, g), there exists a field automorphism such that {f>S
is a Sylow 2-subgroup of N ,(S). From this C,(S)SO(N(S)<f>S. If
gsEC 4(S)—S where ge{f> and s€S, then g centralizes Z(S) and so gisa
field automorphism of order 2 by the structural property of 4. Since g cen-
tralizes s, s must be contained in Z(S). Therefore g centralizes S, while g
is a field automorphism of order 2. This is a contradiction. Thus C(S)=

SNC(S)y=Z(S).

Lemma 2.7. Let G=PSU(3, q), g=2" such that n is even. Then Aut(G)
={f DG for a field automorphism f of G (see [14]). Let B be a Borel subgroup and
let D be a diagonal subgroup of G. Then B=DS and S=O,(B) for some Sylow
2-subgroup S of G. Set D=V XK with V=27 ., K=Z,,. Then C,(Z(S))
={OVS where A={f>G and {T}=I(f>).

Proof. By the structural properties of 4, [V, Z(S)]=1 and C(Z(S))=<>.
Since N (Z(S)I> OANJZ(SN =S, N AZ(S) = f>N(S). Hence C(Z(S))=
CZ(SHNfODS=Cpy(Z(SHV'S. Let gk Ce1x(Z(S)) with gef>, keK.
Since g is a field automorphism of G, it centralizes a nontrivial element s in Z(S).
Then k centralizes s and so k=1, for otherwise s& C (k)= VK, a contradiction.

So CiprlZ(S)=C,Z(S))=<7>. Thus C4(Z(S))={T>VS.

3. The case |Q| is even

Let G be a doubly transitive permutation group on a finite set  of even
degree satisfying the assumption of our theorem. Let a€Q and {a}, Ay, -+, A,
be the set of all N®-orbits on Q. Since N?® is normal in G, lA,-]:IAJ.] for
1<i,j<r. Hence |Q|=14|A;|r and so both [A;| and 7 are odd. From this,

% contains a unique Sylow 2-subgroup of N® for B+« by (i) of Lemma 2.3.

Set S=04(Ng).

(3.1) The following hold.

(i) For each A; with 1<i<r, there exists 8;EA,; such that Nj=N73,.

(i) F(S)=F({Ng), |F(S)|=|Nya(S): Ng| Xr+1 and § is semi-regular
on Q—F(S).

(iii) Set C*=C(N®). Then C*=0(G,) and is semi-regular on Q— {a}.

Proof. Let yeA,. Since |[N3|=|N%|, by (ii) of Lemma 2.3, Ng=(NY)*
for some x&N®. Put v*=g;. Then B;€A, and Ng=N3. Thus (i) holds.

Hence by (iii) of I.emma 2.3, for each A; with 1 <i<r, F(S)NA,=F(Ng)N
A, |[F(YNA;|=|Nys(S): Ng| and S is semi-regular on A,—(A; N F(S)).
"Thus (ii) holds.

Since [O(G,), N*]<O(G,)NN® and N® is a non abelian simple group,
[O(G,), N“]=1 and so O(G,)<C”. By Lemma 2.1, C* is semi-regular on
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Q—{a}. Since G,>C? C®is i-transitive on Q— {a}. Hence |C*|||Q|—1.
From this C? is of odd order and bence C*<O(G,). Thus C*=0(G,).

As a Chevalley group, N® has a Borel subgroup Nya«(S). Let D be a
diagonal subgroup of Nya(S). Then N,«(S)=DS. We now denote G,/C*
by G,. By the properties of PSL(2, q), Sz(g) or PSU(3, q) ([14]), there exists
a field automorphism f such that <f>N®/N®is a Sylow 2-subgroup of G,/N°.
Since C*=0(G,), we may assume f is a 2-element in G,. Since DC*NN"=D
and SC*NN®*=S, D and S are f-invariant. Clearly {f)> S is a Sylow 2-sub-

group of G,. Since (FONN*=1, {f>NS<KC* and so {f>NS=1. Thus we
have the following,

(3.1 'There exists a 2-element f in G, satisfying the following.
(i) facts on N® as a field automorphism of N®.

(ii) D and S are f-invariant and {f> N S=1.

(iif) <{f> S is a Sylow 2-subgroup of G,,.

(3.2) Ng§/N®N NP is cyclic of odd order.

Proof. By Lemma 2.1 and (iii) of (3.1), we may assume that C*=1. First
we claim that |S: SAN#|=1 or 2. Since S/S NNP=SNPF/N® is isomorphic
to a 2-subgroup of the outer automorphism group of N?, S/SNN?®is cyclic.
But S/S’ is an elementary abelian 2-group and so S/S N Nf=1 or Z; and hence
|S: SNN?|=1 or 2.

To prove (3.2), it suffices to show that |S: SN NP|+2. Assume that
|S: SNNP|=2. Then as S and SN NP are normal subgroups of N3. Then
it follows from (i) of Lemma 2.5 that N3=S and |N§: N*NNFf|=2. Since a
Sylow 2-subgroup of G,/N® is cyclic and G /N §=~=G ,N*/N®, a Sylow 2-sub-
group of G,s/Ng is cyclic. As NgNB/N3is a normal subgroup of G,s/Ng of
order 2, I(G,s)SNgN8 Let f be as defined in (3.1). Then f==1as NjN?
£N°® Let r€I({f)). Since 7€ N4 (S), S=Ng and |F(S)—{a}]| is odd,
there exists ¥ such that yEF(T)NF(N§) and v=+«. Clearly Ng< N9, so that

3=N35. Therefore we may assume F(1)>8 and r&G,e. By Corollary Bl of
[17] F(Ng)=F(N¥%). From this F()2F(NgN&)=F(N§%) because T<I(Gp)
CNENB. So <T>N‘§£(<T>N"’ﬂN(N‘;))F(Ng). Let D be as defined in (3.1)".
Then DN ye(N3g) and D is T-invariant. Hence [D, 7] < (DN N N(N§))x( N
ND=1. Therefore T centralizes D. Since T is a field automorphism of N* of
order 2 and D is a diagonal subgroup of N, this is a contradiction.

(3.3) The following hold.

(iy N*NNP=N'NN?for, v, S&F(N*NNPF) with y=3.

(il) GF(S)=NN"NN?F).

(iif) Let M be a subgroup of N*NN? which contains S. Then F(M)=
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F(S) and N (M) is doubly transitive on F(S).

(iv) Ce(S)=Z(S)x C".

(v) Let M be as defined in (iil) and suppose C*s=1. Then O C(M))*®
is a regular normal elementary abelian 2-subgroup of N4(M)*),

Proof. Let v, 8€F(N*"NNP)with y=+=§. We may assumea=7. Since G
is doubly transitive on Q, |N*NN?|=|N®NN"|. By the choice of v, N*N N*
<N and Nya(S)/S is cyclic. Hence N*NNP=N*NN". Similarly N'NN*
=N"NN® Thus (i) holds.

