
On dual lattice attacks against small-secret LWE

and parameter choices in HElib and SEAL

Martin R. Albrecht⋆

Information Security Group
Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

martin.albrecht@royalholloway.ac.uk

Abstract. We present novel variants of the dual-lattice attack against
LWE in the presence of an unusually short secret. These variants are
informed by recent progress in BKW-style algorithms for solving LWE.
Applying them to parameter sets suggested by the homomorphic encryp-
tion libraries HElib and SEAL v2.0 yields revised security estimates. Our
techniques scale the exponent of the dual-lattice attack by a factor of
(2L)/(2L+1) when log q = Θ(L log n), when the secret has constant ham-
ming weight h and where L is the maximum depth of supported circuits.
They also allow to half the dimension of the lattice under consideration
at a multiplicative cost of 2h operations. Moreover, our techniques yield
revised concrete security estimates. For example, both libraries promise
80 bits of security for LWE instances with n = 1024 and log2 q ≈ 47,
while the techniques described in this work lead to estimated costs of 68
bits (SEAL v2.0) and 62 bits (HElib).

1 Introduction

Learning with Errors (LWE), defined in Definition 1, has proven to be a rich source
of cryptographic constructions, from public-key encryption and Diffie-Hellman-
style key exchange (cf. [Reg09,Pei09,LPR10,DXL12,BCNS15,ADPS16,BCD+16])
to fully homomorphic encryption (cf. [BV11,BGV12,Bra12,FV12,GSW13,CS15]).

Definition 1 (LWE [Reg09]). Let n, q be positive integers, χ be a probability

distribution on Z and s be a secret vector in Z
n
q . We denote by Ls,χ,q the probability

distribution on Z
n
q × Zq obtained by choosing a ∈ Z

n
q uniformly at random,

choosing e ∈ Z according to χ and considering it in Zq, and returning (a, c) =
(a, 〈a, s〉+ e) ∈ Z

n
q × Zq.

⋆ This research was supported by EPSRC grants EP/L018543/1 “Multilinear Maps
in Cryptography” and EP/P009417/1 “Bit Security of Learning with Errors for
Post-Quantum Cryptography and Fully Homomorphic Encryption”.

Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Z
n
q × Zq are

sampled according to Ls,χ,q or the uniform distribution on Z
n
q × Zq.

Search-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉+ e) ∈ Z
n
q ×Zq

sampled according to Ls,χ,q.

We may write LWE instances in matrix form (A, c), where rows correspond to
samples (ai, ci). In many instantiations, χ is a discrete Gaussian distribution
with standard deviation α q/

√
2π. Though, in this work, like in many works on

cryptanalysis of LWE, the details of the error distribution do not matter as long
as we can bound the size of the error under additions.

The bit-security of concrete LWE instances is a prominent area of current crypto-
graphic research, in particular in light of standardisation initiatives for LWE-based
schemes and LWE-based (somewhat) homomorphic encryption being proposed
for applications such as computation with medical data [KL15]. See [APS15] for
a relatively recent survey of known (classical) attacks.

Applications such as [KL15] are enabled by progress in homomorphic encryp-
tion in recent years. The two most well-known homomorphic encryption li-
braries are HElib and SEAL. HElib [GHS12a,HS14] implements BGV [BGV12].
SEAL v2.0 [LP16] implements FV [Bra12,FV12]. Both schemes fundamentally
rely on the security of LWE.

However, results on the expected cost of solving generic LWE instances do not
directly translate to LWE instances as used in fully homomorphic encryption
(FHE). Firstly, because these instances are typically related to the Ring-LWE
assumption [LPR10,LPR13] instead of plain LWE. Secondly, because these in-
stances are typically small-secret instances. In particular, they typically sample
the secret s from some distribution B as defined below. We call such instances
B-secret LWE instances.

Definition 2. Let n, q be positive integers. We call

B any distribution on Z
n
q where each component ≤ 1 in absolute value, i.e.

‖s(i)‖ ≤ 1 for s←$ B.
B+ the distribution on Z

n
q where each component is independently sampled uni-

formly at random from {0, 1}.
B− the distribution on Z

n
q where each component is independently sampled uni-

formly at random from {−1, 0, 1}.
B+h the distribution on Z

n
q where components are sampled independently uniformly

at random from {0, 1} with the additional guarantee that at most h components

are non-zero.

B−h the distribution on Z
n
q where components are sampled independently uniformly

at random from {−1, 0, 1} with the additional guarantee that at most h
components are non-zero.

2

Remark 1. In [BLP+13], instances with s←$ B+ are referred to as binary-secret;
B+ is used in [FV12]; B− is used in Microsoft’s SEAL v2.0 library1 and [LN14];
B−64 is the default choice in HElib, cf. [GHS12b, Appendix C.1.1] and [HS14].

It is an open question how much easier, if any, B-secret LWE instances are
compared to regular LWE instances. On the one hand, designers of FHE schemes
typically ignore this issue [GHS12a,LN14,CS16]. This could be considered as
somewhat justified by a reduction from [ACPS09] showing that an LWE instance
with an arbitrary secret can be transformed into an instance with a secret
following the noise distribution in polynomial time and at the loss of n samples.
Hence, such instances are not easier than instances with a uniformly random
secret, assuming sufficiently many samples are available. As a consequence, LWE
with a secret following the noise distribution is considered to be in normal form.
Given that the noise in homomorphic encryption libraries is also typically rather
small — SEAL and HElib use standard deviation σ ≈ 3.2 — the distribution
B− gives rise to LWE instances which could be considered relatively close to
normal-form LWE instances. However, considering the actual distributions, not
just the standard deviations, it is known that LWE with error distribution B is
insecure once sufficiently many samples are available [AG11,ACFP14,KF15].

On the other hand, the best, known reduction from regular LWE to B+-secret
LWE has an expansion factor of log q in the dimension. That is, [BLP+13] gives a
reduction from regular LWE in dimension n to LWE with s←$ B+ in dimension
n log q.

In contrast, even for noise with width ≈ √n and s←$ B− the best known lattice
attacks suggest an expansion factor of at most log log n [BG14], if at all. Overall,
known algorithms do not perform significantly better for B-secret LWE instances,
perhaps reinforcing our confidence in the common approach of simply ignoring
the special form of the secret.

One family of algorithms has recently seen considerable progress with regards to
B-secret instances: combinatorial algorithms. Already in [Reg09] it was observed
that the BKW algorithm, originally proposed for LPN by Blum, Kalai and
Wasserman [BKW00], leads to an algorithm in 2Θ(n) time and space for solving
LWE. The algorithm proceeds by splitting the components of the vectors ai into
blocks of k components. Then, it searches for collisions in the first block in an
“elimination table” holding entries for (possibly) all qk different values for that
block. This table is constructed by sampling fresh (ai, ci) pairs from the LWE
oracle. By subtracting vectors with colliding components in the first block, a
vector of dimension n − k is recovered, applying the same subtraction to the
corresponding ci values, produces an error of size

√
2α q. Repeating the process

for consecutive blocks reduces the dimension further at the cost of an increase

1 cf. KeyGenerator::set_poly_coeffs_zero_one_negone() at https://sealcrypto.

codeplex.com/SourceControl/latest#SEAL/keygenerator.h

3

in the noise by a factor
√
2 at each level. This process either continues until all

components of ai are eliminated or when there are so few components left that
exhaustive search can solve the remaining low-dimensional LWE instance.

A first detailed study of this algorithm when applied to LWE was provided
in [ACF+15]. Subsequently, improved variants were proposed, for small secret
LWE instances via “lazy modulus switching” [AFFP14], via the application
of an FFT in the last step of the algorithm [DTV15], via varying the block
size k [KF15] and via rephrasing the problem as the coding-theoretic problem
of quantisation [GJS15]. In particular, the works [KF15,GJS15] improve the
exploitation of a small secret to the point where these techniques improve the
cost of solving instances where the secret is as big as the error, i.e. arbitrary
LWE instances. Yet, combinatorial algorithms do not perform well on FHE-style
LWE instances because of their large dimension n to accommodate the large
modulus q.

1.1 Our contribution/outline

We first review parameter choices in HElib and SEAL as well as known algorithms
for solving LWE and related problems in Section 2.

