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Abstract

In this paper, we study the Riesz basis property of the generalized eigenfunctions of a one-

dimensional hyperbolic system in the energy state space. This characterizes the dynamic behavior of

the system, particularly the stability, in terms of its eigenfrequencies. This system is derived from a

thermoelastic equation with memory type. The asymptotic expansions for eigenvalues and

eigenfunctions are developed. It is shown that there is a sequence of generalized eigenfunctions,

which forms a Riesz basis for the Hilbert state space. This deduces the spectrum-determined growth

condition for the C0-semigroup associated with the system, and as a consequence, the exponential

stability of the system is concluded.
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1. Introduction

In the last two decades, much effort has been made for the following heat equation
which incorporates the effect of thermomechanical coupling and the effect of inertia [1–5]:

uttðx; tÞ � uxxðx; tÞ þ ayxðx; tÞ ¼ 0; 0oxo1; t40;

ytðx; tÞ � kyxxðx; tÞ þ auxtðx; tÞ ¼ 0; 0oxo1; t40;

uði; tÞ ¼ yði; tÞ ¼ 0; i ¼ 0; 1; tX0;

8><>: (1.1)

where u represents the displacement and y the absolute temperature. k40 is the thermal
conductivity. The coupling constant a40 is generally small in comparison to unity and is a
measure of the mechanical–thermal coupling presenting in the system. The exponential
stability of the system (1.1) was first obtained in [5] by frequency domain multiplier
method. The spectral analysis in [2] shows that there are two branches of eigenvalues for
the system (1.1), which have the following asymptotic expansions:

sn ¼ �kðnpÞ2 þ g2=k þ Oðn�2Þ;

ln ¼ �
g2

2k
� inpþ Oðn�1Þ;

8><>: (1.2)

where n are large positive integers. It is seen from (1.2) that the first branch of eigenvalues
is produced by the heat equation while the second one is associated with the elastic
vibration. Later, it was shown in [3] that there is a real eigenvalue for the system (1.1) that
is greater than the dominant eigenvalue of ‘‘pure’’ heat equation. Unfortunately, we do not
know whether the temperature in Eq. (1.1) is greater than or equal to that of ‘‘pure’’ heat
equation under the same initial values. In [4], a more profound result was proved that there
is a set of generalized eigenfunctions of the system (1.1), which forms a Riesz basis for the
state space. By Riesz basis property, the dynamic behavior of the system (1.1) can be
expressed in terms of its eigenfrequencies. Moreover, the Riesz basis property concludes
the spectrum-determined growth condition, one of the hard and important problems in the
stability analysis of infinite-dimensional systems. The spectrum-determined growth
condition implies automatically the exponential stability result of [5].
Eq. (1.1) was initially derived based on the Fourier’s law [1]. However, it was indicated

in [6] that the modeling system (1.1) does not take the memory effect into account, which
may exist in some materials particularly in low temperature. Moreover, the fact that the
thermal disturbance at one point affects the whole elastic body instantly, which is implied
by Eq. (1.1), is not physically acceptable [6]. To overcome these shortcomings, a memory
type model was derived in [6,7]:

uttðx; tÞ � auxxðx; tÞ þ ayxðx; tÞ ¼ 0; 0oxo1; t40;

ytðx; tÞ � ðk � yxxÞðx; tÞ þ auxtðx; tÞ ¼ 0; 0oxo1; t40;

uði; tÞ ¼ yði; tÞ ¼ 0; i ¼ 0; 1; tX0;

uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ u1ðxÞ; yðx; 0Þ ¼ y0ðxÞ; 0pxp1;

8>>>><>>>>: (1.3)

where a40 is a constant. The sign ‘‘�’’ denotes the convolution product:

ðk � gÞðx; tÞ ¼

Z t

0

kðt� sÞgðx; sÞds,
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where the kernel function k is assumed to be strongly positive-definite in the sense
that k0ðtÞo0; k00ðtÞ40 for any t40 and k decays exponentially to zero as time goes to
infinity [7].

Due to the appearance of the convolution product in the second equation, Eq. (1.3)
becomes a system of fully hyperbolic partial differential equations (see Eq. (1.4) or (1.8)
below), which is in sharp contrast to Eq. (1.1).

In this paper, we take

kðtÞ ¼ ae�et; t40,

where a is the same as that in Eq. (1.3) and e40 is a constant. We will see that under this
assumption, system (1.3) becomes a time-invariant system. Actually, let

vðx; tÞ :¼ðk � yxÞðx; tÞ.

Then

vtðx; tÞ ¼ ayxðx; tÞ � evðx; tÞ; vðx; 0Þ ¼ 0.

Therefore, Eq. (1.3) becomes

uttðx; tÞ � auxxðx; tÞ þ ayxðx; tÞ ¼ 0; 0oxo1; t40;

ytðx; tÞ � vxðx; tÞ þ auxtðx; tÞ ¼ 0; 0oxo1; t40;

vtðx; tÞ � ayxðx; tÞ þ evðx; tÞ ¼ 0; 0oxo1; t40;

uði; tÞ ¼ yði; tÞ ¼ 0; i ¼ 0; 1; tX0;

uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ u1ðxÞ; yðx; 0Þ ¼ y0ðxÞ; vðx; 0Þ ¼ 0; 0pxp1:

8>>>>>><>>>>>>:
(1.4)