Since NgN*NNP)XN(S), N(N*NNFYKG(F(S)). Let x=G(F(S)).
Then *, B*€F(S) and F(S)=F(N§%) by (ii) of (3.1). Hence o, B*€F(N” N NP).
Therefore by (i) N N NF*=N*NN® and so x&N(N°NNF). Thus (ii) holds.

Suppose S<M<N®NNE. If M*<@G,s for some g=G,. Then M*<
N®NG,e=Nj5. Hence M*=M because S <M and N§/S is cyclic of odd order.
By the Witt’s Theorem N, (M) is transitive on F(M)—{a}. Similarly N (M)
is transitive on F(M)—{8}. We may assume |F(M)|>2. Hence Ny (M) is
doubly transitive on F(M). By (ii) of (3.1), F(M)=F(S). Thus (iii) holds.

We denote G,/C* by G,. Clearly Cs,(N*)=1. Applying Lemma 2.6,
Ce(S)=2(S), hence C,(S)<Z(S)x C*. The converse implication is obvious.
Thus (iv) holds.

Suppose C?#1. Then since C® is semi-regular on Q— {a}, Co(M)FS >
(C*)"® 1. As No(M)*® is doubly transitive by (iii), Co(M)* is transitive.
By (iv), (C*)FOLCe (MO (Z(S)XC*)F® and so Cy(M)FS=(C*)FS),
Hence C(M)"® is a Frobenius group and so Oy(C(M) )1 because | F(S)|
is even. Since Co(M)p5)<(Z(S) X C*)ps)=2Z(S), O C ((M)F)=0yC o(M))F
and this is regular on F(S). As Ng(M)*O D> Oy(Co(M))FS), OfCo(M))FS must
be a regular normal elementary abelian 2-subgroup of No(M)F®), Thus (v) holds.

(3.4) There exists an involution ¢ such that cclz(£)NS+¢, o'=F and
FONF(S)=¢. Set u=|Nye(S): Ng| and |S|=¢’. Then we have

() 191=(¢+1)ur+1.

(i) |Cs(t)=+"4q, V/2q or g according as N*=PSL(2, q), Sz(q) or
PSU(3, g), respectively. Furthermore |Cy(t)| | |F(S)|=pr+1.

(iii) If =1, then |Q|=06 and G=4; or S.

(iv) [Q]=|F(S)].- |G: NG(S)IZ-

Proof. Since [A;|=|N®: N§|=|N": Nya(S)| X |[Nya(S): Ng|=(¢'+1)n
and |Q|=]4A;|r+1. Hence (i) holds.

Since G is doubly transitive on (), there exists an involution ¢ such that
cclg()NS=+¢ and a'=B. Then ¢ normalizes O,(N*NNP)=S. Claim F(¥)N
F(S)=¢. Suppose not and let yEF(t)NF(S). As S<N$, SKN*NN?by (i)
of (3.3). Let g be such that #<S. Then tEN?*NGy=N} where 8=a*"" and
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hence t=N”. Since ¢t normalizes S and {t>S <N", ¢t must be contained in S,
a contradiction. Hence F(t)NF(S)=¢. From this Cg(¢) acts semi-regularly
on F(#) and so |F(¢f)| is divisibly by |Cs(#)|. Since S, |F(t)|=|F(t¥)|=
|F(S)[, hence |C5(#)l| IF(S)!.

If N*=PSL(2, q), then |Q,(S/S")|={S|=¢ and by Lemma 1 of [7],
|Cs(t)| =/ q. If N*=8z(q), then |Q,(S/S’)|=q. Since gqisanodd power of
2 in this case, similarly |Cs()| >\/2g. If N*=PSU(3,q), then |Q,(S/S)|=¢
and so similarly |Cg(#)| >¢. Thus we have (ii).

Suppose pu=1. Then N® is doubly transitive on each N®-orbit % {a}.
Applying Theorem D of [10], r=1. Therefore, |F(S)|=pr+1=2 and so by
(1) and (ii), g=4, N*=PSL(2, 4) and |Q|=6. Thus (iii) holds.

Since |Q]=]G: Ng(S)| X | Ng(S): N (S)/1Gy: Ngo(S)| and | Gy: N (S)|
is odd, (iv) holds.

(3.5) Let 7 be the set of primes which divides g—1 and K a Hall z-sub-
group of N*NNP®. If K41, then C*=1.

Proof. Suppose K=3=1and C*=1. Set I';/=A;NF(S) and A;=A;NF(K).
Then by (i) of (3.1) and Lemma 2.3, for each i with 1<i<r |A;|=2|T;|=
2|Nya(S): N§, |=2|Nya(S): N§| and K is semi-regular on A;—A,.

By (v) of (3.3), O,(C(KS))F*® is a regular normal elementary abelian 2-sub-
group of No(KS)Y'®. Set E=0,(C¢(KS)). It follows from (iv) of (3.3) that
E < (Z(S)X C*)ps).  Since F(Z(S))=F(S) by (ii) of (3.1) and (C*)p»=1 by
(iii) of (3.1), (Z(S)X C™)r)=Z(S). On the other hand Z(S)N C(K)=1 (cf. §3
of [2]) and so Ep=1. Hence E=EF®, Since E is regular on F(S), |F(S)|
=|EF®| and so we have |F(S)|=|E|. Since KS is a subgroup of N3 which
contains S, by (ii) of (3.1) we have F(S)==F(KS). From this F(S) is a subset
of F(K). Hence |F(K)—F(S)| = |F(K)—{a}|—|F(S)— {a}| = Z_‘l, | A —
2 [T;|=rXx |Nys(S): N3|. Since r is odd, |F(K)—F(S)| is odd. On the
other hand E fixes F(K)—F(S) setwise because E centralizes .S and K. There-
fore E fixes an element yEF(K)—F(S) as E is a 2-subgroup of G. Since

3/O0(N7) is cyclic of odd order, K< N7 and |K-Oi(N$)| | |IN*NN?|, we have
K:O)(NY)ZN*NN". Hence K<NYandso |Cn¥(K)] is odd by (i) of Lemma
2.4, Since Cg(K)/Cy(K)C"=C3(K)N'C'IN'C?, a Sylow 2-subgroup of
Cs(K)is cyclic. But E<Cg (K) and hence |E|=|F(S)|=2=pr+1. From
this p=r=1. By (iii) of (3.4) C*=1, which is contrary to the assumption
C*#1. So (3.5) holds.

(3.6) Suppose K=1 and let S, be a subgroup of S. If S#<N(S) and
S, #LS for some g=G, then S,<Z,XZ, and |S,||2|G,/N*|.

