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AlcOa'act. In this paper, a dual of a given linear fractional program is defined and 
the weak, direct and converse duality theorems are proved. Both the primal and 
the dual are linear fractional programs. This duality tI-.cory leads to necessary and 
sufficient conditions for the optimality of a given feasible solution. A unmerical 
example is presented to illustrate tI'.e t~eory in this connection. The equivalence of 
Chames and Cooper du.~.l and Dinkelbaeh's parametric dual of a linear fractional 
program is also established. 
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I. Introduction 

In this paper a dual of  a given linear fractional program is defined and this dual is 
also a linear fractional program. Kanti  Swarup [11] has given a dual o f  a linear 
fractional program in which exists non-linearity in the constraints. Also, he did 
not prove the converse duality theorem. Kaska [7] has also given a dual o f  a 
linear fractional program which is constrained as the variable o f  the primal p rogram.  
Chadha  [2] has given a dual o f  a linear fractional program as a linear program 
which is nothing but  the dual o f  the linear program obtained by Charnes and 
Cooper transformation of  the original linear fractional program. Craven and 
Mond [4] have also given a dual of  a linear fractional program such that  both the 
primal and dual are linear fractional programs. Sharma and Swarup [10] have 
defined a dual o f  a linear fractional program in a different form but  keeping the 
primal and dual as linear fractional programs. 

Duals o f  nonlinear fractional programs have been proposed by Jagannathan [6], 
Bector [1], and Schaible [8,9]. The duals o f  Jagannathan and Schaible when 
applied to the linear fractional case give rise to the dual  proposed by Chad.ha [2]. 

In the dual  proposed by Sharma and Swarup [10], constant term does not  appear 
in both the numerator  and denominator of  the objective function o f  the pr imal .  
This paper extends their definition to the general case where constant term is per- 
mitted to appear in the numerator and denominator o f  the objective function and 
the constraints o f  the dual are also generalised. This extension demands the revi- 
sion o f  the proofs o f  the duality theorem. These proofs which make use o f  the 
results by Dinkelbach [5] are presented in this paper. This duality theory also 
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leads to a set of  necessary and sufficient conditions for a feasible solution to be 
optimal and these conditions are extensions of  Kuhn-Tucker necessary optimality 
conditions. 

In the last section, it is proved that Charnes and Cooper dual of  a linear frac- 
tional program as it linear program can be obtained independently by making use 
of the results proved by Dinkelbach [5] where the given linear fractional program- 
ming problem is converted into a parametric linear programming problem. 

2. Dual of  a linear fractional program 

Consider the primal finear fractional programming problem (P1) 

Maximise f ( x )  ----- (c* x + a)/(d: x + t )  

(P1) subject to Ax<_ b 

x~> o. (1) 

where A is an (m • n) matrix, c, d, x are (n • 1) vectors, b is an (m • 1) vector, 
a, fl are s^.alars and t d~enotes transpose. Let 

S = { x e R " i A x < < . b , x > ~ O } .  

Assume that S is nonempty and bounded and that f is not constant on S. Further 
assume that 

d t x + f l > O  for every x in R ~, x>/0.  

This can be achieved if all the components of  d are nonnegative and fl > 0. 
Detitte the dual (]31) corresponding to the primal (P1) as follows : 
Minimise g (u, v )  = (c t u + a) / (d  t u + t )  

subject to 

(D1) c" d t u - -  d' c* u - -  A t v <~ ad  - -  t ic (2) 

a. d t u  - -  fl. ct u + b~ v ~  O (3) 

u > / O ,  v > ~ o ,  u e R " ,  v c R  ~. 

Theorem 1 ( W e a k  duali ty)  

If x is any feasible solutio~ of (Pt) and (u, v) is any feasible solmion of (Di), then 

f ( x )  <~ g (u, v ) .  

P r o o f :  MnFdplyi~g (2) by x' 

c~ x .  d~ i: - -  dt x .  d U - -  x t  A~ v ~ a. dt x - -  fl.  Ct X (4) 

Multiplying (1) b~r v ~ and using (3) 

a. dt u - -  fl.  c t u<~ - -  b~ v <~ - -  x ~ A t v (5) 

Froth (4) and (5) 

c' x . d# u - -  d~ x �9 ct u + a �9 d: u - -  p " c '  u < a " dt x - -  f l  �9 ct x (6) 

i.e. (c '  x + a) (d'  u + t )  <~ (c'  u + a) (d  t x + fl). 
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Hence, 

c~x + a ctu + a 
f ( x )  = d ' x  + fl • d ' u  + fl = g (u ,  v).  

