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Abstract

In this paper, we study the Riesz basis property of the generalized eigenfunctions of a one-
dimensional hyperbolic system in the energy state space. This characterizes the dynamic behavior of
the system, particularly the stability, in terms of its eigenfrequencies. This system is derived from a
thermoelastic equation with memory type. The asymptotic expansions for eigenvalues and
eigenfunctions are developed. It is shown that there is a sequence of generalized eigenfunctions,
which forms a Riesz basis for the Hilbert state space. This deduces the spectrum-determined growth
condition for the Cy-semigroup associated with the system, and as a consequence, the exponential
stability of the system is concluded.
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1. Introduction

In the last two decades, much effort has been made for the following heat equation
which incorporates the effect of thermomechanical coupling and the effect of inertia [1-5]:

U (X, 1) — ur(x, 1) + 00y(x,0) =0, O0<x<l1, t>0,
91(x7 Z)_kexx(xa t)+0(ux[(x, Z)Z 07 0<X<1, l>0a (11)
u(i,t)y =03, 1)=0, i=0,1, =0,

where u represents the displacement and 6 the absolute temperature. k>0 is the thermal
conductivity. The coupling constant o> 0 is generally small in comparison to unity and is a
measure of the mechanical-thermal coupling presenting in the system. The exponential
stability of the system (1.1) was first obtained in [5] by frequency domain multiplier
method. The spectral analysis in [2] shows that there are two branches of eigenvalues for
the system (1.1), which have the following asymptotic expansions:

on = —k(nm)® + 92 /k + O(n~?),
2

I = —;—k +inn + O(n™Y), (-2
where n are large positive integers. It is seen from (1.2) that the first branch of eigenvalues
is produced by the heat equation while the second one is associated with the elastic
vibration. Later, it was shown in [3] that there is a real eigenvalue for the system (1.1) that
is greater than the dominant eigenvalue of ““pure’ heat equation. Unfortunately, we do not
know whether the temperature in Eq. (1.1) is greater than or equal to that of “pure” heat
equation under the same initial values. In [4], a more profound result was proved that there
is a set of generalized eigenfunctions of the system (1.1), which forms a Riesz basis for the
state space. By Riesz basis property, the dynamic behavior of the system (1.1) can be
expressed in terms of its eigenfrequencies. Moreover, the Riesz basis property concludes
the spectrum-determined growth condition, one of the hard and important problems in the
stability analysis of infinite-dimensional systems. The spectrum-determined growth
condition implies automatically the exponential stability result of [5].

Eq. (1.1) was initially derived based on the Fourier’s law [1]. However, it was indicated
in [6] that the modeling system (1.1) does not take the memory effect into account, which
may exist in some materials particularly in low temperature. Moreover, the fact that the
thermal disturbance at one point affects the whole elastic body instantly, which is implied
by Eq. (1.1), is not physically acceptable [6]. To overcome these shortcomings, a memory
type model was derived in [6,7]:

U (X, 1) — auy(x, 1) + ab(x, ) =0, O<x<l1, >0,

0,(x,t) — (k% 0 )(x, 1) + outy(x, 1) =0, O<x<l1, >0,

u(i,t)=0@,1)=0, i=0,1, t=0, (.3)
u(x,0) = up(x), u(x,0) =ui(x), 0(x,0)=00(x), 0<x<l,

IT3RE

where a>0 is a constant. The sign “x”” denotes the convolution product:

(k * g)(x,1) = /Ot k(t — s)g(x, s)ds,
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where the kernel function k is assumed to be strongly positive-definite in the sense
that £'(1)<0,k"(r)>0 for any >0 and k decays exponentially to zero as time goes to
infinity [7].

Due to the appearance of the convolution product in the second equation, Eq. (1.3)
becomes a system of fully hyperbolic partial differential equations (see Eq. (1.4) or (1.8)
below), which is in sharp contrast to Eq. (1.1).

In this paper, we take

k() =ae™, >0,

where « is the same as that in Eq. (1.3) and ¢>0 is a constant. We will see that under this
assumption, system (1.3) becomes a time-invariant system. Actually, let

v(x, 1) = (k % 0,)(x, 1).
Then
vi(x, 1) = aby(x,t) — ev(x, 1), v(x,0)=0.
Therefore, Eq. (1.3) becomes
Uy(x, 1) — auy(x, 1) + ab(x, ) =0, O<x<l1, >0,
0:(x, 1) — ve(x, 1) + oy (x,6) =0, O<x<l1, >0,
v(x, 1) — aby(x,t) +ev(x,£) =0, O<x<l, t>0,
u(i,ty=03,t)=0, i=0,1, t=0,
u(x,0) = up(x), ulx,0) =u;(x), 0(x,0)=0)(x), v(x,0)=0, 0<x<l.

(1.4)
Differentiate the energy function of Eq. (1.4) that is given by
1! 1
E(n) =5 / {uf(x, 1)+ al(x, 1) + 0% (x, ) + 5u2(x, 1| dx, (1.5)
0

to yield

d s (!