Differentiate the energy function of Eq. (1.4) that is given by

EðtÞ ¼
1

2

Z 1

0

u2
t ðx; tÞ þ au2

xðx; tÞ þ y2ðx; tÞ þ
1

a
v2ðx; tÞ

� �
dx, (1.5)

to yield

d

dt
EðtÞ ¼ �

e
a

Z 1

0

v2ðx; tÞdxp0. (1.6)

So system (1.4) is actually a dissipative system. However, for the general kernel function k,
it was indicated in [6] that system (1.3) is weakly dissipative for the energy function

eEðtÞ ¼ 1

2

Z 1

0

½u2
t ðx; tÞ þ au2

xðx; tÞ þ y2ðx; tÞ�dx. (1.7)

It is easy to show that system (1.4) associates with a C0-semigroup solution (see Lemma
5.1). This clearly explains, from a different point of view, the weak solution of Eq. (1.3)
defined in [6] that vðx; tÞ ¼ ðk � yxÞðx; tÞ is actually an independent state variable for system
(1.3). Moreover, it is shown in Theorem 5.2 that EðtÞ decays exponentially:

EðtÞpM0e
�o0tEð0Þ

for some positive constants M0;o0, which is stronger than the result obtained in [6] for the
general kernel function kðtÞ, where the exponential stability was obtained for eEðtÞ.
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Instead of studying Eq. (1.4), we consider, in this paper, the following system of
hyperbolic equations:

wttðx; tÞ � awxxðx; tÞ þ ayxtðx; tÞ ¼ 0; 0oxo1; t40;

yttðx; tÞ � ayxxðx; tÞ þ awxtðx; tÞ þ eytðx; tÞ þ eawxðx; tÞ ¼ 0; 0oxo1; t40;

wði; tÞ ¼ yði; tÞ ¼ 0; i ¼ 1; 2; tX0;

wðx; 0Þ ¼ u1ðxÞ; wtðx; 0Þ ¼ au000ðxÞ � ay00ðxÞ; 0pxp1;

yðx; 0Þ ¼ y0ðxÞ; ytðx; 0Þ ¼ �au01ðxÞ; 0pxp1

8>>>>>><>>>>>>:
(1.8)

which is obtained by setting w ¼ ut in (1.4). Due to the lack of dissipativity, the well-
posedness and stability analysis for system (1.8) is much harder than for Eq. (1.4). Notice
that for system (1.8), the energy function should be

F ðtÞ ¼
1

2

Z 1

0

½w2
t þ aw2

x þ y2t þ ay2x�dx. (1.9)

To our knowledge, the study for system (1.8) is not available at all in literature.
The main objective of this paper is to study the Riesz basis property of the generalized

eigenfunctions of system (1.8) in the energy state space. This characterizes the dynamic
behavior of system (1.8), particularly the stability, in terms of its eigenfrequencies. The
remaining parts of the paper are organized as follows: the asymptotic expansions for
eigenvalues and eigenfunctions are developed in Sections 2 and 3. A remarkable feature is
found in Section 2 that the heat equation part and vibration equation part in system (1.8)
are symmetric under some similar transform. In Section 4, it is shown that there is a
sequence of generalized eigenfunctions of system (1.8), which forms a Riesz basis for the
Hilbert state space. This deduces the spectrum-determined growth condition and the
exponential stability for system (1.8). The similar results for system (1.4) are presented in
Section 5.

2. Asymptotic expansion of eigenvalues

To begin, we first formulate system (1.8) into an evolution equation in the state Hilbert
space H defined by

H :¼H1
0ð0; 1Þ � L2ð0; 1Þ �H1

0ð0; 1Þ � L2ð0; 1Þ,

equipped with the following inner product:

hF1;F2i :¼ ahw01;w
0
2iL2 þ hf1;f2iL2 þ ahy01; y

0
2iL2 þ hv1; v2iL2

8Fi ¼ ½wi;fi; yi; vi� 2H; i ¼ 1; 2,

where h�; �iL2 denotes the usual inner product in L2ð0; 1Þ. Define a linear operatorA inH by

A

w

f

y

v

26664
37775
>

¼

f

aw00 � av0

v

ay00 � af0 � ev� eaw0

266664
377775
>

8

w

f

y

v

26664
37775
>

2 DðAÞ (2.1)
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with

DðAÞ ¼H \ ðH2ð0; 1Þ �H1
0ð0; 1ÞÞ

2. (2.2)

Then Eq. (1.8) can be formulated as an evolution equation in H:

d

dt
Y ðtÞ ¼AY ðtÞ; Y ð0Þ ¼ Y 0 (2.3)

with Y ð�; tÞ ¼ ½wð�; tÞ;wtð�; tÞ; yð�; tÞ; ytð�; tÞ� and Y 0 ¼ ½u1; au000 � ay00; y0;�au01�.

Lemma 2.1. Let A be given in Eqs. (2.1) and (2.2). Then A�1 exists and is compact on H.
Therefore, sðAÞ, the spectral set of A, consists of only isolated eigenvalues with finite

algebraic multiplicity.