Proof. Set S¥=1T. By (ii) of (3.1), T is semi-regular on Q—F(T). Claim
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F(T)NF(S)=¢. Suppose not and let yeF(T)NF(S). Then T<N% and
S<N3% By(32) T<N*NN”and S<N®NN?and so TS<N'. Since S is
a Sylow 2-subgroup of N, TS=S. Hence T'<S, a contradiction. Thus
F(T)NF(S)=¢. From this T acts semi-regularly on F(S). By (ii) of (3.3), T
normalizes N®*N\N? and so T<N(S)NNKS). By the Frattini argument
KST=Ngs(K)KS=Ng(K)-KS, so that Ng (K)FS=TF® as F(S)=F(KS).
For an arbitrary y&F(S), N (K)y=Ns(K)=C4K)=1, whence Ng(K)=
N (K)F®, Hence T'=Ng4(K). Now Ng(K) acts on F(K)—F(S) and
|[F(K)—F(S)| is odd. Hence Ng(K) fixes some S&F(K)—F(S). Since
K<Njand |K-O(N3)|| IN*NN?|, we have K <N®NN?as in the proof of
(3.5). By (i) of Lemma 2.4, Ny5(K)=D{u>l>D where u is an involution and D
is a cyclic subgroup of N°® of odd order. Since Nyy(K)/Nys(K)=N¢y(K)N?IN?
and a Sylow 2-subgroup of G;/N® is cyclic, a Sylow 2-subgroup of N¢(K) is
isomorphic to a subgroup of Z,x Z,, for some integer m. Since T<.S¢ and S
is of exponent at most 4, (3.6) follows immediately.

(3.7)  One of the following holds.
(i) |2]=6 and G=4; or S;.
(i) N®NNPisa z/-group.

Proof. Let K be a Hall z-subgroup of N*NN®? and suppose G A, S;
and K41, Let ¢ be an involution as in (3.4) and Q a Sylow 2-subgroup of G
containing <¢>S. Then Q> S. For otherwise, let x&Ny(No(S))—No(S),
then §*=§ and S*normalizes S. Applying (3.6) to S*, S=Z,X Z; and N*=
PSL(2, 4). Butsince K#1, [N*NN?|=12 and hence p=1. It follows from
(iii) of (3.4) that G=4, or S, which is contrary to the assumption.

Since Q>S5 and all involutions in .S are conjugate in G, ¢ is conjugate to s
for an involution s&Z(Q)NS. As s is an extremal element in O, there is an
element g &G such that t*=s and (Co(£)))<Q. Set T=(Cy(t))!. If T<S, as
S is semi-regular on Q—F(S), F(S)*=F(S). Hence F(t)=F(s)* '=F(S), con-
trary to the choice of 2. Therefore T<S. Applying (3.6) again, Cs(t)< Z, X Z,,
|CS()] 12 1G/N°].

If N*==PSL(2, g), by (ii) of (3.4),\/ ¢ <|C«2)|12-|G,/N®| and so g=2?
or 2*. As before, ¢g+2?, hence ¢=2*, N*=PSL(2,2*). Then r=1 because the
outer automorphism group of PSL(2, 2*) is cyclic of order 4. Since p=1 and
K=1, (p, |K|, [F(K}], |2])is (3, 5, 7, 52) or (5, 3, 11, 86) by (iv) of Lemma
2.3 and (i) of (3.4). By the Witt’'s Theorem, N (K) is doubly transitive on
F(K). Hence |G| is divisible by |F(K)}|. Since C®=1 by (3.5), we have
IG111Q] - |Aut(PSL(2, 2%)|. Hence we can verify | F(K)| 4 |G| in both cases.
This is a contradiction.

If N®=Sz(g), similarly we obtain \/2¢ < |C(#)||2]|G,/N®|. But in this
case since the outer automorphism group of N® is cyclic of odd order, |G,/N®|
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is odd and so \/2¢ <2. Hence ¢<2, a contracdiction.

If N*=PSUQ, q), similarly ¢<|C(t)|12|G,/N®|. Hence ¢=2?, N*=
PSU(3,2%). Asinthefirst case, r=1and (i, | K|, | F(K)|, |Q])=(5, 3, 11, 326)
and so 11=|F(K)| |||+ |Aut(PSU(3, 2%))|, a contradiction.

In (3.8)-(3.11), we shall prove that Ng=N*NN®. First we note the
following.

(3.8) IfC*+1, Ne=N"NN°

Proof. Since N® is a nonabelian 'simple group, (3.8) follows immediately
form Lemma 2.1.

(3.9) Let p be a prime with p| [N5: N*NN?| and assume the following:
(%) p*3if N*=PSU/|(3, 2") and = is odd.
Then p=p.

Proof. It follows from (3.8) that C*=1. Hence G,/N® is isomorphic to
a subgroup of the outer automorphism group of N® and so under the hypothesis
(*), a Sylow p-subgroup of G,/N” is normal and cyclic ([14]). Set =Ng(S)rs-
Since WIN§< G, s/Ns=G ,sN*/N®, a Sylow p-subgroup of W|/N§ is normal
and cyclic. Hence all elements in W of order p is contained in N3N¥% because
INENG/Ng|=|N&: NPNN®|=|Ng: N°*NN?| and p||N3: NN NP|. Let
P be a Sylow p-subgroup of W. Then Q)(P)<NiN8&. Set OQ=Q,(P). Since
NENEINg=N-E/N*NNP by (3.2) N3N&/Nj is cyclic and so Q’ is a cyclic
subgroup of N§, similarly O’<N#&. Hence Q'<N*NN® and the p-rank of
Q[0 is at most 2,

By the Frattini argument, N (S)=(Ng(S)NN(P))W. Let M be a normal
subgroup of Ng(S)NN(P) such that M*® is a minimal normal subgroup of
N(S)F. We choose M so that its order is minimal. Since N(S)*® is doubly
transitive, M 7 is an elementary abelian 2-subgroup or a direct product of iso-
morphic non abelian simple groups. As Q’ is cyclic, M/C,(Q’) is abelian and
its Sylow 2-subgroup is cyclic. Hence by the minimality of M, M=Cy,(Q").

Set Q=0Q/Q’. We argue that C(@)<W. To prove this, it suffices to
show that M #=C(Q). If M=C,(Q), M stabilizes the normal series Q[>Q’[>1
and hence O?(M) centralizes P by Theorem 5.3.2 and Theorem 5.3.1 of [6].
Obviously O?(M)<L W and so O?(M)=M by the minimality of M. Therefore
M centralizes P. Let x be an element of M such that a*=3, then PNN§<
N®*NN*=N*NNP. But since PN Ng is a Sylow p-subgroup of NG,
PN |ING: N*NNP?|, a contradiction.