ZE@) = _i/ v(x, 1) dx <0. (1.6)

d[ a Jo

So system (1.4) is actually a dissipative system. However, for the general kernel function k,
it was indicated in [6] that system (1.3) is weakly dissipative for the energy function

1
E(r) = % /0 [W2(x, 1) + au’(x, 1) + 0%(x, £)] dx. (1.7)

It is easy to show that system (1.4) associates with a Cy-semigroup solution (see Lemma
5.1). This clearly explains, from a different point of view, the weak solution of Eq. (1.3)
defined in [6] that v(x, ) = (k * 0,)(x, ?) is actually an independent state variable for system
(1.3). Moreover, it is shown in Theorem 5.2 that E(¢) decays exponentially:

E(f)< Moe~™ E(0)

for some positive constants My, wg, which is stronger than the result obtained in [6] for the
general kernel function k(¢), where the exponential stability was obtained for E(¢).
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Instead of studying Eq. (1.4), we consider, in this paper, the following system of
hyperbolic equations:
Wi(x, 1) — aw(x, 1) + aby(x, 1) =0, O0<x<l1, >0,
04(x, 1) — aOyx(x, 1) + awy, (X, 1) + €0,(x, 1) + caw,(x,1) =0, O0<x<l1, >0,
w(i,t) =031 =0, i=12 t=0,
w(x,0) = u1(x),  wi(x,0) = auj(x) — aby(x), 0<x<I,
0(x,0) = Op(x), 04(x,0) = —ouj(x), 0<x<l1

(1.8)

which is obtained by setting w = u, in (1.4). Due to the lack of dissipativity, the well-
posedness and stability analysis for system (1.8) is much harder than for Eq. (1.4). Notice
that for system (1.8), the energy function should be

1
F(H) = %/0 w2 + aw? + 07 + a0%] dx. 1.9)

To our knowledge, the study for system (1.8) is not available at all in literature.

The main objective of this paper is to study the Riesz basis property of the generalized
eigenfunctions of system (1.8) in the energy state space. This characterizes the dynamic
behavior of system (1.8), particularly the stability, in terms of its eigenfrequencies. The
remaining parts of the paper are organized as follows: the asymptotic expansions for
eigenvalues and eigenfunctions are developed in Sections 2 and 3. A remarkable feature is
found in Section 2 that the heat equation part and vibration equation part in system (1.8)
are symmetric under some similar transform. In Section 4, it is shown that there is a
sequence of generalized eigenfunctions of system (1.8), which forms a Riesz basis for the
Hilbert state space. This deduces the spectrum-determined growth condition and the
exponential stability for system (1.8). The similar results for system (1.4) are presented in
Section 5.

2. Asymptotic expansion of eigenvalues
To begin, we first formulate system (1.8) into an evolution equation in the state Hilbert
space # defined by
H=H0,1) x L*0,1) x H{(0,1) x L*0, 1),
equipped with the following inner product:
(Fr, Fa) = a{wi,wy) 2 + (1, da) 2 + a(0,05) 2 + (v1,02) 2
VE; = [wi, ¢, 0,01 € A, i=1,2,
where (-, -),2 denotes the usual inner product in L*(0, 1). Define a linear operator .« in # by
T
T ¢ T
) aw” — av

0 v
v ad” — ad’ — ev — goan’ v

€ D(4) (2.1)

> S =
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with
D(/) = # N (H*0,1) x H)0,1))*. (2.2)
Then Eq. (1.8) can be formulated as an evolution equation in J#:
% YO)=4Y(), Y0)=7Y, (2.3)
with Y (-, 2) = [w(-, 1), w,(-, 1), 0(, 1), 0,(-, )] and Yo = [uy, au — 06y, 0o, —oud;].

Lemma 2.1. Let </ be given in Egs. (2.1) and (2.2). Then /=" exists and is compact on H .
Therefore, a(/), the spectral set of </, consists of only isolated eigenvalues with finite
algebraic multiplicity.

Proof. Let g =[g,,95.93,94] € # . Solve o/ F = G for F = [w, ¢,0,v] € D(</), that is,

b=g, v=ys,

aw” — agy = ¢,

al" — ag\ — egy — eaw’ = gy,
w(0) = w(l) = 6(0) =6(1) =0,

to obtain, after a direct computation, that
¢ =4di, UV=(s,
1 2 /
w(x) = w(0)x + 5 o Jologh(s) + go ()] dsdt,

1
W(O0) = — [y Jylxgi() + a9 dsdr,
1
0(x) = 0'(0)x + P Jo Jolegi(s) + eg3(s) + eaw'(s) + g4(s)] dsdz,

1
0'0) =~ Iy Jo [0 (5) + £g3(s) + ew'(s) + g4(s)] ds .

Hence, F € D(</) and .«/~! exists. Moreover, the Sobolev embedding theorem implies that
/7" is compact on A, proving the required result. [J

Since a(.«/) consists of only eigenvalues, it is easily seen that .oZ(w, ¢, 6,v) = A(w, ¢, 0, v) if
and only if ¢ =/ w,v =10 and (w,0)#0 satisfies the following system of ordinary
differential equations:

2w(x) — aw’(x) 4+ 026/ (x) = 0,
220(x) 4+ o' (x) — a0 (x) + e20(x) + cow'(x) = 0, (2.4)
w(0) = 0(0) = 0(1) = w(1) = 0.

For brevity in notation, we set

r=A/-, a) = — >0, a) = i, a3 = —. (25)
a
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Then Eq. (2.4) becomes
P222w(x) — w'(x) + 241720 (x) = 0,
r2220(x) — 0 (x) + 2a,r/w (x) + axrA0(x) + azw'(x) = 0, (2.6)
w(0) = 6(0) = 6(1) = w(1) = 0.