Proof. Let g ¼ ½g1; g2; g3; g4� 2H. Solve AF ¼ G for F ¼ ½w;f; y; v� 2 DðAÞ, that is,

f ¼ g1; v ¼ g3;

aw00 � ag03 ¼ g2;

ay00 � ag01 � eg3 � eaw0 ¼ g4;

wð0Þ ¼ wð1Þ ¼ yð0Þ ¼ yð1Þ ¼ 0;

8>>>><>>>>:
to obtain, after a direct computation, that

f ¼ g1; v ¼ g3;

wðxÞ ¼ w0ð0Þxþ
1

a

R x

0

R t

0
½ag03ðsÞ þ g2ðsÞ�dsdt;

w0ð0Þ ¼ �
1

a

R 1
0

R 1
0
½ag03ðsÞ þ g2ðsÞ�dsdt;

yðxÞ ¼ y0ð0Þxþ
1

a

R x

0

R t

0
½ag01ðsÞ þ eg3ðsÞ þ eaw0ðsÞ þ g4ðsÞ�dsdt;

y0ð0Þ ¼ �
1

a

R 1
0

R 1
0
½ag01ðsÞ þ eg3ðsÞ þ eaw0ðsÞ þ g4ðsÞ�dsdt:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
Hence, F 2 DðAÞ and A�1 exists. Moreover, the Sobolev embedding theorem implies that
A�1 is compact on H, proving the required result. &

Since sðAÞ consists of only eigenvalues, it is easily seen thatAðw;f; y; vÞ ¼ lðw;f; y; vÞ if
and only if f ¼ lw; v ¼ ly and ðw; yÞa0 satisfies the following system of ordinary
differential equations:

l2wðxÞ � aw00ðxÞ þ aly0ðxÞ ¼ 0;

l2yðxÞ þ alw0ðxÞ � ay00ðxÞ þ elyðxÞ þ eaw0ðxÞ ¼ 0;

wð0Þ ¼ yð0Þ ¼ yð1Þ ¼ wð1Þ ¼ 0:

8><>: (2.4)

For brevity in notation, we set

r :¼

ffiffiffi
1

a

r
; a1 :¼

a
2ar

40; a2 :¼
e

ar
; a3 :¼

ea
a
. (2.5)
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Then Eq. (2.4) becomes

r2l2wðxÞ � w00ðxÞ þ 2a1rly0ðxÞ ¼ 0;

r2l2yðxÞ � y00ðxÞ þ 2a1rlw0ðxÞ þ a2rlyðxÞ þ a3w0ðxÞ ¼ 0;

wð0Þ ¼ yð0Þ ¼ yð1Þ ¼ wð1Þ ¼ 0:

8><>: (2.6)

Now, using the operator pencil method, we show that eigenvalue problem (2.6) has some
symmetric feature, which explains at least that when e ¼ 0, each eigenvalue is of
geometrical multiplicity two. Indeed, define a positive definite operator A in L2ð0; 1Þ by

Af ¼ f 00; DðAÞ ¼ ff 2 H2ð0; 1Þ j f ð0Þ ¼ f ð1Þ ¼ 0g.

Then Eq. (2.6) with its boundary conditions can be written as of the operator form:

LðlÞðw; yÞ> ¼ 0 (2.7)

with

LðlÞ :¼ r2l2
I 0

0 I

 !
þ 2a1rl

0 A1=2

A1=2 0

 !

�
A 0

0 A

 !
þ a2rl

0 0

0 I

 !
þ a3

0 0

A1=2 0

 !
.

By making a transform to the above pencil L via eS given by (see [8])

eS ¼ I �I

I I

� �
,

we obtain a new pencil LsðlÞ ¼ eS�1LðlÞeS:
LsðlÞ :¼ r2l2

I 0

0 I

 !
þ 2a1rl

A1=2 0

0 �A1=2

 !

�
A 0

0 A

 !
þ

1

2
a2rl

I I

I I

 !
þ

1

2
a3

A1=2 �A1=2

A1=2 �A1=2

 !
.

Let ðf ; gÞ> ¼ eS�1ðw; yÞ>. Then
ðw; yÞ ¼ ðf � g; f þ gÞ; ðf ; gÞ ¼ 1

2
ðyþ w; y� wÞ. (2.8)

Obviously, LsðlÞðf ; gÞ
>
¼ 0 if and only if LðlÞðw; yÞ> ¼ 0. So, Eq. (2.6) is equivalent to

the problem of following:

r2l2f ðxÞ � f 00ðxÞ þ 2a1rlf 0ðxÞ þ 1
2

a2rlðf ðxÞ þ gðxÞÞ þ 1
2

a3ðf
0
ðxÞ � g0ðxÞÞ ¼ 0;

r2l2gðxÞ � g00ðxÞ � 2a1rlg0ðxÞ þ 1
2

a2rlðf ðxÞ þ gðxÞÞ þ 1
2

a3ðf
0
ðxÞ � g0ðxÞÞ ¼ 0;

f ð0Þ ¼ f ð1Þ ¼ gð0Þ ¼ gð1Þ ¼ 0:

8>><>>: (2.9)

It is apparent that if ðf ðxÞ; gðxÞÞ is a solution to (2.9) with respect to l, so is
ðgð1� xÞ; f ð1� xÞÞ, which reflects the symmetry of the eigenvalue problem.