Then, we reconsider the dual-lattice attack (or “dual attack” in short) which finds
short vectors y such that y ·A ≡ 0 mod q using lattice reduction. In particular,
we recast this attack as the lattice-reduction analogue of the BKW algorithm
and adapt techniques and lessons learned from BKW-style algorithms. Applying
these techniques to parameter sets suggested for HElib and SEAL, we arrive at
revised concrete and asymptotic security estimates.

First, in Section 3, we recall (the first stage of) BKW as a recursive dimension
reduction algorithm for LWE instances. Each step transforms an LWE instance
in dimension n to an instance in dimension n − k at the cost of an increase
in the noise by a factor of

√
2. This smaller instance is then reduced further

by applying BKW again or solved using another algorithm for solving LWE;
typically some form of exhaustive search once the dimension is small enough.
To achieve this dimension reduction, BKW first produces elimination tables
and then makes use of these tables to sample possibly many LWE samples in
dimension n−k relatively cheaply. We translate this approach to lattice reduction
in the low advantage regime: we perform one expensive lattice reduction step
followed by many relatively cheap lattice reductions on rerandomised bases. This
essentially reduces the overall solving cost by a factor of m, where m is the
number of samples required to distinguish a discrete Gaussian distribution with
large standard deviation from uniform modulo q. We note that this approach
applies to any LWE instance, i.e. does not rely on an unusually short secret and
thus gives cause for a moderate revision of many LWE estimates based on the
dual-attack in the low advantage regime. It does, however, rely on the heuristic

4

that these cheap lattice reduction steps produce sufficiently short and random
vectors. We give evidence that this heuristic holds.

Second, in Section 4, we observe that the normal form of the dual attack — finding
short vectors y such that y ·A ≡ x mod q is short — is a natural analogue of
“lazy modulus switching” [AFFP14]. Then, to exploit the unusually small secret,
we apply lattice scaling as in [BG14]. The scaling factor is somewhat analogous to
picking the target modulus in modulus switching resp. picking the (dimension of
the) code for quantisation. This technique applies to any B-secret LWE instance.
For B−h -secret instances, it reduces the cost of the dual attack by a factor of
2L/(2L+1) in the exponent when log q = Θ (L log n) for L the supported depth
of FHE circuits and when h is a constant.

Third, in Section 5, we focus on s ←$ B±h and adapt the dual attack to find
short vectors which produce zero when multiplied with a subset of the columns
of A. This, as in BKW, produces a smaller, easier LWE instance which is then
solved using another algorithm. In BKW, these smaller instances typically have
very small dimension (say, 10). Here, we consider instances with dimension of
several hundreds. This is enabled by exploiting the sparsity of the secret and
by relaxing the conditions on the second step: we recover a solution only with
a small probability of success. The basic form of this attack does not rely on
the size of the non-zero components (only on the sparsity) and reduces the
cost of solving an instance in dimension n to the cost of solving an instance in
dimension n/2 multiplied by 2h where h is the hamming weight of the secret
(other trade-offs between multiplicative cost increase and dimension reduction
are possible and typically optimal). We also give an improved variant when the
non-zero components are also small.

In Section 6, we put everything together to arrive at our final algorithm Silke,
which combines the techniques outlined above; inheriting their properties. We
also give revised security estimates for parameter sets suggested for HElib and
SEAL in Table 1. Table 1 highlights that the techniques described in this work
can, despite being relatively simple, produce significantly revised concrete security
estimates for both SEAL and HElib.

2 Preliminaries

Logarithms are base 2 if not stated otherwise. We write vectors in bold, e.g. a,
and matrices in upper-case bold, e.g. A. By a(i) we denote the i-th component of
a, i.e. a scalar. In contrast, ai is the i-th element of a list of vectors. We write Im
for the m×m identity matrix over whichever base ring is implied from context.
We write 0m×n for the m× n zero matrix. A lattice is a discrete subgroup of Rn.
It can be represented by a basis B. We write Λ(B) for the lattice generated by
the rows of the matrix B, i.e. all integer-linear combinations of the rows of B.

5

n 1024 2048 4096 8192 16384

SEAL v2.0 80-bit

log2 q 47.5 95.4 192.0 392.1 799.6

dual 83.1 78.2 73.7 71.1 70.6

Silkesmall 68.1 69.0 68.2 68.4 68.8

HElib 80-bit

log2 q 47.0 87.0 167.0 326.0 638.0

dual 85.2 85.2 85.3 84.6 85.5

Silkesparse 61.3 65.0 67.9 70.2 73.1

HElib 128-bit

log2 q 38.0 70.0 134.0 261.0 511.0

dual 110.7 110.1 109.3 108.8 108.9

Silkesparse 73.2 77.4 81.2 84.0 86.4

Table 1. Costs of dual attacks on HElib and SEAL v2.0. Rows “log2 q” give bit sizes
for the maximal modulus for a given n, for SEAL it is taken from [LN14], for HElib it
is chosen such that the expected cost is 280 resp. 2128 seconds according to [GHS12a].
The rows “dual” give the log cost (in operations) of the dual attack according to our
lattice-reduction estimates without taking any of our improvements into account; The
row “Silkesmall” gives the log cost of Algorithm 3 with “sparse” set to false; The rows
“Silkesparse” give the log cost of Algorithm 3 with “sparse” set to true. The “sparse” flag
toggles whether the approach described in Section 5 is enabled or not in Algorithm 3.

Strategy Dual Decode Embed

HElib 188.9 — —

base line 124.2 116.6 114.5

Section 4 101.0 — —

Section 5 97.1 111.0 110.9

Section 6 83.9 — —

Table 2. Logarithms of algorithm costs in operations mod q when applied to example
parameters n = 2048, q ≈ 263.4, α ≈ 2−60.4 and s ←$ B

−

64. The row “base line” gives
the log cost of attacks according to our lattice-reduction estimates without taking any
of our improvements into account.

6

We write Λq(B) for the q-ary lattice generated by the rows of the matrix B over
Zq, i.e. the lattice spanned by the rows B and multiples of q. We write An:m for
the rows n, . . . ,m− 1 of A. If the starting or end point is omitted it is assumed
to be 0 or the number of rows respectively, i.e. we follow Python’s slice notation.

2.1 Rolling example

Throughout, we are going to use Example 1 below to illustrate the behaviour of
the techniques described here. See Table 2 for an overview of complexity estimates
for solving this set of parameters using the techniques described in this work.

Example 1. The LWE dimension is n = 2048, the modulus is q ≈ 263.4, the noise
parameter is α ≈ 2−60.4, i.e. we have a standard deviation of σ ≈ 3.2. We have
s←$ B−64, i.e. only h = 64 components of the secret are ±1, all other components
are zero. This set of parameters is inspired by parameter choices in HElib and
produced by calling the function fhe_params(n=2048,L=2) of the LWE estimator
from [APS15].

2.2 Parameter choices in HElib

HElib [GHS12a,HS14] uses the cost of the dual attack for solving LWE to establish
parameters. The dual strategy reduces the problem of distinguishing LWE from
uniform to the SIS problem [Ajt96]:

Definition 3 (SIS). Given q ∈ Z, a matrix A, and t < q; find y with 0 <
‖y‖ ≤ t and

y ·A ≡ 0 (mod q).

Now, given samples A, c where either c = A·s+e or c uniform, we can distinguish
the two cases by finding a short y which solves SIS on A and by computing
〈y, c〉. On the one hand, if c = A · s+ e, then 〈y, c〉 = 〈y ·A, s〉+ 〈y, e〉 ≡ 〈y, e〉
(mod q). If y is short then 〈y, e〉 is also short. On the other hand, if c is uniformly
random, so is 〈y, c〉.

To pick a target norm for y, HElib picks ‖y‖ = q which allows distinguishing
with good probability because q is not too far from q/σ since σ ≈ 3.2 and q is
typically rather large. More precisely, we may rely on the following lemma:

Lemma 1 ([LP11]). Given an LWE instance characterised by n, α, q and a

vector y of length ‖y‖ such that y·A ≡ 0 (mod q), the advantage of distinguishing
〈y, e〉 from random is close to

exp(−π(‖y‖ · α)2).