Corollary 1 : If  x is any feasible solution of  (P1) and (u, v) is any feasible solution 
of (D1) such that f ( x )  = g (u, v),  then x solves (P1) and (u, v) solves (D1). 
Proof is obvious. 

Theorem 2 (Direct  duality) 

If 2 solves (P1), then there exists (~, ~) which solves (Dl)  such that  f ( 8 )  = g (a, ~). 

Proof  Let 2 = (c'  X + a)/(d t ~ + fl). 

Consider the linear programming problem (P2). 

Maximise (c' x + a) -- 2 (d t x + fl) 

(P2) svbject to Ax<~ b, x>~ O. 

Dinkelbach [5] has proved that ~ also solves (P2) and the optimal value of  the objec- 
tive function in (P2) is 0. 

Consider the dual of  (P2) and denote it by (D2) 

Minimise b ' v  + a --  2~ 

(D2) subject to A t v ~> c -- 2d (7) 

v>~0,  v e / U '  

Let vl solve (D2). By duality theorem of  linear programming 

b' v l  + a -- ~/~ = 0. (8) 

Let a = ~  and v = F ~ ( d ' ~ + f l )  

c .  d ' a - - d ,  c t a - - A  t v  ~ c .  d ' , 2 - - d ,  c ' s  + fl) 

= c . d '  s - -  d . c' ~ --  c (d t ~ + fl) + d ( c '  e + a) 

= ad - -  tic. 

Multiplyirtg (8) by d '~  + fl, 

b * v + a ( d ' ~ + f l ) - - f l ( e t 2 + a ) = b  t v + a .  d t a - - f l ,  c ' a = 0 .  

Hence (a, v )  is a feasible solution o f  (D1).  

c f s + a c t a + a 
f ( 2 )  = at ~ + fl -- at fi -r fl = g (a, v--), 

(a, v)  solves (D1), because of  corollary. 

Theorem 3 (converse duality) 

I f  (a, ~) solves (D1) then there exists an 2 which solves (P1) such that f ( * ) =  

Proo f  : Let 2 = (c t a + a)/(d t a + fl). 
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Comider the linear programming problem (P3) 

Minimi~ (d  u + a) -- 2 (d t u +/~) 

(P3) subjectto c .  d t u -  d .  c t u -  A tv<~ a d -  flc 

a .  d t u - -  p �9 ctu + b l v ~ O  

u >~ O, v >~ O. 

Dinkelbach [5] has proved that (a, ~ also solves (P3) and the optimal value of  
the objective function in (P3) is 0. 

Consider the dual of (P3) and denote it by (D3) 

Maximise (-- ad + flc)' y + a -- ~.,8 

subject to 

(D3) ( - - c .  d' + d .  c ' ) ' y  + ( - - a d  + f i C ) l ~  c - -  2d (9) 

Ay -- blt<~ 0 (10) 

y>/O, /z>/O, y ~ / P ,  /z~R. 

Let 03, #) solve (I)3). 

By the duality theorem of linear programming 

- a a ' ~  + # .  c ' p  + a - , ~  = 0  ( l l~  

~ #  0. For if a = 0, from ([0) we get A~< 0, p >/0. Since S is nonempty, there 
exists art x on S such that Ax<~b, x>~O. Then A ( x + t p ) < ~ b ,  x + t # > ~ O  for 
every t > 0. Hence x + tp is in S for every t > 0 which is a contradiction i fp  # 0 
since S is bounded. 

If  both t~ = 0 and P = 0, then from (11), a -- 2B = 0. From (9), we get c ~> ),d. 
Let x be any feasible solution of (P1). We have c t x ~> gd* x and a = )~fl. Hence 
( c S x + a ) > ~ 2 ( d ' x + f l ) ,  i.e., f (x ) />2 .  But by Theorem 1, f ( x ) < . g ( a , v - )  = 2 .  
Therefore f ( x )  = 2 for every feasible solution x of (P1) which implies that f is a 
constant on S, a contradiction to our assumption. 

Therefore # > 0 .  Let �9 =P/~.  From (10), A g < b .  Also ~>~0. Hence ~ is a 
feasible solution of (P1). 