Set C=Cy(2(Q)). Then M/C <GL(2, p) because the p-rank of @ is at
most 2. By the minimality of M, M/C <SL(2, p). On the other hand O*(C)<
Cu(Q)<W. Therefore CF® is a normal p-subgroup of N(S)"®. Since
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p=F2, C"®=1and so C<W. Hence M*® is isomorphic to a homomorphic
image of a subgroup of SL(2, p).

Hence if M7 is an elementary abelian 2-group, we have M*®) =Z,x Z,
and |F(S)|=4. From (ii) and (iii) of (3.4), p=3 and r=1. By (ii) of (3.4),
N®=PSL(2,4), PSL(2,16) or PSU(3, 4) and hence |G,: N*|=1, 2 or 4,
which is contrary to p| |N&: NENN*|=|NEN®IN®|.

If MF® is a direct product of isomorphic non abelian simple groups by
Dickson’s Theorem (Hauptsatz 8.27 [8]) M*©®)=PSL(2, p) with p>5 or A;.
Claim M*®£4,. Suppose MT®=4;, then Ny (S)F® =45 or S; and so
| F(S)|=6, p=>5and r=1. By (ii) of (3.4), we obtain g=2% and N*=PSL(2, 4).
Hence 51 |Ny«(S): Ng|=p =5, a contradiction. Thus MF®=PSL(2, p)
with p>5. Hence |N(S)"®: MF®|=1o0r 2. From this as |F(S)] is even,
M*F® is also doubly transitive. Again by Dickson’s Theorem, we know all
maximal subgroups of PSL(2, p) with p>5 and hence PSL(2, p) with p>5 has
a unique doubly transitive permutation representation of even degree, which is
the known one. From this |F(S)|=p-+1. Since |F(S)|=pr+1=p-+1, we
obtain p=p.

(3.10) If N*=PSU(3, q) and = is odd, then 3 V' |N§: N*NN?|.

Proof. By (3.8), we may assume C®=1. Set W=Ny(S)ps and let Pbe a
Sylow 3-subgroup of W. As G /N3=GN*/N°<G,/N® a Sylow 3-sub-
group of W/Nj is an abelian 3-group of rank at most 2, so that P’<N§ and
similarly P’<N¥. Hence P’<N®N NP and P’ is cyclic.

Similarly as in the proof of (3.9) we can choose a normal subgroup M of
Ng(S)NN(P). Denote P/P’ by P. Then O,(P) is an elementary abelian 3-sub-
group of rank at most 3. Then as in the proof of (3.9), M centralizes P’ and
C u(Qu(P)) is contained in W. Hence M|C < SL(3, 3) where C=Cy(QY(P)).

If MF® is an elementary abelian 2-group, by the structure of SL(3, 3),
MF®=27,XZ, and so |F(S)|=4, p=3 and r=1. Let p;E=. Since n is odd,
3&n. Therefore p,=3. By (3.7), p /' IN*NNP?|. Hence p,| [Nj: N*NN?|
and applying (3.9) to p;, we have p=p,=3, a contradiction.

If M*® is a direct product of isomorphic non abelian simple groups, we
have M*®) == SIL(3, 3) because every proper subgroup of SL(3, 3) is solvable.
Hence |N(S)"®: MF®|=1 or 2 and so MF® is also doubly transitive. By
(ii) of (3.1), Nya(S)rsy)=N%. Therefore, Nya(S)"® is cyclic of order p.
Since |SL(3, 3)|=2'3%13, p==3 or 13. If p=3, applying (3.7) and (3.9), = is
empty, a contradiction. If p=13, then (M) > N ya(S)")=7Z;;. Hence
(M ,)F®) is isomorphic to the normalizer of a Sylow 13-subgroup in SL(3, 3),
while this permutation representation of SL(3, 3) is not doubly transitive. Thus
(3.10) is proved.

(3.11) N3=N*nN°®.
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Proof. Suppose not and let p be a prime with p| |N5: N*NN?|. Then
it follows from (3.7), (3.9) and (3.10) that g—1==p° for some integer e>2. Ife
is even, p°=1 (mod 4), while g—1=—1 (mod 4), a contradiction. If e is odd,
2'=g=c(p+1) where c=p*"'—p*~ 24+ —p+-1. We note that e>3. Since ¢ is
odd, ¢=1, a contradiction. Thus N4=N*NN5.

(3.12) Suppose N*=PSL(2, q) or Sz(g) and G#A4;, Ss. Then

(i) Ng=N°NN?isa Sylow 2-subgroup of N°.

(i) If N*==PSL(2, g), then | F(S)|=q and |Q|=¢".

(iii) If N®= Sz(q), then |F(S)|=¢ and |Q|=g".

(iv) There is an element x in G such that S=S%, [S, S*]=1 and F(S)N
F(S%)=9.

Proof. By assumption, N ya(S)=(¢—1)¢* where |S|=¢’. Hence (i) fol-
lows immediately from (3.7) and (3.11).

We now argue that |F(S)| is a power of 2. By (v) of (3.3), it suffices to
consider the case C®=1. Applying (ii) of (3.4), ¢/ |F(S)|%. By (i), p=
|Nya(S): Nj|=g—1 and so |F(S)|= pr+1=(¢—1)r+1. Hence ¢ [(r—1),
while 7 is a divisor of n where 2"=q because C*=1 and G,/N® is isomorphic
to a subgroup of the outer automorphism group of N® Therefore r=1 and
| F(S)|=g¢, a power of 2.

Hence by (iv) of (3.4), |F(S)|=(¢—1)r+1||Q|=(¢’+1)(g—1)r+1 and so
ql(g—1y+1 and (¢—1)y+1|g'. From this, (5, r)=(1, 1), (2, 1) or (2, g+1).
If (5, r)=(1,1) or (2, g+1), we obtain (ii) or (iii), respectively. We argue
(5, r)*=(2, 1). Suppose (i, r)=(2, 1). Then N®=Sz(q), | F(S)|=qg and |Q}=
¢(¢#—q+1). Inthis case, since |G,/C*°N?®| is odd, we have I(G,s)=I(N* N NP).
From this, all involutions in a fixed Sylow 2-subgroup of G,z have a common
fixed point set. By [12], G has a regular normal subgroup and so ¢—g-+1=1,
a contradiction.

Since by (iv) of (3.4) |Q]|==|F(S)| X |G: Ng(S)|3, |G: N(S)|; is divisible
by 2. Let S; be a Sylow 2-subgroup of N4(S) and S, a Sylow 2-subgroup
of Ng(S)). Since 2||G: Ng(S)|, S;¥*S,. Let x&S5,—S,, then S=%S" and
S>>, S*. Suppose yEF(S)NF(S*). Then by (i), SS*<N” and so S=S5%,
a contradiction. Therefore F(S)NF(S*)=¢ and hence [S, S*]=1 by (ii) of
(3.1). 'Thus (iii) holds.