7

To produce a short enough y, we may call a lattice-reduction algorithm. In
particular, we may call the BKZ algorithm with block size β. After performing
BKZ-β reduction the first vector in the transformed lattice basis will have norm

δm0 ·det(Λ)
1/m

where det(Λ) is the determinant of the lattice under consideration,
m its dimension and the root-Hermite factor δ0 is a constant based on the block
size parameter β. Increasing the parameter β leads to a smaller δ0 but also leads
to an increase in run-time; the run-time grows at least exponential in β (see
below).

In our case, the expression above simplifies to ‖y‖ ≈ δm0 · qn/m whp, where n is
the LWE dimension and m is the number of samples we consider. The minimum

of this expression is attained at m =
√

n log q
log δ0

[MR09].

Explicitly, we are given a matrix A ∈ Z
m×n
q , construct a basis Y for its left

kernel modulo q and then consider the q-ary lattice Λq(Y) spanned by the rows
of Y. With high probability Y is an (m− n)×m matrix and Λq(Y) has volume
qn. Let L be a basis for Λq(Y), m′ = m − n and write Y = [Im′ |Y′] then we
have

L =

(

Im′ Y′

0 q In

)

.

In other words, we are attempting to find a short vector y in the integer row
span of L.

Given a target for the norm of y and hence for δ0, HElib2 estimates the cost of
lattice reduction by relying on the following formula from [LP11]:

log tBKZ(δ0) =
1.8

log δ0
− 110, (1)

where tBKZ(δ0) is the time in seconds it takes to BKZ reduce a basis to achieve
root-Hermite factor δ0. This estimate is based on experiments with BKZ in the
NTL library [Sho01] and extrapolation.

2.3 LP model

The [LP11] model for estimating the cost of lattice-reduction is not correct.

Firstly, it expresses runtime in seconds instead of units of computation. As Moore’s
law progresses and more parallelism is introduced, the number of instructions
that can be performed in a second increases. Hence, we first must translate

2
https://github.com/shaih/HElib/blob/a5921a08e8b418f154be54f4e39a849e74489319/

src/FHEContext.cpp#L22

8

Eq. (1) to units of computation. The experiments of Lindner and Peikert were
performed on a 2.33 Ghz AMD Opteron machine, so we may assume that about
2.33 · 109 operations can be performed on such a machine in one second and we
scale Eq. (1) accordingly.3

Secondly, the LP model does not fit the implementation of BKZ in NTL. The
BKZ algorithm internally calls an oracle for solving the shortest vector problem
in smaller dimension. The most practically relevant algorithms for realising this
oracle are enumeration without preprocessing (Fincke-Pohst) which costs 2Θ(β2)

operations, enumeration with recursive preprocessing (Kannan) which costs βΘ(β)

and sieving which costs 2Θ(β). NTL implements enumeration without prepro-
cessing. That is, while it was shown in [Wal15] that BKZ with recursive BKZ
pre-processing achieves a run-time of poly(n) · βΘ(β), NTL does not implement
the necessary recursive preprocessing with BKZ in smaller dimensions. Hence, it
runs in time poly(n) · 2Θ(β2) for block size β.

Thirdly, the LP model assumes a linear relation between 1/ log(δ0) and the log of
the running time of BKZ, but from the “lattice rule-of-thumb” (δ0 ≈ β1/(2β)) and
2Θ(β) being the complexity of the best known algorithm for solving the shortest
vector problem, we get:

Lemma 2 ([APS15]). The log of the time complexity achieve a root-Hermite

factor δ0 with BKZ is

Θ

(

log(1/ log δ0)

log δ0

)

if calling the SVP oracle costs 2Θ(β).

To illustrate the difference between Lemma 2 and Eq. (1), consider Regev’s
original parameters [Reg05] for LWE: q ≈ n2, α q ≈ √n. Then, solving LWE
with the dual attack and advantage ǫ requires a log root-Hermite factor log δ0 =

log2
(

α
√

ln(1/ε)/π
−1
)

/(4n log q) [APS15]. Picking ε such that log
√

ln(1/ε)/π ≈
1, the log root-Hermite factor becomes log δ0 = 9 logn

32n . Plugging this result
into Eq. 1, we would estimate that solving LWE for these parameters takes
log tBKZ(δ0) =

32n
5 logn − 110 seconds, which is subexponential in n.

2.4 Parameter choices in SEAL v2.0

SEAL v2.0 [LP16] largely leaves parameter choices to the user. However, it pro-
vides the ChooserEvaluator::default_parameter_options() function which returns

3 The number of operations on integers of size log q depends on q and is not constant.
However, constant scaling provides a reasonable approximation for the number of
operations for the parameter ranges we are interested in here.

9

values from [LN14, Table 2].4 This table gives a maximum log q for 80 bits of
security for n = 1024, 2048, 4096, 8192, 16384. We reproduce these values for log q
in Table 1. The default standard deviation is σ = 3.19.

The values of [LN14, Table 2] are based on enumeration costs and the simulator
from [CN11,CN12]. Furthermore, to extrapolate from available enumeration costs
from [CN12], [LN14] assumes calling the SVP oracle in BKZ grows only expo-
nentially with β, i.e. as 20.64β−28. Note that this is overly optimistic, as [CN12]
calls enumeration with recursive preprocessing to realise the SVP oracle inside
BKZ, which has a complexity of βΘ(β).

Finally, we note that the SEAL v2.0 manual [LP16] cautions the user against
relying on the security provided by the list of default parameters.

2.5 Lattice reduction

We will estimate the cost of lattice reduction using the following assumptions:

BKZ-β produces vectors with δ0 ≈
(

β
2πe (πβ)

1
β

)
1

2(β−1)

[Che13]. The SVP oracle

in BKZ is realised using sieving and sieving in blocksize β costs tβ = 20.292 β+12.31

clock cycles. Here, 0.292β follows from [BDGL16], the additive constant +12.31 is
based on experiments in [Laa15]. BKZ-β costs c n · tβ clock cycles in dimension n
for some small constant c based on experiments in [Che13]; cf. [Che13, Figure 4.6].
This corresponds roughly to 2 c tours of BKZ. We pick c = 8 based on our
experiments with [FPL16].

This estimate is more optimistic than the estimate in [APS15], which does not
yet take [BDGL16] into account and bases the number of SVP oracle calls on
theoretical convergence results [HPS11] instead of experimental evidence. On
the other hand, this estimate is more pessimistic than [BCD+16] which assumes
one SVP call to be sufficient in order to protect against future algorithmic
developments. While such developments, amortising costs across SVP calls during
one BKZ reduction, are plausible, we avoid this assumption here in order not
to “oversell” our results. However, we note that our improvements are somewhat
oblivious to the underlying lattice-reduction model used. That is, while the
concrete estimates for bit-security will vary depending on which estimate is
employed, the techniques described here lead to improvements over the plain
dual attack regardless of model. For completeness, we give estimated costs in
different cost models in Appendix C.

According to the [LP11] estimate, solving Example 1 costs 2157.8 seconds or 2188.9

operations using the standard dual attack. The estimates outlined in this section
predict a cost of 2124.2 operations for the same standard dual attack.

4 Note that the most recent version of SEAL now recommends more conservative
parameters [LCP16], partly in reaction to this work.

10

2.6 Related work

LWE. Besides the dual attack, via BKW or lattice-reduction, there is also
the primal attack, which solves the bounded distance decoding (BDD) problem
directly. That is, given (A, c) with c = A · s + e or c ←$ U

(

Z
m
q

)

find s′

such that |w − c| with w = A · s′ is minimised. For this, we may employ
Kannan’s embedding [AFG14] or variants of Babai’s nearest planes after lattice
reduction [LP11,LN13]. For Example 1 the cost of the latter approach is 2116.6

operations, i.e. about a factor 190 faster than the dual attack.

Arora & Ge proposed an asymptotically efficient algorithm for solving LWE [AG11],
which was later improved in [ACFP14]. However, these algorithms involve large
constants in the exponent, ruling them out for parameters typically considered
in cryptography. We, hence, do not consider them further in this work.

Small-secret LWE. As mentioned in [GHS12b], we can transform instances
with an unusually short secret into instances where the secret follows the error
distribution, but n samples have the old, short secret as noise [ACPS09].