Now, using the operator pencil method, we show that eigenvalue problem (2.6) has some
symmetric feature, which explains at least that when &¢=0, each eigenvalue is of
geometrical multiplicity two. Indeed, define a positive definite operator 4 in L*(0,1) by

Af =f", D) ={f € H*(0,1)|f(0) = f(1) = 0}.
Then Eq. (2.6) with its boundary conditions can be written as of the operator form:

LA)w,0)" =0 (2.7)
with

1/2
292 o (0 A4 /
LA)y=ri + 2ari
0 I Al/2 0
A 0 0 0 0 o0
— + arri tas\ ), .
0 4 0 I A 0

By making a transform to the above pencil ¥ via S given by (see [8])

N
S= ,
(1 1>

we obtain a new pencil Z(1) = §’1$(/1)§:

1/2
L) =r2 ro + 2a,1) A 0
0 1 0 —4'?
A4 0 1 , I I 1 AI/2 _AI/Z
"o 4) T2, ) T2 g _qn )

Let (f,9)" = §’1(w, 0)". Then
wO=F—-g.f+9. (f.9=50+w, 0—w). (2.8)
Obviously, Z,(A)(f,g)" = 0 if and only if Z(A)(w,0)" = 0. So, Eq. (2.6) is equivalent to
the problem of following:
PA2f(x) = [7(X) + 2arrf () + S asrd(f (x) + 9(x)) + 3 a3 (x) — g (x)) = 0,
PA2g(x) — g'(x) — 2a1r2g' (x) + S arA(f (x) + 9(x) + as(f'(x) = g (x)) =0, (2.9)
S0) = f(1) = g(0) = g(1) = 0.

It is apparent that if (f(x),g(x)) is a solution to (2.9) with respect to A, so is
(g(1 — x),f(1 — x)), which reflects the symmetry of the eigenvalue problem.

Proposition 2.1. Suppose (w(x), 0(x)) is a solution to Eq. (2.6). Then (—w(1 — x),0(1 — x)) is
also a solution to Eq. (2.6). In particular when ¢ = 0, 1 is exactly of geometrically two and the
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corresponding linearly independent solutions to Eq. (2.6) are (w,0) = (f(x),f(x)) and
(w,0) = (=f(1 = x),f(1 = x)), where | is the solution of
PA2f(x) = f1(x) + 2arr2f (x) = 0,
f(0)=/(1)=0.
Proof. The first part is obvious from Eq. (2.9). For the second part, notice that when
e =0, Eq. (2.9) becomes
P22 (x) = £ (x) + 2a1rif (x) = 0,
r222g(x) — ¢"'(x) = 2a1rAg (x) = 0, (2.11)
J(0) =f(1) = g(0) = g(1) = 0.
Obviously, Eq. (2.11) admits only two linearly independent solutions (f(x),0) and

(0,7(1 — x)), where f is a linearly independent solution to the equation of Eq. (2.10). The
proof is completed by noticing Eq. (2.8). O

(2.10)

With this preparation, we go back to Eq. (2.6). Set
wi=w, wa=w, 01=0, 0,=0, &x)=[w, w00, . (2.12)
Then Eq. (2.6) becomes

TP(x, ) ®(x) = ' (x) + A(L)P(x) = 0, )13
TR = w'd(0) + W'd(1) = 0, (2.13)
where
A(Q) = Ay — A — 124>, (2.14)
with
0 —1 0 0 0 0 0 0
y 0 0 0 0 y 0 0 0 2ar
1o o o -1 "o o o o |’
|0 —a3; 0 O 0 2aqir ayr O
0 0 0 0 1 000 0000
A‘r2000 W0'0010 Wl.oooo 215
1o 0 0 of 1o 0 0 0ol “11 00 0 (2.
0 0 2 0 00 00 0010

Summarizing, we have proved the following Theorem 2.1.

Theorem 2.1. Egq. (2.6) is equivalent to the boundary-value problem of the first order linear
system (2.13). Moreover, J. € a(f) if and only if Eq. (2.13) admits a nonzero solution.

The following technique due to Birkhoff and Langer [9] and Tretter [10,11] is standard
for the asymptotic expansion of characteristic determinant of Eq. (2.13), which has
been successfully used to the analysis of the system of coupled partial differential equations
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(see [12,13]). First, diagonalize the leading term 4*4, in Eq. (2.14). To this purpose, let

912611—\/61%-’—1, 92:a1+\/a%+1, 0; =—0,, 04=-0,. (2.16)

These are roots of the quadratic equations
0° —2a;0 —1=0 and 6*+2a0—-1=0

and all 6;,i = 1,2, 3,4 are distinct: 0 # 0, # 03 # 04. Next, define an invertible matrix P(4):