(3.13) The following hold.

() N°5S3()

(if) Suppose N”==PSL(2, q) and let S* be as defined in (3.12). Then
OC«(S)) is a Sylow 2-subgroup of Cy(S) and O(C(S))=S X S*.

Proof. Suppose N®*=PSL(2, q) or Sz(g). If C*%1, O(Ce(S))® is a
regular normal subgroup of N4(S)*™ by (v) of (3.3). If C*=1, by (iv) of (3.3)
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Ceo(S)=Z(S) and so Cy(S)rr=2(S). By (3.12), Cx(S)F®>(S*)F %1, and
|F(S)|=¢'=|8S] and so C4(S)=Z(S)x S*. Hence in both cases O,(C¢(S)) is
regular on F(S).

Since by (iv) of (3.3) Co(S)r—Coam(S)=2(S) and by (i), (iii) of (3.12)
g=|S"|=F|(S)|=|C4x(S): Cc,(S)|, we have O,(C(S))=Z(S)x S* and this
is a Sylow 2-subgroup of C¢(S). Since Z(OyC4(S)))N=Z(S*)F®, N4(S)D>
Z(OLC(S)) and |F(S)| =S|, |2(S¥|—|S]. Hence |Z(S)|=1S| and
S is abelian. So (3.13) follows.

(3.14) Suppose N*=PSL(2, q) and G# As, S;. Put E=0,(Cx(S))=
SX 8%, W={T|Teccls(S), T<E}. Then we have the following:
(i) |W|=qand Q= E'JF (T) where T runs over every element of W.

(i) N(E)Neclg(s)<E for all sI(S).
(iii) If E NE*Neclg(s)=%= ¢ for some g=G, then ge N(E).

Proof. Let D be a Hall 2’-subgroup of Nys(S). Then D=Z,_, and by (i)
of (3.12) D is semi-regular on Q— {a}. If d ENy(S*), (d> acts semi-regularly
on F(S") since = F(S*). Hence the order of d divides | F(S)|. But |F(S)|=¢
by (i) of (3.12), hence [<d>| (g, g—1)=1 and so d=1. Therefore N(S*)=1.
Hence [{S§*|deD}|=q—1 and {S*|d=D}CW as D normalizes E. If
S=S8% for some deD, §*=8"'=S, a contradiction. Hence |W|>gq. If
there exist S,, S, W such that S,=S, and F(S,)NF(S;).+=¢ Let vyEF(S))N
F(S,;). Then S;, S;< N7 by (i) of (3.12) and so {S,, S;>=N?, which is contrary
to <8y, S;><E. Hence F(S,)NF(S,)=¢ for S;, S; =W such that S;+S,.
Since |F(S)|=g¢ and [Q|=¢ by (ii) of (3.12), we have |W|<gq. Thus (i)
holds.

Let s€I(S) and suppose s*€N(E)—E for some gG. Then s#*€N"’
where y=af. By (i) we choose T €W so that yeF(T). Then {s*, T)=N"as
s*& T and T is a Sylow 2-subgroup of N*. On the other hand <{s*, T)O<{s*DE,
which is a 2-subgroup of Ng(E), a contradiction. Thus (ii) holds.

Let 1+t€ENE*Neclg(s) for geG and s€I(S). Then there are S$;<E
and S,<E* such that t&S,N.S, and S}, gS,¢ ' W. Since F(S))=F(t)=F(S,)
by (ii) of (3.1), &Sy, S NN N? for v, S&F(¢). Hence S;=3S, by (i) of (3.12).
Applying (ii) of (3.13) to S;, we obtain E=0,(C(S,))=0,(C¢(S;))=E*. Thus
(iit) holds.

(3.15) Suppose N*=PSL(2, q) and Gs£ A4, S;. Then G has a regular

normal subgroup.

Proof. We count the set {(v, T)|v€F(T), T €cclz(S)} in two ways and
we have ¢#X(q+1)=|cclz(S)| xq by (3.12). Hence |ccl;(S)|=¢(q+1). On
the other hand we have |cclo(S)|=|G: N4 (E)| X q by (i), (ii) of (3.14). From
this, |G: Ny (E)|=q¢+1.
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Set I'=ccl;(E). We now consider the action of G on T'. By definition, G
is transitive on I" and Ny (E) is a stabilizer of EET. We argue that S is regular
on I'—{E}. Suppose not and let 1s&.S such that s"'Efs= E* for some
E*cT—{E}. Then gsg7*&N4(E). By (ii) of (3.14), gsgT* = E and hence
gsg'eENgEg™". By (iii) of (3.14), E=gEg~'. Hence E=E?*, a contradiction.
Since S<N4(E)) and |S|=|I'|—1, Sis regular on T—{E} and GT is doubly
transitive. Since S is abelian and regular on T'— {E}, G*NC(S")=S". From
this, E*==ST because £>S and E is abelian. Therefore Gp#1. Set M=Gh.
Suppose M N N*=1, then M>N*as N® is simple. Hence N*<NE) and
so N® normalizes ENG,=S, a contradiction, Thus MNN*=1. Hence
M <CH{N*"=C?, so that M,=1 or M ,=+1 and M is a Frobenius group on
by (iii) of (3.1). In both cases, G has a regular normal subgroup.

We now consider the case that N*=PSU(3, ¢). By (3.7) and (3.11),

8=US where U is a Hall 2’-subgroup of N§ and U<Z /. with é=(g+1, 3).
As in the proof of (3.1), we set Nya(S)=DS and D=VXK. Here V=2Z_
and K=Z,_,. Since Nya(S)>N§g, we may assume U=V N N§.

(3.16) Suppose N*=PSU(3, q). Then Ng=N*NNPis a Sylow 2-sub-
group of N®. In particular p=¢*—1/¢.