Given a random m× n matrix A mod q and an m-vector c = A · s+ e mod q,
let A0 denotes the first n rows of A, A1 the next n rows, etc., e0, e1, . . . are the
corresponding parts of the error vector and c0, c1, . . . the corresponding parts of c.
We have c0 = A0 ·s+e0 or A−1

0 ·c0 = s+A−1
0 e0. For i > 0 we have ci = Ai ·s+ei,

which together with the above gives AiA
−1
0 c0 − ci = AiA

−1
0 e0 − ei. The output

of the transformation is z = B · e0 + f with B = (A−1
0 | A1 ·A−1

0 | . . .) and
z = (A−1

0 c0 | A1A
−1
0 c1 | . . .) and f = (s|e1 | . . .). For Example 1, this reduces α

from 2−60.4 to ≈ 2−60.8 and marginally improves the cost of solving.

An explicit variant of this approach is given in [BG14]. Consider the lattice

Λ = {v ∈ Z
n+m+1 | [A | Im | −c] · v ≡ 0 mod q}.

It has an unusually short vector (s||e||1). When ‖s‖ ≪ ‖e‖, the vector (s||e||1)
is uneven in length. To balance the two sides, rescale the first part to have the
same norm as the second. When s←$ B−, this scales the volume of the lattice
by σn. When s ←$ B+, this scales the volume of the lattice by (2σ)

n
because

we can scale by 2σ and then re-balance. When s ←$ B±h , the volume is scaled
depending on h. For our rolling example, this approach costs 2114.5 operations,
i.e. is about a factor 830 faster than the dual attack.

Independently and concurrently to this work, a new key-exchange protocol based
on sparse secret LWE was proposed in [CKH+16]. A subset of the techniques
discussed here are also discussed in [CKH+16], in particular, ignoring components
of the secret and using lattice scaling as in [BG14].

11

Combinatorial. This work combines combinatorial and lattice-reduction tech-
niques. As such, it has some similarities with the hybrid attack on NTRU [HG07].
This attack was recently adapted to LWE in the B-secret case in [BGPW16] and
its complexity revisited in [Wun16].

Rings. Recently, [ABD16] proposed a subfield lattice-attack on the two fully
homomorphic encryption schemes YASHE [BLLN13] and LTV [LTV12], showing
that NTRU with “overstretched” moduli q is less secure than initially expected.
Quickly after, [KF16] pointed out that the presence of subfields is not necessary
for attacks to succeed. NTRU can be considered as the homogeneous version
of Ring-LWE, but there is currently no indication that these attacks can be
translated to the Ring-LWE setting. There is currently no known algorithm
which solves Ring-LWE faster than LWE for the parameter choices (ring, error
distribution, etc.) typically considered in FHE schemes.

3 Amortising costs

If the cost of distinguishing LWE from random with probability ε is c, the cost
of solving is customary estimated as at least c/ε [LP11]. More precisely, applying
Chernoff bounds, we require about 1/ε2 samples to amplify a decision experiment
succeeding with advantage ε to a constant advantage. Hence, e.g. in [APS15],
the dual attack is costed as the cost of running BKZ-β to achieve the target
δ0 multiplied by the number of samples required to distinguish with the target
advantage, i.e. ≈ c/ε2.

In the case of the dual attack, this cost can be reduced by performing rerandomi-
sation on the already reduced basis. If L is a basis for the lattice Λq(Y), we first
compute L′ as the output of BKZ-β reduction where β is chosen to achieve the
target δ0 required for some given target advantage. Then, in order to produce
sufficiently many relatively short vectors yi ∈ Λq(Y) we repeatedly multiply L′

by a fresh random sparse unimodular matrix with small entries to produce L′
i. As

a consequence, L′
i remains somewhat short. Finally, we run BKZ-β′ with β′ ≤ β

on L′
i and return the smallest non-zero vector as yi. See Algorithm 1, where εd

is chosen following Lemma 1 (see below for the expectation of ‖y‖) and m is
chosen following [SL12].

That is, similar to BKW, which in a first step produces elimination tables which
allow sampling smaller dimensional LWE samples in O

(

n2
)

operations, we first
produce a relatively good basis L′ to allow sampling yi relatively efficiently.

To produce the estimates in Table 1, we assume the same rerandomisation
strategy as is employed in fplll’s implementation [FPL16] of extreme pruning

12

for BKZ 2.0.5 This rerandomisation strategy first permutes rows and then adds
three existing rows together using ±1 coefficients, which would increase norms
by a factor of

√
3 < 2 when all vectors initially have roughly the same norm. For

completeness, we reproduce the algorithm in Appendix A. We then run LLL,
i.e. we set β′ = 2, and assume that our yi have their norms increased by a factor
of two, i.e. E[‖yi‖] = 2 · δm0 qn/m.

Data: candidate LWE samples A, c ∈ Z
m×n
q × Z

m
q

Data: BKZ block sizes β, β′ ≥ 2
Data: target success probability ε
εd ← exp(−π(E[‖yi‖] · α)

2);
m← ⌈2 log(2− 2 ε)/ log(1− 4 ε2d)⌉;
L← basis for {y ∈ Z

m : y ·A ≡ 0 mod q};
L′ ← BKZ-β reduced basis for L;
for i← 0 to m− 1 do

U←$ a sparse unimodular matrix with small entries;
Li ← U · L′;
L′

i ← BKZ-β′ reduced basis for Li;
yi ← shortest row vector in L′

i;
e′i ← 〈yi, c〉;

end

if e′i follow discrete Gaussian distribution then

return ⊤;
else

return ⊥;
end

Algorithm 1: Silke1: Amortising costs in BKW-style SIS strategy for solving LWE

Heuristic. We note that, in implementing this strategy, we are losing statistical
independence. To maintain statistical independence, we would consider fresh
LWE samples and distinguish 〈yi, ei〉 from uniform. However, neither HElib nor
SEAL provides the attacker with sufficiently many samples to run the algorithm
under these conditions. Instead, we are attempting to distinguish 〈yi, e〉 from
uniform. Furthermore, since we are performing only light rerandomisation our
distribution could be skewed if our yi in 〈yi, e〉 are not sufficiently random.
Just as in BKW-style algorithms [ACF+15] we assume the values 〈yi, e〉 are
distributed closely enough to the target distribution to allow us to ignore this
issue.

Experimental verification. We tested the heuristic assumption of Algorithm 1
by rerandomising a BKZ-60 reduced basis using Algorithm 4 with d = 3 followed

5
https://github.com/fplll/fplll/blob/b75fe83/fplll/bkz.cpp#L43

13

by LLL reduction several hundred times. In this experiment, we recovered fresh
somewhat short vectors in each call, where somewhat short means with a norm
at most twice that of the shortest vector of L′. We give further experimental
evidence in Section 6.

Finally, we note that this process shares some similarities with random sampling
reduction (RSR) [Sch03], where random linear combinations are LLL reduced
to produce short vectors. While, here, we are only performing sparse sums and
accept larger norms, the techniques used to analyse RSR might permit reducing
our heuristic to a more standard heuristic assumption.

4 Scaled normal-form

The line of research improving the BKW algorithm for small secrets starting
with [AFFP14] proceeds from the observation that we do not need to find
y ·A ≡ 0 mod q, but if the secret is sufficiently small then any y such that y ·A
is short suffices, i.e. we seek short vectors (w,v) in the lattice

Λ = {(y,x) ∈ Z
m × Z

n : y ·A ≡ x mod q}.

Note that this lattice is the lattice considered in dual attacks on normal form
LWE instances (cf. [ADPS15]).6 Given a short vector in (w,v) ∈ Λ, we have

w · c = w · (A · s+ e) = 〈v, s〉+ 〈w, e〉 .
Here, v corresponds to the noise from “modulus switching” or quantisation in
BKW-style algorithms and w to the multiplicative factor by which the LWE
noise increases due to repeated subtractions.

Now, in small secret LWE instances we have ‖s‖ < ‖e‖. As a consequence, we
may permit ‖v‖ > ‖w‖ such that

‖ 〈w, s〉 ‖ ≈ ‖ 〈v, e〉 ‖.
Hence, we consider the lattice

Λc = {(y,x/c) ∈ Z
m × (1/c · Z)n : y ·A ≡ x mod q}

for some constant c, similar to [BG14]. The lattice Λc has dimension m′ = m+ n
and whp volume (q/c)

n
. To construct a basis for Λc, assume Am−n:m has full

rank (this holds with high probability for large q). Then Λc = Λ(L′) with

L′ =

1
c In 0n×(m−n) A−1

m−n:m

Im−n B′

qIn

where [Im−n|B′] is a basis for the left kernel of A mod q.