Proposition 2.1. Suppose ðwðxÞ; yðxÞÞ is a solution to Eq. (2.6). Then ð�wð1� xÞ; yð1� xÞÞ is

also a solution to Eq. (2.6). In particular when e ¼ 0, l is exactly of geometrically two and the
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corresponding linearly independent solutions to Eq. (2.6) are ðw; yÞ ¼ ðf ðxÞ; f ðxÞÞ and

ðw; yÞ ¼ ð�f ð1� xÞ; f ð1� xÞÞ, where f is the solution of

r2l2f ðxÞ � f 00ðxÞ þ 2a1rlf 0ðxÞ ¼ 0;

f ð0Þ ¼ f ð1Þ ¼ 0:

(
(2.10)

Proof. The first part is obvious from Eq. (2.9). For the second part, notice that when
e ¼ 0, Eq. (2.9) becomes

r2l2f ðxÞ � f 00ðxÞ þ 2a1rlf 0ðxÞ ¼ 0;

r2l2gðxÞ � g00ðxÞ � 2a1rlg0ðxÞ ¼ 0;

f ð0Þ ¼ f ð1Þ ¼ gð0Þ ¼ gð1Þ ¼ 0:

8><>: (2.11)

Obviously, Eq. (2.11) admits only two linearly independent solutions ðf ðxÞ; 0Þ and
ð0; f ð1� xÞÞ, where f is a linearly independent solution to the equation of Eq. (2.10). The
proof is completed by noticing Eq. (2.8). &

With this preparation, we go back to Eq. (2.6). Set

w1 :¼w; w2 :¼w0; y1 :¼ y; y2 :¼ y0; FðxÞ :¼ ½w1;w2; y1; y2�>. (2.12)

Then Eq. (2.6) becomes

TDðx; lÞFðxÞ ¼ F0ðxÞ þ AðlÞFðxÞ ¼ 0;

TRF :¼W 0Fð0Þ þW 1Fð1Þ ¼ 0;

(
(2.13)

where

AðlÞ :¼A0 � lA1 � l2A2, (2.14)

with

A0 :¼

0 �1 0 0

0 0 0 0

0 0 0 �1

0 �a3 0 0

26664
37775; A1 :¼

0 0 0 0

0 0 0 2a1r

0 0 0 0

0 2a1r a2r 0

26664
37775,

A2 :¼

0 0 0 0

r2 0 0 0

0 0 0 0

0 0 r2 0

26664
37775; W 0 :¼

1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

26664
37775; W 1 :¼

0 0 0 0

0 0 0 0

1 0 0 0

0 0 1 0

26664
37775. (2.15)

Summarizing, we have proved the following Theorem 2.1.

Theorem 2.1. Eq. (2.6) is equivalent to the boundary-value problem of the first order linear

system (2.13). Moreover, l 2 sðAÞ if and only if Eq. (2.13) admits a nonzero solution.

The following technique due to Birkhoff and Langer [9] and Tretter [10,11] is standard
for the asymptotic expansion of characteristic determinant of Eq. (2.13), which has
been successfully used to the analysis of the system of coupled partial differential equations
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(see [12,13]). First, diagonalize the leading term l2A2 in Eq. (2.14). To this purpose, let

y1 ¼ a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ 1

q
; y2 ¼ a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ 1

q
; y3 ¼ �y2; y4 ¼ �y1. (2.16)

These are roots of the quadratic equations

y2 � 2a1y� 1 ¼ 0 and y2 þ 2a1y� 1 ¼ 0

and all yi; i ¼ 1; 2; 3; 4 are distinct: y1ay2ay3ay4. Next, define an invertible matrix PðlÞ:

PðlÞ :¼S
P1ðlÞ

P2ðlÞ

" #
; l 2 C; la0, (2.17)

where

P1ðlÞ :¼
rl rl

y1r2l
2 y2r2l

2

" #
; P�11 ðlÞ :¼

1

y2 � y1

y2
rl

�1

r2l2

�y1
rl

1

r2l2

2664
3775, (2.18)

P2ðlÞ :¼
rl rl

�y2r2l2 �y1r2l
2

" #
; P�12 ðlÞ :¼

1

y2 � y1

�y1
rl

�1

r2l2

y2
rl

1

r2l2

2664
3775, (2.19)

and

S :¼
I2 �I2

I2 I2

" #
; S�1 :¼

1

2

I2 I2

�I2 I2

" #
. (2.20)

Here I2 is a 2� 2 identity matrix. It is easy to see that

PðlÞ�1 ¼
P�11 ðlÞ

P�12 ðlÞ

" #
S�1 8la0.

So the matrix PðlÞ is a polynomial of degree 2 in l. Thirdly, define

CðxÞ :¼P�1ðlÞFðxÞ ðthat is FðxÞ ¼ PðlÞCðxÞÞ (2.21)

and bTDðx; lÞ :¼PðlÞ�1TDðx; lÞPðlÞ. Then we have

bTDðlÞCðxÞ ¼ C0ðxÞ þ bAðlÞCðxÞ ¼ 0, (2.22)

where

bAðlÞ :¼PðlÞ�1AðlÞPðlÞ.
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Since

S�1AðlÞS ¼ S�1

0 �1 0 0

�r2l2 0 0 �2a1rl

0 0 0 �1

0 �a3 � 2a1rl �a2rl� r2l2 0

2666664

3777775S

¼ S�1

0 �1 0 1

�r2l2 �2a1rl r2l2 �2a1rl

0 �1 0 �1

�a2rl� r2l2 �a3 � 2a1rl �a2rl� r2l2 a3 þ 2a1rl

2666664

3777775

¼

0 �1 0 0

�r2l2 � 1
2

a2rl �2a1rl� 1
2

a3 �1
2

a2rl 1
2

a3

0 0 0 �1

�1
2

a2rl �1
2

a3 �1
2

a2rl� r2l2 2a1rlþ 1
2

a3

2666664

3777775,

it follows that

bAðlÞ ¼ P�11 ðlÞ

P�12 ðlÞ

" #

�ðr2l2Þ

�y1 �y2 0 0

a4 þ a5rl a6 þ a7rl a6 a4

0 0 y2 y1

a4 a6 a6 þ a7rl a4 þ a5rl

2666664

3777775

¼
1

y2 � y1

y2rl �1

�y1rl 1

�y1rl �1

y2rl 1

2666664

3777775

�

�y1 �y2 0 0

a4 þ a5rl a6 þ a7rl a6 a4

0 0 y2 y1

a4 a6 a6 þ a7rl a4 þ a5rl

2666664

3777775

¼

�y1rl� b1 �b2 �b2 �b1

b1 �y2rlþ b2 b2 b1

�b1 �b2 y2rl� b2 �b1

b1 b2 b2 y1rlþ b1

2666664

3777775
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with

a4 :¼ � 1
2

a2 �
1
2

a3y1; a5 :¼ � 1� 2a1y1; a6 :¼ � 1
2

a2 �
1
2

a3y2;