Proof. Suppose not and U=1. If U*<G s for g&G, U"SNZgﬂNgg
=N*NN°NNF*NN*<N*NNP. Hence U is conjugate to U? in N* N\ NP<G,s.
By the Witt’s Theorem N (U) is doubly transitive on F(U). By (ii) of Lemma
24, Nyo(Uy=N XV where N=PSL(2, q). Hence Ny U)"® satisfies the
assumption of Theorem 1. By (i) of (3.1), the number of fixed points of U
on A; is constant for each N®-orbit A; and so |F(U)|=|F(U)NA;| xr+1
=(|Nya(U)| X INg: Nya(U)|/INgl) X r+1=(|PSL(2,q) | X | V][/1Z(S)| x | U1)
Xr+1=(—1)xXrx |V: U{+1. Hence |F(U)| is even and |F(U)|+6. Ap-
plying (3.12) to N (U)™®, we obtain |F(U)|=¢, |F(U)NF(Z(S))|=q. Hence
r=1, U=V, Nzg=VS and |F(V)|=¢’ and so p=|Nya(S): N3|=¢—1. Since
by (ii) of (3.1) F(U)2F(S), |F(Z(S))|=1F(S)|=q. Farthermore by (3.15),
Ny (V)" has a regular normal elementary abelian 2-subgroup, say EF®).
Clearly EF < C(V)F™), Hence we may assume that E is a 2-subgroup of
Cy(V). Put P=Ey. Then |E|=|P|¢. By (i) of 3.4), |1Q|=¢"—¢+¢
and so 2¢ V' |Q—F(V)|. Hence there exists yEQ—F(V) such that | E: Ey| <gq.
Let T be a Sylow 2-subgroup of Gy containing Ey. Since EyE,NT NN"is
isomorphic to a subgroup of T/T NN and T/T N N'=TN?IN? < G4/N",
E,\JE;NT NN is cyclic. If Ex\NTNN'=1, Eyis cyclic and so |Ey/EyNP| L2.
Then |EyNP|>|Ey|[2=]|P|q/2>|P|, a contradiction. Hence E,NT NN
*+1. Let 2€Ey;NT NN" with 2+1. Since |F(2)|=¢<|F(P)|, 2&€E and
EF®™ is regular, we have F(2) N F(V)=¢. Hence V acts semi-regularly on F(z).
From this, = | F(2)|=(g+1/€) x k for some integer k>1. Since g is a power



626 Y. HIRAMINE

of 2, g41/€=1, a contradiction.

(3.17) Suppose N®*=~=PSU(3, gq). Then the following hold.
@) 10l=¢—¢+¢, |F(S)|=¢"

(ii) N(S)F® has a regular normal subgroup.

Proof. If C®=1, (ii) follows from (v) of (3.3) and so |F(S)]| is a power of
2. By (3.4)and (3.16), | F(S)| =(—1)r/é+1 and (F—1)r/e+1|(*+ 1) g —1)r/
&+1, hence (#—1)r/€+1]|¢%. By calculation, we obtain r=E&. So (i) follows.

We now assume C*=1. By (ii) of (3.4), ¢| | F(S)|=(¢"—1)r/¢é+1, so that
r==gk-+€ for an integer k>0. Since C®=1, r is a divisor of |G,/N®|. Hence
r|2n€, so that r|n€. Therefore n€>r—=qk+£=2"xk+&. Hence k=0 and r=¢.
From this (i) follows.

Let f be a field automorphism as defined in (3.1) and let T be a Sylow
2-subgroup of Ny(S) which contains {f>S. Since |Ng(S): Ngo(S)| = |F(S)|
=g by (i), | T|=2"¢* where |[<f>|=2". Since T[>S and Q—F(S)=¢*(¢—1)
there exists ¥y EQ—F(S) such that |T: Ty|=¢ hence | Ty|=2"¢* and T=S5Ty.
Set W=TyNN". Then W is semi-regular on F(S) because y€Q—F(S). In
particular |W | <|F(S)|=¢*. We note that [TyN?/N”| <2". Since Ty/W==
TyN'|N", we have |W|>¢. Hence |W|=¢ and W is regular on F(S).
Moreover | Ty: W |=2",

Since Ngog(S)/S==Ngap(S)YN?IN® by (3.16), N,s(S)F is isomorphic to a
homomorphic image of a subgroup of the outer automorphism group of N°.
Hence N, (S)"® is abelian when # is even or f=1. In this case by [1], (ii)
holds because | F(S)| =¢*. We now assume # is odd and |{f>|=2"=2. Since
T=8Tyand |Ty: W|=2, |TF®: WF®|=2. Claim ff®=%1. For otherwise
FEN(S)rs and [f, D]<N(S)p»N D=1 as D is f-invariant and D<N(S).
But since f==1, f does not centralize D. Therefore fF®+1. As feG,,
fFOEWFS),  Hence TFO=fOrOWFOWFS,  Since WF® is regular,
fF® is not conjugate to any element in W¥®, Hence fF® is not contained in
O(N(S)F®) by Lemma 2 of [3]. Since {f¥®) is a Sylow 2-subgroup of
(No(SYF) 8, O(N(S)FS),e is of odd order. As before (N(S)F),s is iso-
morphic to a homomorphic image of a subgroup of the outer automorphism
group of N®, O*(Ny(S) ),s is abelian. Again by [1], O*(N(S)™®) has a
regular normal subgroup as |F(S)|=¢®. Thus (ii) also holds in this case

(3.18) N®£PSU(3, g).

Proof. Let fbeasin(3.1). By the same argument as in the proof of (ii) of
(3.17), we have I({f D) EN(S)rs) and so S is a Sylow 2-subgroup of Ng(S)s)-
By (i) of (3.17), there is a normal subgroup L of N¢(S) such that
L>N(S)r and LS is an elementary abelian 2-subgroup of Ng(S)F®, Let
T be a Sylow 2-subgroup of { f >L which contains f. Set E=T NL. Then E
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is a Sylow 2-subgroup of L. Since S is a unique Sylow 2-subgroup of N(S)zs),
E[S=LF® is an elementary abelian 2-subgroup of order ¢>. As {f>NE=
FONENG,=Lf>NS=1, T={fYE>E.

Since T[>S and |Q—F(S)|=¢¥¢*—1) by (i) of (3.17), we can choose
vy Q—F(S) such that |T: Ty|=¢® Hence |Ty|=2"¢" where 2" is the order
of f. Since Ty/TyNC'N'=TyN*C*/C'N" is cyclic of order at most 2", | TyN
C'N?|=|TyNN"| =¢*. Moreover TyNN/TyNN"NE=(TyNN")E|E is cyclic
of order at most 2", we have |TyNNYNE|>¢/2". Since the order of fis a
divisor of 2n, we have |TyNN"NE|>¢(2"/2") >q4.

If TyAN"NE contains no element of order 4, then TwyNN'NE 1is an
elementary abelian 2-subgroup of N? of order ¢ and hence TyNN*/TyNN"NE
is an elementary abelian 2-groap. Therefore |[(TyNANME/E|<2 and so
|TyNNYNE| =4¢%2>q, a contradiction.

If TyAN"NE contains an element x of order 4, then 1=#x*€ .S because
E/S is an elementary abelian 2-group. Since ¥ &F(x?), by (ii) of (3.1) we have
v EF(S), which is contrary to Yy €Q—F(S). Thus (3.18) holds.