6 The strategy seems folklore, we were unable to find a canonical reference for it.

14

Remark 2. In our estimates for HElib and SEAL, we typically have m = n and
[Im−n|B′] ∈ Z

0×n.

It remains to establish c. Lattice reduction produces a vector (w,v) with

‖(w,v)‖ ≈ δm
′

0 · (q/c)n/m
′

, (2)

which translates to a noise value

e = w ·A · s+ 〈w, e〉 = 〈c · v, s〉+ 〈w, e〉

and we set
c =

α q√
2π h

·
√
m′ − n

to equalise the noise contributions of both parts of the above sum.

As a consequence, we arrive at the following lemma, which is attained by com-
bining Equation (2) with Lemma 1.

Lemma 3. Let m′ = 2n and c = α q√
2π h
·
√
m′ − n. A lattice reduction algorithm

achieving δ0 such that

log δ0 =
log
(

2n log2 ε
πα2h

)

8n

leads to an algorithm solving decisional LWE with s←$ B−h instance with advan-

tage ε and the same cost.

Remark 3. We focus on m′ = 2n in Lemma 3 for ease of exposure. For the
instances considered in this work, m′ = 2n is a good approximation for m′ (see
Section 6).

For Example 1 we predict at a cost of 2107.4 operations mod q for solving Decision-
LWE when applying this strategy. Amortising costs as suggested in Section 3
reduces it further to 2101.0 operations mod q.

Asymptotic behaviour. The general dual strategy, without exploiting small
secrets, requires

log δ0 =
log
(

− 2 log ε
α2q

)

4n

according to [APS15]. For HElib’s choice of 8 = α q and h = 64 and setting ε
constant, this expression simplifies to

log δ0 =
log q + Cd

4n
,

15

for some constant Cd. On the other hand, Lemma 3 simplifies to

log δ0 =
log q + 1

2 log n+ Cm

4n
, (3)

for some constant Cm < Cd.

For a circuit of depth L, BGV requires log q = L log n + O (L) [GHS12b, Ap-
pendix C.2]. Applying Lemma 2, we get that

lim
κ→∞

costm
costd

= lim
n→∞

costm
costd

=
2L

2L+ 1
,

where costd is the log cost of the standard dual attack, costm is the log cost
under Lemma 3 and κ the security parameter. The same analysis applies to any
constant h. Finally, when h = 2/3n, i.e. s ←$ B−, then the term 1/2 · log n
vanishes from (3), but Cm > Cd.

5 Sparse secrets

Recall that BKW-style algorithms consist of two stages or, indeed, sub-algorithms.
First, in the reduction stage, combinatorial methods are employed to transform
an LWE instance in dimension n into an instance of dimension 0 ≤ n′ ≤ n,
typically with increased noise level α. This smaller LWE instance is then, in the
solving stage, is solved using some form of exhaustive search over the secret.

Taking the same perspective on the dual attack, write A = [A0 | A1] with

A0 ∈ Z
m×(n−k)
q and A1 ∈ Z

m×k
q and find a short vector in the lattice

Λ = {y ∈ Z
m : y ·A0 ≡ 0 mod q}.

Each short vector y ∈ Λ produces a sample for an LWE instance in dimension k
and noise rate α′ = E[‖y‖] ·α. Setting k = 0 recovers the original dual attack. For
k > 0, we may now apply our favourite algorithm for solving small dimensional,
easy LWE instances. Applying exhaustive search implies log2 k < κ for s←$ B+
resp. log3 k < κ for s←$ B− when κ is the target level of security.

The case s←$ B±h permits much larger k by relaxing the conditions we place on
solving the k-dimensional instance. Instead of solving with probability one, we
solve with some probability pk and rerun the algorithm in case of failure.

For this, write A · P = [A0 | A1] and s · P = [s0 | s1] where P is a random
permutation matrix. Now, over the choice of P there is a good chance that
s1 = 0 and hence that A1 · s1 ≡ 0 mod q. That is, the right choice of P places all
non-zero components of s in the s0 part.

16

In particular, with probability 1− h/n a coordinate s(i) is zero. More generally,
picking k components of s at random will pick only components such that s(i) = 0
with probability

pk =

k−1
∏

i=0

(

1− h

n− i

)

=

(

n−h
k

)

(

n
k

) ≈
(

1− h

n

)k

.

Hence, simply treating k > 0 in the solving stage the same as k = 0 succeeds
with probability pk. The success probability can be amplified to close to one by
repeating the elimination and solving stages ≈ 1/pk times assuming we distinguish
with probability close to 1.

It is clear that the same strategy translates to the primal attack by simply
dropping random columns before running the algorithm. However, for the dual
attack, the following improvement can be applied. Instead of considering only
s1 = 0, perform exhaustive search over those solutions that occur with sufficiently
high probability. In particular, over the choice of P, the probability that s1
contains k − j components with s1,(i) = 0 and exactly j components with
s1,(i) 6= 0 is

pk,j =

(

n−h
k−j

)(

h
j

)

(

n
k

) ,

i.e. follows the hypergeometric distribution.

Now, assuming s←$ B−h , to check if any of those candidates for s1 is correct, we

need to compare
(

k
j

)

· 2j distributions against the uniform distribution mod q.

Thus, after picking a parameter ℓ we arrive at Algorithm 2 with cost:

1. m calls to BKZ-β in dimension n− k.
2. m ·∑ℓ

i=0

(

k
i

)

· 2i · i additions mod q to evaluate m samples on all possible
solutions up to weight ℓ.

Assuming m is chosen such that distinguishing LWE from uniform succeeds with
probability close to one, then Algorithm 2 succeeds with probability

∑ℓ
j=0 pk,j .

Asymptotic behaviour. We arrive at the following simple lemma:

Lemma 4. Let 0 ≤ h < n and d > 1 be constants, ph,d be some constant

depending on h and d, cn,α,q be the cost of solving LWE with parameters n, α, q

with probability ≥ 1− 2−p2
h,d Then, solving LWE in dimension n with s←$ B±h

costs O
(

cn−n/d,α,q

)

operations.

17

Data: m× n matrix A over Zq

Data: m vector c over Zq

Data: density parameter 0 ≤ ℓ ≤ 64
Data: dimension parameter 0 ≤ k ≤ n
P←$ n× n permutation matrices;

[A0 | A1]← A ·P with A0 ∈ Z
m×(n−k)
q ;

L← basis for scaled-dual lattice of A0;
for i← 0 to m− 1 do

yi ← a short vector in the row span of L;
e′i ← 〈yi, c〉;

end

if e′i follow discrete Gaussian distribution then

return ⊤;
end

foreach s′ in the set of
∑ℓ

i=0

(

k

i

)

· 2i candidate solutions do

for i← 0 to m− 1 do

e′′i = e′i + 〈yi ·A1, s
′〉;

end

if e′′i follow discrete Gaussian distribution then

return ⊤;
end

end

return ⊥;
Algorithm 2: Silke2: Sparse secrets in BKW-style SIS strategy for solving LWE.

Proof. Observe that ph,d = limn→∞
(

n−h
n/d

)

/
(

n
n/d

)

is a constant for any constant

0 ≤ h < n and d > 1. Hence, solving O(1/ph,d) = O(1) instances in dimension
n− n/d solves the instance in dimension n. ⊓⊔

Remark 4. Picking d = 2 we get limn→∞
(

n−h
n/2

)

/
(

n
n/2

)

= 2−h and an overall costs

of O
(

2h · cn/2,α,q
)

. This improves on exhaustive search, which costs O
(

2h ·
(

n
h

))

,

when cn/2,α,q ∈ o
((

n
h

))

.

6 Combined

Combining the strategies described in this work, we arrive at Algorithm 3 (Silke).
It takes a flag sparse which enables the sparse strategy of Algorithm 2. In this
case, we enforce that distinguishing LWE from uniform succeeds with probability
1− 2−κ when we guessed s′ correctly. Clearly, this parameter can be improved,
i.e. this probability reduced, but amplifying the success probability is relatively
cheap, so we forego this improvement.