Applying complementary slackness theorem of linear programming to (P3) and 
(D3) we get 

c' 5 ' d ' a  -- d'3' c ' a  - - ) t  A ' ~  -- a �9 d ' ~  + fl . c'.~ ----0 (12) 

a# d' a - -  p #  c' ~ + # b' ~ = 0 (13) 

- - d ' a c ' ) + c * a d ' 5 , - - a #  dt f4+fl f~ c ' a - - c ' ~ + X d * ) ~  = 0  (I4) 

Adding (12), (13) and (15) 

es • d' a -- d' ~ c' a -- ad' 5' + tic'5' -t- af~ d' a -- flgc' a = 0 (16) 

(c' S' + (~) (d~ a + fl) = ( d  'p + pf~)(e' a + a). 
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Hence 

c '~  + a #  

d'.~ + fl~ 

Therefore 

c*[t + a 
d ' a  + [Y 
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c t s + a c ~ a + a 
f ( x ) = , a , ~ ? + f l - a  t a + f l  = g(a'fi)" 

Hence ~ solves (PI) because of the corollary. 

Note I : Converse duality theorem can be deduced directly from direct duality 
theorem. This can be seen by the following argument. (a, v--) solves (D1). Since 
S is compact, (P1) has a finite optimal solution say ~. By direct duality theorem, 
there exists (a~, ~ )  which solves (D1) such that f (~)  = g (ai, v~). Hence f ( x )  = 
g (a~, ~ )  = g (a, v-), 

Note 2 : We have not used the assumption that S is bounded in proving either 
the weak duality theorem or direct duality theorem. Even in the case of converse 
duality theorem, we can replace that  assumption by the following weaker assumption 

Ay<~ O, y ~> 0 implies y = O. 

3. Some remarks 

Remark l : T/le problem (P1) is ecluivalent to the problem (Q1) 

Maximise f (x) = (c' x + a x,+l)[(d e x + flx,+l) 

subject to A x ~  b 

x,+l ~< 1 

- -  x .+1 < - -  I 

x/>O, x.+~>~O, x e R " ,  x . + t e R .  

In this form the problem (PI) is in the same form as the (LFP) considered by 
Sharma and Swarup [10]. We can write the dual (El) of (QI) as per definition of 
dual by Sharma and Swarup as follows: 

Minimise (c' u + au,+O/(d' u + flu,,+1) 

subject to 

(El) c" d ' u - - d  r ' u - - A r v ~ ( a d - - f l c )  u.+~ (17) 

a �9 d ~ u - - p "  c ~ u  - -  v , ~  + v , , + ~ < O  (!8) 

b ' v  + v,.,+t -- v , + ~ < 0  (19) 

u,t~,um+t, om+t, Vra+2~O, U ~ R n ,  ~ 6 R ~ ,  Un+I, V~n+l, ~m+~ER.  

Pray feasible solution (u, v) of  (DI) gives rise to many feasible solutions (u', v ' ,  
�9 ~ j "  �9 u.+~, ~+t, v~.+2) of  (E l )wi th  u.+l = a ,  where a > 0  is any real number, 
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u' = a �9 u, v = a �9 v, andvm+l, vm+z are chosen suitably. Also thecorrespomling 
objective function values become all equal. Conversely any feasible solution (u', v ' ,  
u~+~, v~,+t, v,~+~ of  (El) with u~,+a ~ 0 gives rise to a feasible solution (u,~) of (DI) 
where u ---- u'/u'.+~, v = v ' /u ' ,+~ with the same objective function value. Feasible 
solutions of  (El) with u',+x = 0 do not correspond to any feasible solution of  (D1). 
Therefore our  dual (D1) is not equivalent to dual (El). There is a one to many 
correspondence between feasible solutions of (DI) and a subset of feasible solu- 
tions of  (El). Thus (DI) is a much simpler dual than (El) for the problem (PI). 

R e m a r k  2. The dual (RI) of  the dual (D1) is 

Maximise (c' x + a) / (d  t x + t )  

subject to 

(RI) c"  d'  z -- c"  d ~ x -- d"  c' z § d"  c t x <~ ( a d . -  t i c ) ( 2  - -  1) 

a . d t z - - a  �9 d t x - - f l  �9 d z + f l . c t x  <<. 0 

A z - -  ~.b ~-<~ 0 

(20) 

(21) 

(22) 

x , z ,  2>~ 0, x, z e R  ~, 2 e R .  

Any feasible solution x of  (PI) gives rise to a feasible solution of (RI) if  we take 
z = x and ), = 1. Further the objective function values are equal. But the con- 
verse is not true. Hence dual of  (Dl)  is not equivalent to (PI). 