In this section we have proved the following:

Theorem 2. Suppose G2 satisfies the hypothesis of Theorem 1 and |Q| is
even. Then N*7 Sz(q), PSUQ3, q), N*==PSL(2, q) and either

(i) G®=Adgsor Sgor

(i) 1Q|=¢, |N§|=|IN*NNP|=q and G has a regular normal subgroup.

4. The case |Q] is odd

Let G be a doubly transitive permutation group on Q of odd degree satis-
fying the assumption of Theorem 1. By Theorem A of [10] and Theorem B of
[11], we may assume C¢(N”)=1. Hence G,/N? is isomorphic to a subgroup of
the outer automorphism group of N*. Let {a}, A;, Ay, -+, A, be the set of all
N®-orbits on Q. Clearly r is a divisor of |G ,/N®|.

From now on we assume that G has no regular normal subgroup and prove
that G=PSL(2, 11). Let M be a minimal normal subgroup of G. Then by
assumption, M ,=+1.

(4.1) M is simple and N°<M.

Proof. Since G is doubly transitive and M =1, M is a simple group (cf.
Exercise 12.4 of {16]). If N*M, then M,NN"=1 as N” is simple and hence
M ,<C(N®)=1, a contradiction. Thus N*<M.

As in (3.1Y, there is a 2-element f of M, such that f acts on N® as a field
automorphism, {f >SS, {f>NS=1and {f>S is a Sylow 2-subgroup of M,
where N ya(S)=DS is a Borel subgroup of N®, S is a unipotent subgroup of
N?, and D is a diagonal subgroup of N”.



628 Y. HIRAMINE

(4.2) If f%1, then (N3 EN*NN* for B=a.

Proof. Suppose f=1 and r<I({f}). Since M is a simple group with a
Sylow 2-subgroup {f>S, *&.S for some g&M, by Lemma 2 of [3]. Set
v=a®"'. Then T&N? and clearly T NN N? so that I(NL)EN'NN* By
the transitivity of G, we obtain I(N§)SEN*N NP for any B=*a.

(4.3) Suppose f£=1. Then N®£8z(q), PSUQ3, g).

Proof. If N®=Sz(q), |G,/N®| is odd and hence f=1, a contradiction.
Therefore N* = Sz(g).

Suppose N*=PSU(3, g) and let r€I({f)). Let s€Z(f>S)NI(S). As
in the proof of (4.2), ccly ()N S=¢. Then since s is an extremal element there
is g&M such that T8=s and (C¢ys(7))*<{f>S. Since 7 is a field automorphism
of order 2, Z(S)<C(ps(7). Put B=a*"'. Then TN’ and Z(S)<Nj. By
(4.2) Z(S)EN®NN? and so |Z(S): Z(S)NN*NNP|=2 because Z(S)/Z(S)N
NNNP=Z(SYN*NNP)IN*"NNP<NGN*NNP=NzNPIN® < Gg/N".

Claim N3<Nya(S). Suppose not. Then NgN Nye(S)is a strongly em-~
bedded subgroup of N§. Since |N§/N®NN?|is even and N§>Z(8)>2Z, X Z,,
by Bender’s Theorem ([2]), Ng/N*NN*®is not solvable, while N§/N®* N N® ==
N%NP|NP is solvable, a contradiction.

Let ¥, be a T-invariant Hall 2/-subgroup of N3. Then since ¥} normalizes
Q(ONg)=Z(S), V, centralizes Z(S)/Z(S)NN*NNP=Z, Hence by (i) of
Lemma 2.4, V,<Z ,, and so [V, Z(S)]=1 by (ii) of Lemma 2.4. Therefore
IKN3)CSZ(N%). Similarly I(NE)SZ(NE). Since Tel(N8), we have NN NP
<C(T)NNye(S). Since 7 is a field automorphism of N® of order 2, C(7)N
Nya(S)==KZ(S) where K is a cyclic subgroup of Nye(S)of order 4—1. Hence
NNNP<KZ(S)NNg=Z(SHK N V,0,(Ng))=2Z(S) and so | Z(S): N*N NP| =2.

We claim that F(2)=F(Z(S)) for x€I(N§). Let A; be an arbitrary N°-
orbit on Q—{a}. Since all elementary abelian 2-subgroups of N® of order g
are conjugate in N?, there exists vy A,; with Z(S)<N3. Hence by Lemma 2.2,
| F(z) N A | = Cya(2)| X | Z(SYPI/INF| =(g+1/€) X ¢(g—1)/ N3] for z€I(V3).
On the other hand |F(Z(S))NA;|=|Nys(Z(S)|/INS|=(F—1/)x¢|NG|.
Hence F(2)NA;=F(Z(S))NA; and so F(3)=F(Z(S)). In particular F(7)=
F(Z(S)) because T€I(N8) and N*NN®=1.

We claim that (V1)rzsn=1. Set S1=0,(Ng). Let dV, with d=+1, A,
be a N®-orbit which contains @ and let D; be a T-invariant Hall 2’-subgroup
of Nya(S) which contains V;. Put X=<{d>Z(S). Then by Lemma 2.2,
|FX)N Al = [ Nya(X)| IN%: Nug(X)|/ | N3] = | DZ(S)| |NS: V. Z(S)|/ N3]
=(¢—1/&)|S,|[/|Ng| = |F(Z(S)) N A;|/| S: S;|. Since S;/N*NN? is cyclic
and N*NNP<Z(S), S+S,. Therefore F(X)=F(Z(S)) and so (V) pzsp=1.

Since D, < Nya(Z(S)) and 7 ENg,(Z(S))rczisns [T DI SN(Z(S))rezesn N Dy
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=(V)rzsn=1. Hence D,<C(T)N Nya(S)=KZ(S) with K=Z,_,, which is
contrary to |D;|=(¢*—1)/6. So (4.3) is proved.

(4.4) Suppose N®=PSL(2, q) and f#1. Then the following hold.

(1) N§isa 2-subgroup of N®and |N§: N*NNP|=2.

(i) Let r€I({f)). Then for some B+a, TeNE—-N§, |Cy(T) =V ¢
and N* N NP<Cy(T)<N3.

Proof. Asin the proof of (4.3), there exist s€I(S) and g&M such that
m8=s and (C¢ps(T))P <FDS. Put B=a#~". Then TENB—N%and Cy(t)<NB.
Since T is a field automorphism of N® of order 2, |Cy(7)|=+/¢. Claim
NE<Nya(S). If g=%22, as C4(t)< N§, a Sylow 2-subgroup of N® is non cyclic.
Hence as in the proof of (4.3), N§<Ny«(S). If =22, N*=4; and so <TO)N*
=M,=G,=Ss;. In particular r=1. Hence N3<Nya(S). For otherwise
|Ng|=6 or 10 and |Q|=11 or 7, respectively. By [13], such groups do not
exist. Thus in both cases NV3<Nya(S). On the other hand N§/N*N NP is
cyclic of even order. By (i) of Lemma 2.4, N§ must be an abelian 2-subgroup
of N®and |[N%: N*NNP|=2. Since N8 =N% and r&NE&, we obtain N*N N®?
<C7). Thus (i) and (ii) hold.