18

Data: candidate LWE samples A, c ∈ Z
m×n
q × Z

m
q

Data: BKZ block sizes β, β′ ≥ 2
Data: target success probability ε
Data: sparse flag toggling sparse strategy
Data: scale factor c ≥ 1
Data: dimension parameter 0 ≤ k ≤ n, 0 when sparse is set
Data: density parameter 0 ≤ ℓ ≤ k, 0 when sparse is set
// distinguishing advantage per sample from β, β′

εd ← exp(−π(E[‖yi‖] · α)
2);

if sparse then

εt ← 1− 1/2κ; // for security parameter κ

r ← max
(

⌈log(1− ε)/ log(1−
∑ℓ

j=0 pk,j)⌉, 1
)

;

else

εt, r ← ε, 1;
end

// required number of samples for majority vote

m← ⌈2 log(2− 2 εt)/ log(1− 4 ε2d)⌉;
repeat r times

P←$ n× n permutation matrices;

[A0 | A1]← A ·P with A0 ∈ Z
m×(n−k)
q ;

L← basis for {(y,x/c) ∈ Z
m × (1/c · Z)n : y ·A0 ≡ x mod q};

L′ ← BKZ-β reduced basis for L;
for i← 0 to m− 1 do

U←$ a sparse unimodular matrix with small entries;
Li ← U · L′;
L′

i ← BKZ-β′ reduced basis for Li;
(wi,vi)← shortest row vector in L′

i;
e′i ← 〈wi, c〉;

end

if e′i follow discrete Gaussian distribution then

return ⊤;
end

foreach s′ in the set of
∑ℓ

i=1

(

k

i

)

· 2i candidate solutions do

for i← 0 to m− 1 do

e′′i = e′i + 〈wi ·A1, s
′〉;

end

if e′′i follow discrete Gaussian distribution then

return ⊤;
end

end

return ⊥;
Algorithm 3: Silke : (Sparse) BKW-style SIS Strategy for solving LWE

19

We give an implementation of Algorithm 3 for sparse = false in Appendix B. For
brevity, we skip the sparse = true case. We also tested our implementation on
several parameter sets:7

1. Considering an LWE instance with n = 100 and q ≈ 223, α = 8/q and h = 20,
we first BKZ-50 reduced the basis L for c = 16. This produced a short vector
w such that |〈w, c〉| ≈ 215.3. Then, running LLL 256 times, we produced
short vectors such that E[|〈wi, c〉|] = 215.7 and standard deviation 216.6.

2. Considering an LWE instance with n = 140 and q ≈ 240, α = 8/q and h = 32,
we first BKZ-70 reduced the basis L for c = 1. This took 64 hours and
produced a short vector w such that |〈w, c〉| ≈ 223.7, with E[|〈w, c〉|] ≈ 225.5

conditioned on |w|. Then, running LLL 140 times (each run taking about 50
seconds on average), we produced short vectors such that E[|〈wi, c〉|] = 226.0

and standard deviation 226.4 for 〈wi, c〉.
3. Considering the same LWE instance with n = 140 and q ≈ 240, α = 8/q

and h = 32, we first BKZ-70 reduced the basis L for c = 16. This took
65 hours and produced a short vector w such that |〈w, c〉| ≈ 224.7 after
scaling by c, cf. E[|〈w, c〉|] ≈ 224.8. Then, running LLL 140 times (each run
taking about 50 seconds on average), we produced short vectors such that
E[|〈wi, c〉|] = 225.5 and standard deviation 225.9 for 〈wi, c〉.

4. Considering again the same LWE instance with n = 140 and q ≈ 240,
α = 8/q and h = 32, we first BKZ-70 reduced the basis L for c = 1. This
took 30 hours and produced a short vector w such that |〈w, c〉| ≈ 225.2,
cf. E[|〈w, c〉|] ≈ 225.6. Then, running LLL 1024 times (each run taking
about 50 seconds on average), we produced 1016 short vectors such that
E[|〈wi, c〉|] = 225.8 and standard deviation 226.1 for 〈wi, c〉.

5. Considering an LWE instance with n = 180 and q ≈ 240, α = 8/q and
h = 48, we first BKZ-70 reduced the basis L for c = 8. This took 198 hours8

and produced a short vector w such that |〈w, c〉| ≈ 226.7, cf. E[|〈w, c〉|] ≈
225.9. Then, running LLL 180 times (each run taking about 500 seconds
on average), we produced short vectors such that E[|〈wi, c〉|] = 226.6 and
standard deviation 226.9 for 〈wi, c〉.

All our experiments match our prediction bounding the growth of the norms of
our vectors by a factor of two. Note, however, that in the fourth experiment 1
in 128 vectors found with LLL was a duplicate of previously discovered vector,
indicating that re-randomisation is not perfect. While the effect of this loss on the
running time of the overall algorithm is small, it highlights that further research
is required on the interplay of re-randomisation and lattice reduction.

7 All experiments on “strombenzin” with Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz.
8 We ran 49 BKZ tours until fplll’s auto abort triggered. After 16 tours the norm of
the then shortest vector was by a factor 1.266 larger than the norm of the shortest
vector found after 49 tours.

20

Applying Algorithm 3 to parameter choices from HElib and SEAL, we arrive at
the estimates in Table 1. These estimates were produced using the Sage [S+15]
code available at http://bitbucket.org/malb/lwe-estimator which optimises
the parameters c, ℓ, k, β to minimise the overall cost.

For the HElib parameters in Table 1 we chose the sparse strategy. Here, amortising
costs as in Section 3 did not lead to a significant improvement, which is why we
did not use it in these cases. All considered lattices have dimension < 2n. Hence,
one Ring-LWE sample is sufficient to mount these attacks. Note that this is less
than the dual attack as described in [GHS12a] would require (two samples).

For the SEAL parameter choices in Table 1, dimension n = 1024 requires two
Ring-LWE samples, larger dimensions only require one sample. Here, amortising
costs as in Algorithm 1 does lead to a modest improvement and is hence enabled.

Finally, we note that reducing q to ≈ 234 resp. ≈ 2560 leads to an estimated cost
of 80 bits for n = 1024 resp. n = 16384 for s←$ B−64. For s←$ B−, q ≈ 240 resp.
q ≈ 2660 leads to an estimated cost of 80 bits under the techniques described
here. In both cases, we assume σ ≈ 3.2.

Acknowledgements. We thank Kenny Paterson and Adeline Roux-Langlois
for helpful comments on an earlier draft of this work. We thank Hao Chen for
reporting an error in an earlier version of this work.

21

References

[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack
on overstretched NTRU assumptions - cryptanalysis of some FHE and
graded encoding schemes. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part I, volume 9814 of LNCS, pages 153–178. Springer,
Heidelberg, August 2016.

[ACF+15] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick,
and Ludovic Perret. On the complexity of the BKW algorithm on LWE.
Designs, Codes and Cryptography, 74:325–354, 2015.

[ACFP14] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Ludovic Perret.
Algebraic algorithms for LWE. Cryptology ePrint Archive, Report 2014/1018,
2014. http://eprint.iacr.org/2014/1018.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-
tographic primitives and circular-secure encryption based on hard learning
problems. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 595–618. Springer, Heidelberg, August 2009.

[ADPS15] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - a new hope. Cryptology ePrint Archive, Report
2015/1092, 2015. http://eprint.iacr.org/2015/1092.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - A new hope. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016., pages 327–343. USENIX Association, 2016.

[AFFP14] Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic
Perret. Lazy modulus switching for the BKW algorithm on LWE. In
Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 429–445.
Springer, Heidelberg, March 2014.

[AFG14] Martin R. Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy
of solving LWE by reduction to unique-SVP. In Hyang-Sook Lee and Dong-
Guk Han, editors, ICISC 13, volume 8565 of LNCS, pages 293–310. Springer,
Heidelberg, November 2014.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of
errors. In Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP
2011, Part I, volume 6755 of LNCS, pages 403–415. Springer, Heidelberg,
July 2011.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In 28th ACM STOC, pages 99–108. ACM Press, May 1996.

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of Learning with Errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take
off the ring! Practical, quantum-secure key exchange from LWE. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 16, pages 1006–1018. ACM Press, October
2016.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with
errors problem. In 2015 IEEE Symposium on Security and Privacy, pages
553–570. IEEE Computer Society Press, May 2015.