P()=S Pi® e C, 2#0 (2.17)
) = N RS 5 A 5 N
P(2)
where
0, -1
Pi(2): ” ” P : o 2.18
l( )_ 0],.2)»2 92},222 > 1 ()_ 92_01 _—01 L 5 ( . )
¥ rz/lz
-0 -1
rA rA 1 22
W 19y .
Py(2)= [_92’,%2 9,22 | P35 ()= -0 |0 1| (2.19)
ko 2)?
and
L —-I R RS
= == . 2.2
s [12 I, ]’ s 2[—[2 12] (2.20)
Here I, is a 2 x 2 identity matrix. It is easy to see that
Pr(%)
poy =" ST vazo.
“*) ) l(ﬂ)]
So the matrix P(Z) is a polynomial of degree 2 in A. Thirdly, define
P(x)=P {(A)P(x) (thatis &(x) = P(J)¥(x)) (2.21)
and TP(x, 2):= P(2)"'TP?(x, 2)P(4). Then we have
TPV (x) = V'(x) + AW P(x) = 0, (2.22)

where

A =P~ A P().
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Since
[0 —1 0 0
—r22 0 0 —2ayr}
ST'A()S = s7! S
0 0 0 -1
0 —ay = 2a1rh  —arh — 122 0
i 0 -1 0 1
=S! —r2)? —2ayri 1202 —2ayrl
0 -1 0 -1
—ayrA — 1272 —ay — 2a1rA  —aprd — 1272 asz + 2ayrl
) 0 -1 0 0
—12? = Sark  —2air) —La; —Laorl La
0 0 0 -1
—3ark —5a3 —Layrd =127 2airi +ia
it follows that
- P2
s |1 )
[ =6 —0, 0 0
as + asrd  ag + azri ag as
x (r*2%) 0 . 0, )
as as ag +ayrk  ag + asri
r Ord  —1
1 —Oiri 1
~0,-0, —0rh -1
0,12 1
—-91 —0> 0 0
as + asrd  ag + ari de ay
1o 0 0, 0,
as ae ae + arrd  as + asrl
—01rk — b —by —b; —b)
b —02rA + by by b
- —b —by 0,1, — by —b,
b by by 0112+ by

83
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with
ay= —%ay—1a30,, as=—1-2a\0,, as=—1La,—1as0,,
a7=—1—-2a10,, b= da , by e (2.23)
0, — 6,

.202 — 01.

Furthermore, we decompose Z(i) into a sum of dominant term and a low term as
following:

AQ) = — 24, — A (2.24)
with
o, by by by b
~ 702 ~ —b1 —b2 —b2 —bl
Al - —}"92 ’ AO - b] bz b2 b] (225)
—rb, —by —by —by —b
Theorem 2.2. Let 0# 4 € C, and let Z(/l) be defined by Egs. (2.24)—(2.25). Let
er@ﬂx
er@z).x
E(x,A)= COix , xel0,1]. (2.26)
o102
efrOI/lx

Then there exists a fundamental matrix solution E?’(x, A) to system (2.22) such that for all ).
with sufficiently large modulus, it has

P(x, 1) = [Po(x) + O HE(x, 2), (2.27)
where

';’\/o(x) =diag(e¥, e, e e 701Y). (2.28)
Proof. By Egs. (2.24) and (2.25), Assumption 2.1 of [10] on p. 135 is satisfied and hence

Theorem 2.2 of [10] on p.134 can be directly applied to our problem (see also [9]), that is to
say, there is a fundamental matrix solution to Eq. (2.22) which is of the following form

P(x, 7) = (Po(x) + 47 W1 (0) + 272 0(x, D)E(, 2),
where @(x, A) is uniformly bounded in 4 and x € [0, 1]. Since 21 is a diagonal matrix,

E(x,7) is a fundamental matrix solution to the dominant term of Eq. (2.22), in other
words,

E'(x,2) = A4, E(x, 7).
Next, compute 'f//(x, A) and —;1\(2)'/1\’()6, A) to yield

P(x,2) = (P)(x) + 27 W (x) + 2720 (x, 1) E(x, )

+ A WPo(x) + 2710 (x) + 2720(x, M)A E(x, 2)

and

—ADP(x, 7) = GAr + A)(Po(x) + 271 (x) + 2720 (x, D)E(X, 2).
Inserting the above two equations into Eq. (2.22) and equating the corresponding
coefficients of 1',i = 1,0, —1, we obtain

Po(x)A; — A Po(x) =0, (2.29)
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Py (x) — AgPo(x) + P1(x)A4; — AP (x) = 0. (2.30)

The proof will be accomplished if the leading order term ‘f/o(x) is given by Eq. (2.28).
Indeed, from Eq. (2.29) and the fact that 0;,i = 1,2,3,4 are distinct each other, we can
conclude that the matrix function ¥y(x) is of the diagonal form

Po(x) = diagly; (x), Yar(x), Y33(x), Yas(x)]

and its entries can be obtained by substituting them into Eq. (2.30) as

‘//,11 = by, lez = —bay, l//;3 = b2‘p33, %4 = —b1Yu, 2.31)
Po(0) = 1. '

Eq. (2.28) then follows. [

Corollary 2.1. Let l/I\’(x, A) given by Eq. (2.27) be a fundamental matrix solution to system
(2.22). Then

B(x, 1) = P()¥(x, 1) (2.32)

is a fundamental matrix solution to the first order linear system (2.13).