(4.5) Suppose N®==PSL(2, g) and f==1. Let T=N3N%. Then
(i) Ng(T) is doubly transitive on F(T).
(ii) Nyo(T)=S and Sy=Ng§ for every y&F(T).

Proof. Since G,s/Nj is cyclic and by (i) of (4.4) TINs=2Z,, (G ,6)<T.
Clearly {(I(G,p)>=T. Hence by the Witt’s Theorem, we have (i).

Let K, be a Hall 2’-subgroup of Ny«(T). Then K, normalizes TN N®
=Ng. Since TIN§g=Z,, [K,, TINg]=1 and so T=CHK,)N3. If K,=#1, by
(i) of Lemma 2.4 C(K;)=1. Hence K;=1 and Nya(T)=S.

Let yeF(T)—{a}. Then obviously N3<Sy<Nj. Since G is doubly
transitive on Q, |N3|=|N%|, so that N3=S,=N7. Thus (ii) holds.

(4.6) Suppose N*=PSL(2, g) and f==1. Put ¢=2". Then
@) (n INED)=(2, 2), (2, 2°), (4, 2°) or (6, 2.
(i) If (n, INEH=(6, 2*), No(T)"® = 4.

Proof. |G,/N®||nand f=1, n is even and so we set n=2m. By (ii) of
(4.4), INg|=2""" where é&=0or 1. Since N, (T)/T <G5/ T==(G s/ N3)/(T|N)
and G p/N3=G sN*IN*<G,IN® Ng,o(T)"™ is cyclic and |Nguo(T)"| |m.
By (4.5), No(T)"™ is doubly transitive and S¥™ = S|N§ is semi-regular on
F(T)—{a}. Since Ng, (T) ™ is cyclic, by [1] Ny(T)"™=PSL(2, q,) where
g is a power of 2 or N (T)F has a regular normal subgroup. If (n, |Njg|)
+(2, 2), (2, 2%) and (4, 2%), ST contains a four-group, which is semi-regular
on F(T)—{a}. Hence Ny(T)F™ contains no regular normal subgroup and so
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N(T)F®=PSL(2, q). Since Nyo(T)" D = SN =F|N§ 'and N¢ (T)" D>
Nyo(TYFD, q=2""*>2. Hence 2"*—1=|Ng(T)"™|, so that 2"*—1|m.
From this, é&=1, m=3 and Ny(T)"®=A4;. Thus (4.6) holds.

“.7) f=1.

Proof. Suppose f==1. Then by (4.3) and (4.6), it suffices to consider the
case (1) of (4.6).

If N*=PSL(2,2%) and |N§|=2, G,=NiN®=Aut(N")=S,. Hence
r=1. Therefore |Q|=1+|N® N3|=31 and |G|=|Q||G,|=2%-3-5-31.
By the Sylow’s theorem, G has a regular normal subgroup of order 31. But this
is a contradiction as G > N°.

If N*=PSL(2, 2%) and |N§|=2% as above G,=NEN® and hence r=1.
From this |Q|=1+|N®: N§| =16, a contradiction.

If N®*=PSL(2, 2*) and |N3|=2% |Aut(N®): N*|=4 and so |G,: NEN?|
<2. Hence r=1or 2 and [Q|=511 or 1021 respectively. By Lemma 2.2, for
seNg— {1} | F(s)— {a} | =14 or 28 respectively. Let 7 be a field automorphism
of N of order 2 as in (4.4). Then Cya(7)=PSL(2, 2?) and |F(7)— {a} |[=14
or 28 since T is conjugate to s. From this an element x of Cya«(7) of order 5 fixes
at least four points in Q. Since 5/|Q], <x> is a Sylow 5-subgroup of G and
so ¥* N °® for some g=G. But F(xf)={a} because |[N7|=|N§|=2? for all
v+a. Therefore |F(x)| =1, which is contrary to |F(x)| >4.

If N®*=PSL(2,2%) and |N§|=2% by (ii) of (4.6), [Ng,(T)"™|=3.
Hence 3| |Gups: NG|. Since |Gap: N3|=|GaN®: N®| and |[NEN®: N®| =2
by (i) of (4.4), we have GoeN*=G,=~=Aut(N®). In particular =1 and |Q|
=16381. Moreover |F(s)—{a}|=60. As before |F(7)—{a}|=060, Cyq(7)
=~ PSL(2, 2%) and an element of C ya(T) of order 7 fixes at least five points. Bat
since 74 | Q] and 7 ¥ | N§|, every element of order 7 fixes exactly one point, a
contradiction.

(4.8) Go=PSL(2, 11), |Q|=11.

Proof. By (4.7), |M,: N®| is odd and so a Sylow 2-subgroup of N® is
also that of M. By [4], [5] and [15], it suffices to consider the following cases:

() N®=PSL(2, 2?), M=PSL(2, q,), ;=3 or 5 (mod 8), ¢:>3.

(i) N®=PSL(2, 2%, Cy(t)=Z,x PSL(2, 3***1), tc (M) (m>1).

(i) N®=PSL(2, 2%), M=],, the smallest Janko group.

First we consider the case (1). If |Ng| is odd, every involution in M has
a unique fixed point and so M =PSL(2, 5) by [2]. But then M==N"*, a contra-
diction. Hence |N3|=2, 4, 6, 10 or 12, On the other hand r=1 or 2 because
|Aut(N®): N®|=2. From this |Q|=1+4|N": Ng|r=7, 11, 13, 21, 31 or 61.
Since M==PSL(2, ¢;) and |M |=|Q||N®|, we get |Q|=11, |[Nj}|=06 and
M=PSL(2, 11). Thus |Q|=11 and G=PSL(2, 11).
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Next we consider the case (ii). As in the case (i), |/Vg| is even. Let
teIl(N3). Since |M,: N® =1 or 3, [M,)= {f!|gEM,} and so Cyu(t) is
transitive on F(f). Hence |F(£)] = |Cult): Cy,(t)]. Since |Cy,(t)] =
| Ca (ON®: N®| | Cya(t)|, | F(£)| > (321 —1)32m+3(3m+11-1)/24. Since |M,: N%|
=1lor 3, r=1 or 3. Therefore |F(#)|=1+(|Cyo(t)| | I(NG)|/INgl)r<1+48
x 3=25. Hence 25>(3""*'—1)3/24 and so 3***'<11, a contradiction.

Finally we consider the case (iii). Since N®==PSL(2, 2%, 3*||N®|. But
xYiM|=|J,|=233.7.11.19, a contradiction.
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