R e m a r k  3. The above duality theory leads to necessary and sufficient conditions 
for a feasible solution x of  the primal to be optimal. From the proof of  direct 
duality theorem and weak duality theorem, it is easy to see that  a feasible solution 
x o f  (P1) is an optimal solution of  (PI) if and only if  there exists a v I> 0, v e R"  
such tha t  

c "  d t x - d " d x - -  A t  v ~. ad  - -  f lc (23) 

a �9 d ' x  --  f l"  c t x  '-- b ' v  .~ O. (24) 

Of  the above two conditions, condition (23) is the Kuhn-Tucker necessary opti- 
tr~lity ot~titiol~s for (P1). 

4. Nm~dmi example 

P r i m a l  p r o b l e m  

Maximi~ (3x~ + 3xa + 2x3 + 1)/(2xl + x~ + x3 + 1) 

subject to 2 x l  + 5x~ + xa <~ 2 

x l + 2 x ~ + 3 x a ~ <  3 

x l ,  x~, x3 > 1 0 .  

Solving, we get that  xl = 0, x~ = 3113, xn = 11113 is an optimal solution and the 
optimal value of  the objective function is 44]27. 
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Dual problem 

Minimise (3ut + 3u 2 + 2us + 1)/(2ut + u2 + us + 1) 

subject to 

- -  3u2 - -  us - -  2 v l  - -  v2  ~< - - 1  

3 u l + u 3 - - 5 v l - - 2 v  a~< - - 2  

u s - - u ~ - - v x - - 3 v 2 < ~  - - 1  

- -  ul - -  2u2 - -  us + 2 v l  + 3v2 <~ 0 

Ul, Uz, Ua, ~1, ~Z ~ 0. 

Solving thi~ we get that ul ----0, u~ ---- 3113, u, ----- 11]13, vx ---- 7113, v t  = 1/13 i s ' a a  
optimal solution and the optimal value of  the objective function is 44/27. Other 
optimal solutions a r e :  

u~ = 0 ,  u~ = 0 ,  u~ = 17]10, v~ = 7/10, v 2 = 1]10 and 

uz = 0 ,  u2 : 17/37, u3 = 0 ,  v~-----14137, v 2 =2]37.  

These results are as per the exgectations of  theorems 2 and 3. 

5. A n o t e  on  C h a m e s  a n d  C o o p e r  dua l  o f  a l i n e a r  f r a c t i o n a l  p r o g r a m  

Clarae~ and G~oper (1962) converted the linear fractional programming problem 

0'1) 

Maximise (c t x + a)/(d t x + fl) 

(P1) subject to A x  <. b , x  >~ 0 

under the assumption d t x + fl > 0 for every feasible x, into the linear program- 
ruing problem (P4) 

Maximise cSy + at 

(P4) subject to A y  --  bt <<. 0 

d r y  + pt  = 1 

y >~ O, t >~ O 

using the transformation 

t = 1/(d # x + 13), y = xt.  

The Charnes and Cooper dual of  (PI) is given by (D4) 
Minimise A 

(D4) subject to A' u + 2d~> c 

- b '  u + a 

u > 0, 2 unrestricted 

P . ( A ) - - ~  
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Dinkelbach (1967) converted (PI) into the parametric linear programming 
problem (Px) 

Maximise (c t x + a) -- 2 (dt x + t )  

(Px) subject to a x  <~ b, x >10. 
He proved that ~ solves (P1) and A is the optimal value of  the objective function 

in (P1) if and only if ~ solves (Px) and F(A) = 0, where F(A) is the maximum of 
the objective function of  (Px). He also proved that F(~) is a monotonic decreas- 
ing function of  L Therefore the problem (P1) can be viewed as the one in which 
we have to tind a g sueh that F(A) ----0 (i.e., to minimise ;t such that F(A) ~< 0). 
Considering the dual of  (Px) we get 

F(2) = m i n  { b ' u + a - -  Afl:Atu >~ c - -  )~d,u>~O}. 

Hence the dual of  the linear fractional programming problem (P1) is 

Minimise )~ 

subject to A t u ~> c -- 2d 

bt u + a --  gfl<~ O. 

u >~ 0, ,~ unrestricted. 

Hence Charnes and Cooper dual of a linear fractional program and Dinkelbaeh's 
parametric dual of  a linear fractional program are essentially the same. 
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