We are now in a position to estimate the asymptotics of the eigenvalues of .o7. Note that
the eigenvalues of .o/ are the zeros of the characteristic determinant:

A(%) = det(TR®(x, 7)), ieC, (2.33)

where the operator TR is given by Eq. (2.13) and 5(x, A) is any fundamental matrix to the
equation TP(x,)®(x) =0 [10]. The basic idea to get the asymptotic expansion of
eigenvalues is to substitute Egs. (2.27) and (2.32) into Eq. (2.33) by taking the boundary
conditions of Eq. (2.13) into account. Actually, since

TR® = WOP()P(0,2) + W'P()P(, 2), (2.34)
a simple computation, using Egs. (2.15) and (2.17), gives
(rA rd  —rd —ri]

Pi(2) —Py(4) Aorh A 1A
wop() = w? =
D="pGy Py 0 0 0|
000 0 0 |
000 0 0 7
Pi(A) —Py(d) 0 0 0 0
w'p(i) = w! =
@ Pi(A) P Ak —rh —rA

L rA A A rA

We shall carry out our estimations by using the following notation

[a], =a+ 0(™).
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Since @0(0) =1 and E(0,1) = I, a direct computation yields

0 0 0 0
0 0 0 0
[1]1e()1r/1+b1 [1]16()21‘/1—b2 _[1]16—()2M+b2 _[l]le—()lrl—bl ’

[1]1691r/l+b1 [1]1692rﬂfb2 [1]16702’%7%2 [1]1679”';'717'

W'P()PQ,2) = r

(0L 0L 0L -~
(L 0L [ [

0 0 0 0 |’
0 0 0 0

WOP()P(0, 1) = 1l

and hence

(11, (11, —[11 —[11;
(11 (11, (1], [1];
[l]le(%riﬂn [1]1662;171;2 _[1]16792r1+b2 _[l]lefé)lr).fbl

[l]leﬂlr/l-&-b] [1]1692&—1)2 [l]le—ﬁgrﬂﬁ-bz [l]le—le/l—b]

TRP(x, ) = 1)

Therefore,

A(Z) = det(TRP(x, 2))

0 0 -2 -2
4d 1 1 0 0 .
— 0( 91—
=rA"q det 0 0 —De=thritby  _ne—Oiri=h + (/()' )
eglr/l-}—bl e(’)zl‘),—bz e—H'_ﬂ’/’H—bz e—f)lr)v—bl

1 1 1 1
g4 1
- 4r i {det [691 ri+by e(gll‘/l—bz ‘| X le—92r1+bz 6—9] ri—b + 0(2 )}

- _ 4}"4/14{(@02”1_1)2 _ e()]i’i-ﬁ-bl) X (e—()]l‘/l—bl _ e—()zri-&-bz) + @(i_l)}
— _ 4r4/’\b4ef(01+02)r2+(b27b1){(6021‘/’»7172 _ e()lri+b1)2 + (5)(;‘71)}.
Theorem 2.3. Let A(A) be the characteristic determinant (2.33). Then A(X) has the following
asymptotic expansion:
AQQ) = —4r e OOt bmbiy 20y 1 (27}, (2.35)

where

Ay(2) =P — ghrh (2.36)

Theorem 2.4. Let .o/ be defined by Eqs. (2.1)—(2.2). Then the eigenvalues 1 of </ has the
following asymptotic expansions:

1

M=
T 0, = 0)r

(b1 + by + mi + 2kni) + O(k™"), keZ, (2.37)
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for |k|= N, where N is a large enough positive integer. Furthermore, by Egs. (2.5), (2.16), and
(2.23), it follows that

by + b, _—ag—%a3(01+92)_—a2—a1a3_ 2a + o

= = =— :< 0. 2.38
0, — O (0, — 61)2r 4(1 + a%)r 8a + 202 o< ( )
Therefore,
) 2a + o?
Reﬂk%_m8<0 as k — oo. (239)

Proof. By the asymptotic expansion of A4(4) in Theorem 2.3, we only need to find the
solution of the form

4(2) + 07 =0,
that is
e P — it (A7) = 0. (2.40)
Using the Rouché’s theorem, the roots of Eq. (2.40) can be estimated by those of
elrimhr _ it —
which are found explicitly as following:

k= ¥(bl + by + i + 2kmi), ke Z. (2.41)
(02 — Op)r

Thus, the roots of Eq. (2.40) satisfy

B (by + by + 7i + 2kni) + O(™Y), |k|=N, kez, (2.42)

1
~ (02— 0
where N is a sufficiently large positive integer. The proof is complete. [

Remark 2.1. Compared with Eq. (1.2), the asymptotics of eigenvalues of .o/ expressed in
Eq. (2.37) is completely different with that of usual thermoelastic system (1.1) in Eq. (1.2).
It is a typical property for hyperbolic systems.

3. The asymptotic expansion of eigenfunctions

Theorem 3.1. Let {/x,k € Z} be the eigenvalues of o/ with i being given in Eq. (2.37). Then
there are at least two families of the corresponding eigenfunctions

{ (T = [Wi(X), iewi(x), 0r(x), O (X)]; k € 7}, 3.0

(Zr = [~wi(l = x), —ewie(1 = x), 0c(1 — x), k0 (1 — X)]; k € Z},
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with the following asymptotic expressions:
W}c(x) — Qle(gll‘iA»+b1)x _ 926(92"7~k*b2)x + (/n(k*l),

Jwi(x) = le(()l";hk+bl)—\' _ le(()zr/lk—bz)x + (p(k—l),
r r

(3.2)

0;{()() — Ole(Olr/lkerl)x _ Oze(Ggrlkfbg)x + (ﬁ(kil),

2 0(x) = le(ﬂlrikﬁ-b])x _ le(ezrl/c—hz)x + (/ﬁ(k*l)
r r

Moreover, {[Wi, lxWi, Ok, A0k, k € Z} are approximately normalized in S in the sense that
there exist positive constants ¢ and c,, independent of k, such that for k € 7,

1 <IWill 2, 12ewiell 25 0% N 25 14Okl 12 < 2. (3.3)

Proof. A nontrivial solution ®(x) = [w;(x), w2(x), 01(x), 02(x)]" in Eq. (2.12) correspond-
ing to eigenvalue 4 can be obtained as follows: its jth component is the determinant of the
matrix determined by replacing one of the rows of TR® in (2.34) with ejT(<I>(x, 4)), and the
symmetric row with e/ so that its determinant is not identical to zero, where ¢; is the jth
column of the identity matrix.