a7 :¼ � 1� 2a1y2; b1 :¼
a4

y2 � y1
; b2 :¼

a6

y2 � y1
:

8<: (2.23)

Furthermore, we decompose bAðlÞ into a sum of dominant term and a low term as
following:bAðlÞ :¼ � l bA1 � bA0 (2.24)

with

bA1 :¼

ry1
ry2

�ry2
�ry1

26664
37775; bA0 :¼

b1 b2 b2 b1

�b1 �b2 �b2 �b1

b1 b2 b2 b1

�b1 �b2 �b2 �b1

26664
37775. (2.25)

Theorem 2.2. Let 0al 2 C, and let bAðlÞ be defined by Eqs. (2.24)–(2.25). Let

Eðx; lÞ :¼

ery1lx

ery2lx

e�ry2lx

e�ry1lx

26664
37775; x 2 ½0; 1�. (2.26)

Then there exists a fundamental matrix solution bCðx; lÞ to system (2.22) such that for all l
with sufficiently large modulus, it hasbCðx; lÞ ¼ ½bC0ðxÞ þ Oðl�1Þ�Eðx; lÞ, (2.27)

wherebC0ðxÞ :¼diagðeb1x; e�b2x; eb2x; e�b1xÞ. (2.28)

Proof. By Eqs. (2.24) and (2.25), Assumption 2.1 of [10] on p. 135 is satisfied and hence
Theorem 2.2 of [10] on p.134 can be directly applied to our problem (see also [9]), that is to
say, there is a fundamental matrix solution to Eq. (2.22) which is of the following formbCðx; lÞ ¼ ðbC0ðxÞ þ l�1 bC1ðxÞ þ l�2 eYðx; lÞÞEðx; lÞ,
where eYðx; lÞ is uniformly bounded in l and x 2 ½0; 1�. Since bA1 is a diagonal matrix,
Eðx; lÞ is a fundamental matrix solution to the dominant term of Eq. (2.22), in other
words,

E0ðx; lÞ ¼ l bA1Eðx; lÞ.

Next, compute bC0ðx; lÞ and � bAðlÞbCðx; lÞ to yieldbC0ðx; lÞ ¼ ðbC00ðxÞ þ l�1 bC01ðxÞ þ l�2 eYxðx; lÞÞEðx; lÞ

þ lðbC0ðxÞ þ l�1 bC1ðxÞ þ l�2 eYðx; lÞÞ bA1Eðx; lÞ

and

� bAðlÞbCðx; lÞ ¼ ðl bA1 þ bA0ÞðbC0ðxÞ þ l�1 bC1ðxÞ þ l�2 eYðx; lÞÞEðx; lÞ.
Inserting the above two equations into Eq. (2.22) and equating the corresponding
coefficients of li; i ¼ 1; 0;�1, we obtainbC0ðxÞ bA1 � bA1

bC0ðxÞ ¼ 0, (2.29)
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bC00ðxÞ � bA0
bC0ðxÞ þ bC1ðxÞ bA1 � bA1

bC1ðxÞ ¼ 0. (2.30)

The proof will be accomplished if the leading order term bC0ðxÞ is given by Eq. (2.28).
Indeed, from Eq. (2.29) and the fact that yi; i ¼ 1; 2; 3; 4 are distinct each other, we can
conclude that the matrix function bC0ðxÞ is of the diagonal formbC0ðxÞ :¼diag½c11ðxÞ; c22ðxÞ; c33ðxÞ; c44ðxÞ�

and its entries can be obtained by substituting them into Eq. (2.30) as

c011 ¼ b1c11; c022 ¼ �b2c22; c033 ¼ b2c33; c044 ¼ �b1c44;bC0ð0Þ ¼ I :

(
(2.31)

Eq. (2.28) then follows. &

Corollary 2.1. Let bCðx; lÞ given by Eq. (2.27) be a fundamental matrix solution to system

(2.22). Then

bFðx; lÞ :¼PðlÞbCðx; lÞ (2.32)

is a fundamental matrix solution to the first order linear system (2.13).

We are now in a position to estimate the asymptotics of the eigenvalues of A. Note that
the eigenvalues of A are the zeros of the characteristic determinant:

DðlÞ :¼ detðTRbFðx; lÞÞ; l 2 C, (2.33)

where the operator TR is given by Eq. (2.13) and bFðx; lÞ is any fundamental matrix to the
equation TDðx; lÞFðxÞ ¼ 0 [10]. The basic idea to get the asymptotic expansion of
eigenvalues is to substitute Eqs. (2.27) and (2.32) into Eq. (2.33) by taking the boundary
conditions of Eq. (2.13) into account. Actually, since

TRbF ¼W 0PðlÞbCð0; lÞ þW 1PðlÞbCð1; lÞ, (2.34)

a simple computation, using Eqs. (2.15) and (2.17), gives

W 0PðlÞ ¼W 0
P1ðlÞ �P2ðlÞ

P1ðlÞ P2ðlÞ

" #
¼

rl rl �rl �rl

rl rl rl rl

0 0 0 0

0 0 0 0

26664
37775,

W 1PðlÞ ¼W 1
P1ðlÞ �P2ðlÞ

P1ðlÞ P2ðlÞ

" #
¼

0 0 0 0

0 0 0 0

rl rl �rl �rl

rl rl rl rl

26664
37775.