22

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, 27th SODA, pages 10–24. ACM-SIAM, January 2016.

[BG14] Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary LWE.
In Willy Susilo and Yi Mu, editors, ACISP 14, volume 8544 of LNCS, pages
322–337. Springer, Heidelberg, July 2014.

[BGPW16] Johannes A. Buchmann, Florian Göpfert, Rachel Player, and Thomas
Wunderer. On the hardness of LWE with binary error: Revisiting the hybrid
lattice-reduction and meet-in-the-middle attack. In David Pointcheval,
Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT
16, volume 9646 of LNCS, pages 24–43. Springer, Heidelberg, April 2016.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, editor,
ITCS 2012, pages 309–325. ACM, January 2012.

[BKW00] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning,
the parity problem, and the statistical query model. In 32nd ACM STOC,
pages 435–440. ACM Press, May 2000.

[BLLN13] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved
security for a ring-based fully homomorphic encryption scheme. In Martijn
Stam, editor, 14th IMA International Conference on Cryptography and
Coding, volume 8308 of LNCS, pages 45–64. Springer, Heidelberg, December
2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
Stehlé. Classical hardness of learning with errors. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
575–584. ACM Press, June 2013.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Safavi-Naini and Canetti [SNC12], pages 868–886.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS,
pages 97–106. IEEE Computer Society Press, October 2011.

[Che13] Yuanmi Chen. Réduction de réseau et sécurité concrète du chiffrement
complètement homomorphe. PhD thesis, Paris 7, 2013.

[CKH+16] Jung Hee Cheon, Jinsu Kim, Kyoo Hyung Han, Yongha Son, and Changmin
Lee. Practical post-quantum public key cryptosystem based on LWE. In
Seokhie Hong and Jong Hwan Park, editors, 19th Annual International
Conference on Information Security and Cryptology (ICISC), Lecture Notes
in Computer Science. Springer, 2016.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security
estimates. In Dong Hoon Lee and XiaoyunWang, editors, ASIACRYPT 2011,
volume 7073 of LNCS, pages 1–20. Springer, Heidelberg, December 2011.

[CN12] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security
estimates (full version). http://www.di.ens.fr/∼ychen/research/Full BKZ.

pdf, 2012.
[CS15] Jung Hee Cheon and Damien Stehlé. Fully homomophic encryption over

the integers revisited. In Oswald and Fischlin [OF15], pages 513–536.
[CS16] Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic

encryption scheme is best? In Kazue Sako, editor, CT-RSA 2016, volume
9610 of LNCS, pages 325–340. Springer, Heidelberg, February / March 2016.

[DTV15] Alexandre Duc, Florian Tramèr, and Serge Vaudenay. Better algorithms for
LWE and LWR. In Oswald and Fischlin [OF15], pages 173–202.

23

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key
exchange scheme based on the learning with errors problem. Cryptology
ePrint Archive, Report 2012/688, 2012. http://eprint.iacr.org/2012/688.

[FPL16] The FPLLL development team. FPLLL 5.0, a lattice reduction library, 2016.
Available at https://github.com/fplll/fplll.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
http://eprint.iacr.org/2012/144.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of
the AES circuit. In Safavi-Naini and Canetti [SNC12], pages 850–867.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the AES circuit. Cryptology ePrint Archive, Report 2012/099, 2012.
http://eprint.iacr.org/2012/099.

[GJS15] Qian Guo, Thomas Johansson, and Paul Stankovski. Coded-BKW: Solving
LWE using lattice codes. In Gennaro and Robshaw [GR15], pages 23–42.

[GR15] Rosario Gennaro and Matthew J. B. Robshaw, editors. CRYPTO 2015,
Part I, volume 9215 of LNCS. Springer, Heidelberg, August 2015.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 75–92. Springer, Heidelberg, August 2013.

[HG07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle
attack against NTRU. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 150–169. Springer, Heidelberg, August 2007.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise
lattice algorithms using dynamical systems. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 447–464. Springer, Heidelberg,
August 2011.

[HS14] Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 554–571. Springer, Heidelberg, August 2014.

[KF15] Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm
for LWE with applications to cryptography and lattices. In Gennaro and
Robshaw [GR15], pages 43–62.

[KF16] Paul Kirchner and Pierre-Alain Fouque. Comparison between subfield
and straightforward attacks on NTRU. IACR Cryptology ePrint Archive,
2016:717, 2016.

[KL15] Miran Kim and Kristin Lauter. Private genome analysis through homomor-
phic encryption. BMC Medical Informatics and Decision Making, 15(5):1–12,
2015.

[Laa15] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In Gennaro and Robshaw [GR15], pages 3–22.

[LCP16] Kim Laine, Hao Chen, and Rachel Player. Simple Encrypted Arithmetic
Library - SEAL (v2.1). Technical report, Microsoft Research, September
2016. MSR-TR-2016-68.

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An
update. In Ed Dawson, editor, CT-RSA 2013, volume 7779 of LNCS, pages
293–309. Springer, Heidelberg, February / March 2013.

[LN14] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic
encryption schemes FV and YASHE. In David Pointcheval and Damien

24

Vergnaud, editors, AFRICACRYPT 14, volume 8469 of LNCS, pages 318–
335. Springer, Heidelberg, May 2014.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for
LWE-based encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume
6558 of LNCS, pages 319–339. Springer, Heidelberg, February 2011.

[LP16] Kim Laine and Rachel Player. Simple Encrypted Arithmetic Library - SEAL
(v2.0). Technical report, Microsoft Research, September 2016. MSR-TR-
2016-52.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 1–23. Springer, Heidelberg, May 2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. Cryptology ePrint Archive, Report 2013/293, 2013.
http://eprint.iacr.org/2013/293.

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In Howard J. Karloff and Toniann Pitassi, editors, 44th ACM
STOC, pages 1219–1234. ACM Press, May 2012.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Daniel J.
Bernstein, Johannes Buchmann, and Erik Dahmen, editors, Post-Quantum
Cryptography, pages 147–191. Springer, Berlin, Heidelberg, New York, 2009.

[OF15] Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part I,
volume 9056 of LNCS. Springer, Heidelberg, April 2015.

[Pei09] Chris Peikert. Some recent progress in lattice-based cryptography. In Omer
Reingold, editor, TCC 2009, volume 5444 of LNCS, page 72. Springer,
Heidelberg, March 2009.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6), 2009.

[S+15] William Stein et al. Sage Mathematics Software Version 7.1. The Sage De-
velopment Team, 2015. Available at http://www.sagemath.org.

[Sch03] Claus-Peter Schnorr. Lattice reduction by random sampling and birthday
methods. In Helmut Alt and Michel Habib, editors, STACS 2003, 20th
Annual Symposium on Theoretical Aspects of Computer Science, Berlin,
Germany, February 27 - March 1, 2003, Proceedings, volume 2607 of Lecture
Notes in Computer Science, pages 145–156. Springer, 2003.

[Sho01] Victor Shoup. NTL: A library for doing number theory. http://www.shoup.
net/ntl/, 2001.

[SL12] Jayalal Sarma and Princy Lunawat. IITM-CS6840: Advanced Complexity
Theory — Lecture 11: Amplification Lemma. http://www.cse.iitm.ac.in/
∼jayalal/teaching/CS6840/2012/lecture11.pdf, 2012.

[SNC12] Reihaneh Safavi-Naini and Ran Canetti, editors. CRYPTO 2012, volume
7417 of LNCS. Springer, Heidelberg, August 2012.

[Wal15] Michael Walter. Lattice point enumeration on block reduced bases. In Anja
Lehmann and Stefan Wolf, editors, ICITS 15, volume 9063 of LNCS, pages
269–282. Springer, Heidelberg, May 2015.

[Wun16] Thomas Wunderer. Revisiting the hybrid attack: Improved analysis and
refined security estimates. Cryptology ePrint Archive, Report 2016/733,
2016. http://eprint.iacr.org/2016/733.