Now let us to find the first nontrivial solution @(x) in which each component is
determined as the determinant by replacing the third row of 7T Rp in_Eq. (2.34) with
e/ (®(x, 4)), and the fourth row with e; . From Eq. (2.32), &(x, 1) = P(2)¥(x, 1) and hence
by Egs. (2.17)—(2.20)

Pi(4)
Pi(A)

—P>(4)

Pai) [Po(x) + G E(x, 4),

B(x, 1) = (3.4)

where Pj(4) and P,(4) are given in Eqgs. (2.18) and (2.19), respectively, and @o(x) and
E(x,/) are given in Egs. (2.28) and (2.26), respectively.
With the above interpretation, the first component of @(x) is thus given by

ri[1]; [,
wi(x, 4) = det r}[l]r )e‘Er]leblx M[l]rigjr];_bzx
11, |
0 0
—rA[1]; —r2[1],
rA1]; rA1],
—rA[1] e 0t 1] e Oishix
0 1
1 1 -1 -1
=7 det 1 1 . L e
elirxiabix  gbarxi—byx  _o—Ourxidbyx  _g—Oirxi—bix
0 0 0 1
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1 1 0

= 21323 det 0 0 1 + 007"
ef)]rx)u-&-b]x eﬂzrxi—bzx _e—()zrx/l-&-bzx

1 1
_n,323) _ —1
=214 { det Lelme]x eﬁzrx).—bzx + (0(/1 )}

— 2’,3/13{6(-)11')(}»4—171); _ eH:l‘le—bzx + @(2_1)},

or
2—1r—3}v—3‘vl(x’ ;L) — e()lrx/H—blx _ e()zrxl—bzx + @(/l—l) (35)

Similarly, the second component of @(x) is given by

rAll]; rAl1];
rA1], rAl1],
wa(x, 4) = det 0122 [1], I g,p2 22 [1], elrvimba
0 0
—ri[l]; —rA[1];
rA[, [,
0522 [1] e~ 0ritbax 12 12[1] e~ Oiri—bix
0 1
1 1 —1
= r*)*det 1 1 1 +0(7h

01 691 rxA+byx gzeezl'xiszx 026702;‘xi+b2x

! 1
Yy N -
=2r' { det [Oleel)‘xi+b]X 0, elarxi—bx + O(4 )}

— 2}’4/14{0169”’»1-”71)( _ ezeﬂgl‘xi—bzx + (O()\,_l)}.

Hence
27 0 (x, 4) = 010D g, elrimhax (3.6)
Furthermore,
rAll] rA[1], —r[1], —r[1]
rA[1]; rA[1], rA[1], rA[1];

wi(x, ) = det
3( ’ ) r/l[l]leﬁlrxbLb]x V;L[l]le(brxxlszx r)h[l]lefﬂzrxﬂrbzx r)v[l]lefﬂlrx/lfblx

0 0 0 1
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1 1 -1

=% det 1 1 1 + 0
e()]rlx-&-b]x eﬁgr/lx—bzx e—ﬁzr),x-ﬁ-ng

1 1
— 3:3) -
=2r'l { det [eﬁlrxi+b|x Oarxi—bax + (9(2 )}

— 27.3/13{6011')(/14—17136 _ engle—bzx + @(;L—l)}’

or
2—lr—3l—3w3(x’ /«L) — ef)lrxl-‘rb]x _ ef)zrx)v—ng + (9(/1—1) (37)
Finally,
], ],
rA[1]; rA[1];
wa(x, 4) = det )
4( ) 91r212[1]1691rx2+b1x 02r212[1]1602rx4—b3x
0 0
—rA[1], —r[1];
rill]; rall];
_92},2/12[1]le—Ozrxi.+b2x —01 r2/12[1]le—()1rx/1—b1x
0 1
1 1 -1
= 7% det 1 1 1 +007"
9] eﬁlrx),+b1x Hzeﬁzrxl—bzx _Qze—ﬁzrx),+b2x
4,4 I I —1
=2r"4 — det 616011‘x/1+171x 626021‘):).—172): + (9(}“ )
— 2’.4/14{91691rx/1+b1x o 02692)‘)6/17172)6 + ()(;()L—l)}.
Hence

27 wa(x, 2) = 01N — el (37, (3.8)

Based on above computations, Eq. (3.2) can then be deduced from Egs. (3.5)—(3.8) by
setting

wi(x, 4) wi(x, A)
’ = , O(x)= ) 3.9
W) 240 ) 240 )
Finally, it follows from Eqgs. (2.37)—(2.38) that
| —e 20
[ + 0k fori=1,2, (3.10)

20;u
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where
_ W taa
=40+ a)
These together with Eq. (3.2) yield Eq. (3.3). The proof is complete. [

4. Riesz basis property

In order to establish the Riesz basis property, we need the following modified classical
Bari’s Theorem [14].