We shall carry out our estimations by using the following notation

½a�1 :¼ aþ Oðl�1Þ.
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Since bC0ð0Þ ¼ I and Eð0; lÞ ¼ I , a direct computation yields

W 1PðlÞbCð1; lÞ ¼ rl

0 0 0 0

0 0 0 0

½1�1e
y1rlþb1 ½1�1e

y2rl�b2 �½1�1e
�y2rlþb2 �½1�1e

�y1rl�b1

½1�1e
y1rlþb1 ½1�1e

y2rl�b2 ½1�1e
�y2rlþb2 ½1�1e

�y1rl�b1

266664
377775,

W 0PðlÞbCð0; lÞ ¼ rl

½1�1 ½1�1 �½1�1 �½1�1

½1�1 ½1�1 ½1�1 ½1�1

0 0 0 0

0 0 0 0

26664
37775,

and hence

TRbFðx; lÞ ¼ rl

½1�1 ½1�1 �½1�1 �½1�1

½1�1 ½1�1 ½1�1 ½1�1

½1�1e
y1rlþb1 ½1�1e

y2rl�b2 �½1�1e
�y2rlþb2 �½1�1e

�y1rl�b1

½1�1e
y1rlþb1 ½1�1e

y2rl�b2 ½1�1e
�y2rlþb2 ½1�1e

�y1rl�b1

266664
377775.

Therefore,

DðlÞ ¼ detðTRbFðx; lÞÞ
¼ r4l4 det

0 0 �2 �2

1 1 0 0

0 0 �2e�y2rlþb2 �2e�y1rl�b1

ey1rlþb1 ey2rl�b2 e�y2rlþb2 e�y1rl�b1

2666664

3777775þ Oðl�1Þ

8>>>>><>>>>>:

9>>>>>=>>>>>;
¼ � 4r4l4 det

1 1

ey1rlþb1 ey2rl�b2

" #
�

1 1

e�y2rlþb2 e�y1rl�b1

" #
þ Oðl�1Þ

( )
¼ � 4r4l4fðey2rl�b2 � ey1rlþb1 Þ � ðe�y1rl�b1 � e�y2rlþb2 Þ þ Oðl�1Þg

¼ � 4r4l4e�ðy1þy2Þrlþðb2�b1Þfðey2rl�b2 � ey1rlþb1 Þ
2
þ Oðl�1Þg.

Theorem 2.3. Let DðlÞ be the characteristic determinant (2.33). Then DðlÞ has the following

asymptotic expansion:

DðlÞ ¼ �4r4l4e�ðy1þy2Þrlþðb2�b1ÞfD2
1ðlÞ þ Oðl�1Þg, (2.35)

where

D1ðlÞ :¼ ey2rl�b2 � ey1rlþb1 . (2.36)

Theorem 2.4. Let A be defined by Eqs. (2.1)–(2.2). Then the eigenvalues lk of A has the

following asymptotic expansions:

lk ¼
1

ðy2 � y1Þr
ðb1 þ b2 þ piþ 2kpiÞ þ Oðk�1Þ; k 2 Z, (2.37)
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for jkjXN, where N is a large enough positive integer. Furthermore, by Eqs. (2.5), (2.16), and

(2.23), it follows that

b1 þ b2

ðy2 � y1Þr
¼
�a2 �

1
2

a3ðy1 þ y2Þ

ðy2 � y1Þ
2r

¼
�a2 � a1a3

4ð1þ a2
1Þr
¼ �

2aþ a2

8aþ 2a2
eo0. (2.38)

Therefore,

Re lk !�
2aþ a2

8aþ 2a2
eo0 as k!1. (2.39)

Proof. By the asymptotic expansion of DðlÞ in Theorem 2.3, we only need to find the
solution of the form

D1ðlÞ þ Oðl�1Þ ¼ 0,

that is

ey2rl�b2 � ey1rlþb1 þ Oðl�1Þ ¼ 0. (2.40)

Using the Rouché’s theorem, the roots of Eq. (2.40) can be estimated by those of

ey2rl�b2 � ey1rlþb1 ¼ 0,

which are found explicitly as following:

~lk ¼
1

ðy2 � y1Þr
ðb1 þ b2 þ piþ 2kpiÞ; k 2 Z. (2.41)

Thus, the roots of Eq. (2.40) satisfy

lk ¼
1

ðy2 � y1Þr
ðb1 þ b2 þ piþ 2kpiÞ þ Oðk�1Þ; jkjXN ; k 2 Z, (2.42)

where N is a sufficiently large positive integer. The proof is complete. &

Remark 2.1. Compared with Eq. (1.2), the asymptotics of eigenvalues of A expressed in
Eq. (2.37) is completely different with that of usual thermoelastic system (1.1) in Eq. (1.2).
It is a typical property for hyperbolic systems.