25

A Rerandomisation

Data: n×m matrix L
Data: density parameter d, default d = 3
Result: U · L where U is a sparse, unimodular matrix.
for i← 0 to 4 · n− 1 do

a←$ {0, n− 1};
b←$ {0, n− 1} \ {a};
L(b),L(a) ← L(a),L(b) ;

end
for a← 0 to n− 2 do

for i← 0 to d− 1 do
b←$ {a+ 1, n− 1};
s←$ {0, 1};
L(a) ← L(a) + (−1)s · L(b);

end

end
return L;

Algorithm 4: Rerandomisation strategy in the fplll library [FPL16].

B Implementation

-*- coding: utf -8 -*-

from sage.all import shuffle , randint , ceil , next_prime , log , cputime , mean , variance , set_random_seed , sqrt

from copy import copy

from sage.all import GF , ZZ

from sage.all import random_matrix , random_vector , vector , matrix , identity_matrix

from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler \

as DiscreteGaussian

from estimator.estimator import preprocess_params , stddevf

def gen_fhe_instance(n, q, alpha=None , h=None , m=None , seed=None):

"""

Generate FHE -style LWE instance

:param n: dimension

:param q: modulus

:param alpha: noise rate (default: 8/q)

:param h: hamming weight of the secret (default: 2/3n)

:param m: number of samples (default: n)

"""

if seed is not None:

set_random_seed(seed)

q = next_prime(ceil(q)-1, proof=False)

if alpha is None:

alpha = ZZ(8)/q

n, alpha , q = preprocess_params(n, alpha , q)

stddev = stddevf(alpha*q)

if m is None:

m = n

K = GF(q, proof=False)

A = random_matrix(K, m, n)

if h is None:

s = random_vector(ZZ , n, x=-1, y=1)

else:

S = [-1, 1]

26

s = [S[randint(0, 1)] for i in range(h)]

s += [0 for _ in range(n-h)]

shuffle(s)

s = vector(ZZ , s)

c = A*s

D = DiscreteGaussian(stddev)

for i in range(m):

c[i] += D()

return A, c

def dual_instance0(A):

"""

Generate dual attack basis.

:param A: LWE matrix A

"""

q = A.base_ring (). order ()

B0 = A.left_kernel (). basis_matrix (). change_ring(ZZ)

m = B0.ncols ()

n = B0.nrows ()

r = m-n

B1 = matrix(ZZ , r, n). augment(q*identity_matrix(ZZ , r))

B = B0.stack(B1)

return B

def dual_instance1(A, scale =1):

"""

Generate dual attack basis for LWE normal form.

:param A: LWE matrix A

"""

q = A.base_ring (). order ()

n = A.ncols ()

B = A.matrix_from_rows(range(0, n)). inverse (). change_ring(ZZ)

L = identity_matrix(ZZ , n). augment(B)

L = L.stack(matrix(ZZ , n, n). augment(q*identity_matrix(ZZ , n)))

for i in range(0, 2*n):

for j in range(n, 2*n):

L[i, j] = scale*L[i, j]

return L

def balanced_lift(e):

"""

Lift e mod q to integer such that result is between -q/2 and q/2

:param e: a value or vector mod q

"""

from sage.rings.finite_rings.integer_mod import is_IntegerMod

q = e.base_ring (). order ()

if is_IntegerMod(e):

e = ZZ(e)

if e > q//2:

e -= q

return e

else:

return vector(balanced_lift(ee) for ee in e)

def apply_short1(y, A, c, scale =1):

"""

Compute `y*A`, `y*c` where y is a vector in the integer row span of

``dual_instance(A)``

:param y: (short) vector in scaled dual lattice

:param A: LWE matrix

:param c: LWE vector

"""

m = A.nrows ()

y = vector(ZZ , 1/ZZ(scale) * y[-m:])

a = balanced_lift(y*A)

e = balanced_lift(y*c)

return a, e

def log_mean(X):

return log(mean([abs(x) for x in X]), 2)

27

def log_var(X):

return log(variance(X).sqrt(), 2)

def silke(A, c, beta , h, m=None , scale=1, float_type="double"):

"""

:param A: LWE matrix

:param c: LWE vector

:param beta: BKW block size

:param m: number of samples to consider

:param scale: scale rhs of lattice by this factor

"""

from fpylll import BKZ , IntegerMatrix , LLL , GSO

from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

if m is None:

m = A.nrows ()

L = dual_instance1(A, scale=scale)

L = IntegerMatrix.from_matrix(L)

L = LLL.reduction(L, flags=LLL.VERBOSE)

M = GSO.Mat(L, float_type=float_type)

bkz = BKZ2(M)

t = 0.0

param = BKZ.Param(block_size=beta ,

strategies=BKZ.DEFAULT_STRATEGY ,

auto_abort=True ,

max_loops =16,

flags=BKZ.VERBOSE|BKZ.AUTO_ABORT|BKZ.MAX_LOOPS)

bkz(param)

t += bkz.stats.total_time

H = copy(L)

import pickle

pickle.dump(L, open("L-%d-%d.sobj"%(L.nrows , beta), "wb"))

E = []

Y = set()

V = set()

y_i = vector(ZZ , tuple(L[0]))

Y.add(tuple(y_i))

E.append(apply_short1(y_i , A, c, scale=scale)[1])

v = L[0]. norm()

v_ = v/sqrt(L.ncols)

v_r = 3.2* sqrt(L.ncols - A.ncols ())*v_/scale

v_l = sqrt(h)*v_

fmt = u"{\"t\": %5.1fs , \"log(sigma)\": %5.1f, \"log(|y|)\": %5.1f, \"log(E[sigma]):\" %5.1f}"

print

print fmt%(t,

log(abs(E[-1]), 2),

log(L[0]. norm(), 2),

log(sqrt(v_r **2 + v_l**2), 2))

print

for i in range(m):

t = cputime ()

M = GSO.Mat(L, float_type=float_type)

bkz = BKZ2(M)

t = cputime ()

bkz.randomize_block (0, L.nrows , stats=None , density =3)

LLL.reduction(L)

y_i = vector(ZZ , tuple(L[0]))

l_n = L[0]. norm()

if L[0]. norm() > H[0]. norm ():

L = copy(H)

t = cputime(t)

Y.add(tuple(y_i))

V.add(y_i.norm ())

E.append(apply_short1(y_i , A, c, scale=scale)[1])

if len(V) >= 2:

fmt = u"{\"i\": %4d, \"t\": %5.1fs , \"log(|e_i |)\": %5.1f, \"log(|y_i |)\": %5.1f,"

fmt += u"\"log(sigma)\": (%5.1f ,%5.1f), \"log(|y|)\": (%5.1f ,%5.1f), |Y|: %5d}"

print fmt%(i+2, t, log(abs(E[-1]), 2), log(l_n , 2), log_mean(E), log_var(E), log_mean(V), log_var(V), len(Y))

return E

28

C Alternative Cost Models

[LP11]

n 1024 2048 4096 8192 16384

SEAL v2.0 80-bit

q 47.5 95.4 192.0 392.1 799.6

dual 107.9 97.4 88.0 82.0 78.8

small 80.5 81.1 78.2 76.4 75.9

HElib 80-bit

q 47.0 87.0 167.0 326.0 638.0

dual 111.5 112.4 111.5 111.2 111.2

sparse 58.1 62.6 65.4 69.2 71.5

HElib 128-bit

q 38.0 70.0 134.0 261.0 511.0

dual 162.0 162.1 160.1 159.1 159.5

sparse 76.3 81.9 85.8 86.2 90.3

[LN14,APS15], 8 − 16 BKZ tours

n 1024 2048 4096 8192 16384

SEAL v2.0 80-bit

q 47.5 95.4 192.0 392.1 799.6

dual 101.2 91.7 83.1 78.3 76.1

small 74.5 76.0 74.1 73.5 73.2

HElib 80-bit

q 47.0 87.0 167.0 326.0 638.0

dual 105.1 107.1 106.8 107.7 108.8

sparse 54.1 59.1 62.8 65.8 68.9

HElib 128-bit

q 38.0 70.0 134.0 261.0 511.0

dual 158.4 159.8 158.6 158.3 160.0

sparse 72.0 77.4 81.4 84.3 87.1

Table 3. Costs of dual attacks on HElib and SEAL v2.0 in the [LP11] cost model resp.
assuming SVP in dimension β costs 20.64β−28 operations as in [LN14] plugged into the
estimator from [APS15]; cf. Table 1.

29