Theorem 4.1. Let A be a densely defined discrete operator (that is, (2 — A)~" is compact for
some 1) in a Hilbert space H. Let {z,}7° be a Riesz basis for H. If there are an integer N >0
and a sequence of generalized eigenvectors {x,}y,, of A such that

o0
2
Z ”xn - Zn” <00

N+l
then

(1) There are an M >N and generalized eigenvectors {xno}{w of A such that {x,,g}{w U
{Xn}3741 forms a Riesz basis for H.

(i) Let {x,,o}{u U {xn}3741 correspond to eigenvalues {5,}7° of A. Then 6(A) = {0,}7°, where
a, is counted according to its algebraic multiplicity.

In order to apply Theorem 4.1 to .«/, we need a reference Riesz basis. This can be
obtained by collecting the eigenfunctions of .«7, a skew-adjoint operator in #

w1’ 0] T w1’
¢ aw” — o’ )
R4 = v € D(o#y) = D(A). 4.1)
0 v 0
v a@// _ a¢/ v

It is seen that ./ is just the operator .o/ with ¢ = 0. Lemma 2.1 tells us that .7, !exists and
is compact on .
By the definition of .o7,, the following result is immediate.

Lemma 4.1. Let </ be defined by (4.1). Then </ is a skew-adjoint operator in H# with
compact resolvents. Hence there exists a sequence of eigenfunctions of </, which forms an

orthogonal basis for . The asymptotic expressions for the eigenvalues and eigenfunctions of
o/ can be obtained directly by Egs. (2.37) and (3.2) with ¢ = 0.

Theorem 4.2. Let .o/ be defined by Eqs. (2.1) and (2.2). Then there exists a sequence of
generalized eigenfunctions of </ , which forms a Riesz basis for #. Moreover, any A € (/)
with |A| sufficiently large, A is semi-simple, that is, it has the same algebraic and geometric
multiplicities and the multiplicity is two.

Proof. Let {fk,gf;k}kez and {9, ék}kez be the eigenfunctions of .o/ and o7, respectively.
Z 1 has the asymptotic expansion (3.2) and ¥, has the asymptotic expansion (3.2) with
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¢ = 0. Obviously, there is a positive number N such that

Y NFe =%l =) 0k <oo.

lk|>N lk|>N

The same thing is true for {fﬁ?k}kez and {?k}kez.

Since {9, 9i}kez form an orthogonal basis for #, we conclude, from Theorem 4.1, that
{F k, 7 i }rey form a Riesz basis for # too. Moreover, since any eigenvalue of ./, is semi-
simple with multiplicity 2 claimed by Proposition 2.1, so is for eigenvalue of .o7 with large
module. [

The following fundamental result for system (1.8) is a direct consequence of Theorem 4.2
[15].

Corollary 4.1. o7 generates a Cy-semigroup e”' on H# and the spectrum-determined growth
condition holds true for e”', that is, s(o/) = w(/), where

s(o/) = sup{Re 1| 1 € a(/)}
is the spectral bound of </ and w(7) stands for the growth bound of e”'.

Theorem 4.3. The e”' is exponentially stable, that is to say, there exist constants
M>1,w>0 such that

eIl < Me"
or equivalently
F()<Me “"F(0),
where F is the energy function (1.9).

Proof. By the spectrum-determined growth condition claimed by Corollary 4.1 and the
asymptote for eigenvalues of (2.39), e is exponentially stable if and only if

Rel<0 Vi€ a(). 4.2)
Now suppose A# — ¢ and let u(x) = w(x)/4, v(x) = a/(A + £)0'(x). Then Eq. (2.4) becomes
22u(x) — au(x) + o (x) = 0,
A0(x) — V' (x) + e/ (x) = 0,
Jv(x) — ab'(x) + ev(x) = 0,
u(0) = u(1) = 0(0) = 6(1) = 0.

4.3)

Hence Eq. (4.3) is just the eigenvalue problem of Eq. (1.4). By Eq. (1.6), we get
immediately Eq. (4.2). O

5. Results for system (1.4)

In this section, we give the parallel results for system (1.4). As before, we first formulate
system (1.4) into an evolution equation in the state Hilbert space # defined by

H = H(0,1) x L}0,1) x L*0,1) x L*(0,1),
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equipped with the inner product: for any F; = [u;, ¢;,0;,vi] € #,i =1,2:

;o 1
(F1, Fa) > =aluy, uy) 2 + (P1, ba) 2 + (01, 02) 2 +E(01902>L2.

Define a linear operator o in H by

u T d) T u T
Y au” — ol 1) —
o - % D(</ 5.1
0 v/ _ O!(]ﬁ/ 0 € ( ) ( )
v al — ev v
with
D(/) = A N (H*(0,1) x H)0,1) x H)0,1) x H(0,1)). (5.2)

Then Eq. (1.4) can be formulated as an evolution equation in H
d —
EZ([) =dZ(), Z(0)=2Z (5.3)

with Z(-, ) =[u(-, 1), u,(-, 1), 0(-, 1), v(-, t)] and Zy = [uy, u1, 0y, 0].

Lemma 5.1. Let </ be given in Egs. (5.1) and (5.2). Then /" exists and is compact on .

Therefore o‘(g), the spectral set of </, consists of only isolated eigenvalues with finite
algebraic multiplicity. Moreover, </ is dissipative in A and thus </ generates a Co-semigroup
of contractions €' on K .