3. The asymptotic expansion of eigenfunctions
Theorem 3.1. Let flk; k 2 Zg be the eigenvalues of A with lk being given in Eq. (2.37). Then

there are at least two families of the corresponding eigenfunctions

fFk ¼ ½wkðxÞ; lkwkðxÞ; ykðxÞ; lkykðxÞ�; k 2 Zg;

ffFk ¼ ½�wkð1� xÞ;�lkwkð1� xÞ; ykð1� xÞ; lkykð1� xÞ�; k 2 Zg;

(
(3.1)
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with the following asymptotic expressions:

w0kðxÞ ¼ y1eðy1rlkþb1Þx � y2eðy2rlk�b2Þx þ Oðk�1Þ;

lkwkðxÞ ¼
1

r
eðy1rlkþb1Þx �

1

r
eðy2rlk�b2Þx þ Oðk�1Þ;

y0kðxÞ ¼ y1eðy1rlkþb1Þx � y2eðy2rlk�b2Þx þ Oðk�1Þ;

lkykðxÞ ¼
1

r
eðy1rlkþb1Þx �

1

r
eðy2rlk�b2Þx þ Oðk�1Þ:

8>>>>>>><>>>>>>>:
(3.2)

Moreover, f½wk; lkwk; yk; lkyk�; k 2 Zg are approximately normalized in H in the sense that

there exist positive constants c1 and c2, independent of k, such that for k 2 Z,

c1pkw0kkL2 ; klkwkkL2 ; ky0kkL2 ; klkykkL2pc2. (3.3)

Proof. A nontrivial solution FðxÞ ¼ ½w1ðxÞ;w2ðxÞ; y1ðxÞ; y2ðxÞ�> in Eq. (2.12) correspond-
ing to eigenvalue l can be obtained as follows: its jth component is the determinant of the
matrix determined by replacing one of the rows of TRbF in (2.34) with e>j ð

bFðx; lÞÞ, and the
symmetric row with e>i so that its determinant is not identical to zero, where ej is the jth
column of the identity matrix.
Now let us to find the first nontrivial solution F1ðxÞ in which each component is

determined as the determinant by replacing the third row of TRbF in Eq. (2.34) with
e>j ð
bFðx; lÞÞ, and the fourth row with e>4 . From Eq. (2.32), bFðx; lÞ ¼ PðlÞbCðx; lÞ and hence

by Eqs. (2.17)–(2.20)

bFðx; lÞ ¼ P1ðlÞ �P2ðlÞ

P1ðlÞ P2ðlÞ

" #
½bC0ðxÞ þ Oðl�1Þ�Eðx; lÞ, (3.4)

where P1ðlÞ and P2ðlÞ are given in Eqs. (2.18) and (2.19), respectively, and bC0ðxÞ and
Eðx; lÞ are given in Eqs. (2.28) and (2.26), respectively.
With the above interpretation, the first component of F1ðxÞ is thus given by

w1ðx; lÞ ¼ det

rl½1�1 rl½1�1

rl½1�1 rl½1�1

rl½1�1e
y1rxlþb1x rl½1�1e

y2rxl�b2x

0 0

2666664
�rl½1�1 �rl½1�1

rl½1�1 rl½1�1

�rl½1�1e
�y2rxlþb2x �rl½1�1e

�y1rxl�b1x

0 1

3777775

¼ r3l3 det

1 1 �1 �1

1 1 1 1

ey1rxlþb1x ey2rxl�b2x �e�y2rxlþb2x �e�y1rxl�b1x

0 0 0 1

2666664

3777775þ Oðl�1Þ

8>>>>><>>>>>:

9>>>>>=>>>>>;
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¼ 2r3l3 det

1 1 0

0 0 1

ey1rxlþb1x ey2rxl�b2x �e�y2rxlþb2x

2664
3775þ Oðl�1Þ

8>><>>:
9>>=>>;

¼ 2r3l3 � det
1 1

ey1rxlþb1x ey2rxl�b2x

" #
þ Oðl�1Þ

( )
¼ 2r3l3fey1rxlþb1x � ey2rxl�b2x þ Oðl�1Þg,

or

2�1r�3l�3w1ðx; lÞ ¼ ey1rxlþb1x � ey2rxl�b2x þ Oðl�1Þ. (3.5)

Similarly, the second component of F1ðxÞ is given by

w2ðx; lÞ ¼ det

rl½1�1 rl½1�1

rl½1�1 rl½1�1

y1r2l
2
½1�1e

y1rxlþb1x y2r2l
2
½1�1e

y2rxl�b2x

0 0

2666664
�rl½1�1 �rl½1�1

rl½1�1 rl½1�1

y2r2l
2
½1�1e

�y2rxlþb2x y1r2l
2
½1�1e

�y1rxl�b1x

0 1

3777775

¼ r4l4 det

1 1 �1

1 1 1

y1ey1rxlþb1x y2ey2rxl�b2x y2e�y2rxlþb2x

2664
3775þ Oðl�1Þ

8>><>>:
9>>=>>;

¼ 2r4l4 � det
1 1

y1ey1rxlþb1x y2ey2rxl�b2x

" #
þ Oðl�1Þ

( )
¼ 2r4l4fy1ey1rxlþb1x � y2ey2rxl�b2x þ Oðl�1Þg.