Proof. This is similar to the proof of Lemma 2.1 with

S 'G=F forany G=Igy,0,, 9594 € #,
where F = [u, ¢, 0,v] € D(7),

d=g1, v=0(0)+ag, + [; g;(s)ds,
1 "X S
0x) = = 0(0)x + = [ 29, + J; 95() dé + u(9)] d,

u(x) = u'(0)x + é Jo [20(s) + [; 92(8)dé]ds,

0 = 1 Ji o9y + J3 e9:(2) € + gy(s)] s,

1 s
w(0) = — I [0(s) + [i 92(8) dE]ds.
And it follows from Eq. (1.6) that for each F = [u, ¢, 0, v] € D(:+7),

—~ &
Re(o/F, F)~ = —5||v||§z<0,

"
proving the result. [
Proposition 5.1. ¢(o/) = a(;z?) + {—¢}.

Proof. Since 0 € p(&/)ﬂp(lz?) and for 1# — ¢, the eigenvalue problem (4.3) of o is
equivalent to the eigenvalue problem (2.4) of .o/. So the proof will be accomplished if we
can show that —¢ € o(.&/) but —e¢o(.o7). Firstly, we show that —¢ € o(.27). Let A = —e.
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Then Eq. (4.3) becomes
g2u(x) — au (x) + a0'(x) = 0,
e0(x) + v'(x) + aer/(x) = 0,
at(x) =0, u0)=u(l)=000)=0(1)=0.
The third equation above gives that § = 0 and hence
u(x) —au’'(x) =0, u(0)=u(l) =0,
v'(x) + aeu/(x) = 0,
which further yields that the above equations have nonzero solution
u=0, v=constant.

Hence —¢ € a(:Q?). Next, we show that —e¢ o(.7). Similarly, plugging 1 = —¢ into Eq. (2.4)
will lead

Ew(x) — aw”(x) — aed'(x) = 0,
£20(x) — aew'(x) — ab’(x) — e20(x) + gaw'(x) = 0, (5.4)
w(0) = 6(0) = 6(1) = w(1) =0,
which leads
ew(x) — aw”(x) — ael'(x) = 0,
ad’(x) =0, w(0)=0(0)=0(1)=w()=0.
The second equation with boundary conditions yields § = 0 and hence
Ew(x) —an’(x) =0, w(0)=w(l)=0.

A simple computation shows that the above equation admits only zero solution. So does
for Eq. (5.4). Therefore, —e¢ o(.o7). The proof is complete. [

Theorem 5.1. Let </ be defined by Egs. (5.1)«(5.2). Then the eigenvalues of </ have the
asymptotic expansions (2.37). And the corresponding eigenfunctions

{[uk(x): i/cuk(x)’ ek(x)’ l)k(x)], k € Z}
{[—ur(1 = x), = A (1 = x),06(1 — x), 0e(1 — X)]. k € Z}

have the following asymptotic expansions with j = 1,2,

Uj(x) = 10, e AHbY g eCorii=bx 4 k),
dte(x) = eOrZitb)x _ o(Oorke—ba)x @(kfl)’
Qk(x) — e(ﬁlrlzﬁbl)x _ e(f)zrlk—bz)x + @“(k_l),

u(x) = 10Ot _ 0, oOarki=bax 4 (1,

(5.5)

Moreover, {[uy, Axuy, Ok, vr], k € Z} are approximately normalized in A in the sense that
there exist positive constants ¢, and ¢,, independent of k, such that

E < Nl s Wil 2 10l 25 Nvill 2 < &2, Yk € Z. (5.6)
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Proof. Since from Proposition 5.1, a(.7) = O'(:S;Z) + {—¢}, the eigenvalues of </ have the
same asymptotic expansions (2.37). As for the second part, notice Eq. (3.2) and the
relationship between (4, u, 6,v) and (4, w, 0) that

w=u v= a0 ,
At+e
Eq. (5.5) can then be deduced from Egs. (3.5)—(3.8) by setting, respectively,
wi(x, A) wi(x, 1) wa(x, 1)
u(x) = , O0(x) = , v(x)=——"—. 5.7
) 2137 ) 21373 *) 203() +€)A} >-7)

Finally Eq. (5.6) is a direct consequence of Egs. (5.5) and (3.10). The proof is
complete. [

Theorem 5.2. Let </ be defined by Egs. (5.1)~(5.2). Then

() There exists a sequence of generalized eigenfunctions of o/, which forms a Riesz basis for
A . Moreover , for any A € a(f) with || sufficiently large, A is semi-simple, that is, it has
the same algebraic and geometric multiplicities and the multiplicity is two.

(i) The Co-semigroup e”! satisfies the spectrum-determined growth condition: s(;lf) =

w(.).
(iii) e;’; U is exponentially stable, that is to say, there exist constants Mo> 1, wq>0 such that
e < Mo
or equivalently
E(6) < Moe~ ™" E(0)
where E is the energy function (1.5).

Proof. The proof of (i) can follow exactly the same way as that for Theorem 4.2 by taking

w1’ ¢ T w1’

~ | ¢ au’ — al’ ¢ — —

oA = , v € D(/y) = D(). (5.8)
0 v — o 0
v al/ v

The ;z?o is just the operator <o/ with ¢ = 0. By noting the fact that the relationship between o

and ;z?() is the same as that .o/ and .7, we get through the proof. The details are omitted.
The proofs for (ii) and (iii) are similar to Corollary 4.1 and Theorem 4.3. The details are
omitted also. [
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