Hence

2�1r�4l�4w2ðx; lÞ ¼ y1ey1rxlþb1x � y2ey2rxl�b2x. (3.6)

Furthermore,

w3ðx; lÞ ¼ det

rl½1�1 rl½1�1 �rl½1�1 �rl½1�1

rl½1�1 rl½1�1 rl½1�1 rl½1�1

rl½1�1e
y1rxlþb1x rl½1�1e

y2rxl�b2x rl½1�1e
�y2rxlþb2x rl½1�1e

�y1rxl�b1x

0 0 0 1

2666664

3777775
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¼ r3l3 det

1 1 �1

1 1 1

ey1rlxþb1x ey2rlx�b2x e�y2rlxþb2x

2664
3775þ Oðl�1Þ

8>><>>:
9>>=>>;

¼ 2r3l3 � det
1 1

ey1rxlþb1x ey2rxl�b2x

" #
þ Oðl�1Þ

( )
¼ 2r3l3fey1rxlþb1x � ey2rxl�b2x þ Oðl�1Þg,

or

2�1r�3l�3w3ðx; lÞ ¼ ey1rxlþb1x � ey2rxl�b2x þ Oðl�1Þ. (3.7)

Finally,

w4ðx; lÞ ¼ det

rl½1�1 rl½1�1

rl½1�1 rl½1�1

y1r2l
2
½1�1e

y1rxlþb1x y2r2l2½1�1e
y2rxl�b2x

0 0

2666664
�rl½1�1 �rl½1�1

rl½1�1 rl½1�1

�y2r2l
2
½1�1e

�y2rxlþb2x �y1r2l
2
½1�1e

�y1rxl�b1x

0 1

3777775

¼ r4l4 det

1 1 �1

1 1 1

y1ey1rxlþb1x y2ey2rxl�b2x �y2e�y2rxlþb2x

2664
3775þ Oðl�1Þ

8>><>>:
9>>=>>;

¼ 2r4l4 �det
1 1

y1ey1rxlþb1x y2ey2rxl�b2x

" #
þ Oðl�1Þ

( )
¼ 2r4l4fy1ey1rxlþb1x � y2ey2rxl�b2x þ Oðl�1Þg.

Hence

2�1r�4l�4w4ðx; lÞ ¼ y1ey1rxlþb1x � y2ey2rxl�b2x þ Oðl�1Þ. (3.8)

Based on above computations, Eq. (3.2) can then be deduced from Eqs. (3.5)–(3.8) by
setting

wðxÞ ¼
w1ðx; lÞ

2r4l4
; yðxÞ ¼

w3ðx; lÞ

2r4l4
. (3.9)

Finally, it follows from Eqs. (2.37)–(2.38) that

keyi rxlkkL2 ¼
1� e�2yim

2yim
þ Oðk�1Þ for i ¼ 1; 2, (3.10)
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where

m :¼
a2 þ a1a3

4ð1þ a2
1Þ
.

These together with Eq. (3.2) yield Eq. (3.3). The proof is complete. &

4. Riesz basis property

In order to establish the Riesz basis property, we need the following modified classical
Bari’s Theorem [14].

Theorem 4.1. Let A be a densely defined discrete operator (that is, ðl� AÞ�1 is compact for

some l) in a Hilbert space H. Let fzng
1
1 be a Riesz basis for H. If there are an integer NX0

and a sequence of generalized eigenvectors fxng
1
Nþ1 of A such thatX1

Nþ1

kxn � znk
2o1

then
(i)
 There are an M4N and generalized eigenvectors fxn0g
M
1 of A such that fxn0g

M
1 [

fxng
1
Mþ1 forms a Riesz basis for H.
(ii)
 Let fxn0g
M
1 [ fxng

1
Mþ1 correspond to eigenvalues fsng

1
1 of A. Then sðAÞ ¼ fsng

1
1 , where

sn is counted according to its algebraic multiplicity.
In order to apply Theorem 4.1 to A, we need a reference Riesz basis. This can be
obtained by collecting the eigenfunctions of A0, a skew-adjoint operator in H

A0

w

f

y

v

26664
37775
>

¼

f

aw00 � av0

v

ay00 � af0

266664
377775
>

8

w

f

y

v

26664
37775
>

2 DðA0Þ ¼ DðAÞ. (4.1)

It is seen that A0 is just the operator A with e ¼ 0. Lemma 2.1 tells us that A�10 exists and
is compact on H.

By the definition of A0, the following result is immediate.

Lemma 4.1. Let A0 be defined by (4.1). Then A0 is a skew-adjoint operator in H with

compact resolvents. Hence there exists a sequence of eigenfunctions of A0, which forms an

orthogonal basis for H. The asymptotic expressions for the eigenvalues and eigenfunctions of

A0 can be obtained directly by Eqs. (2.37) and (3.2) with e � 0.

Theorem 4.2. Let A be defined by Eqs. (2.1) and (2.2). Then there exists a sequence of

generalized eigenfunctions of A, which forms a Riesz basis for H. Moreover, any l 2 sðAÞ
with jlj sufficiently large, l is semi-simple, that is, it has the same algebraic and geometric

multiplicities and the multiplicity is two.

Proof. Let fFk;fFkgk2Z and fGk; eGkgk2Z be the eigenfunctions of A and A0, respectively.
Fk has the asymptotic expansion (3.2) and Gk has the asymptotic expansion (3.2) with
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e � 0. Obviously, there is a positive number N such thatX
jkj4N

kFk � Gkk
2 ¼

X
jkj4N

Oðk�2Þo1.

The same thing is true for ffFkgk2Z and feGkgk2Z.
Since fGk; eGkgk2Z form an orthogonal basis for H, we conclude, from Theorem 4.1, that
fFk;fFkgk2Z form a Riesz basis for H too. Moreover, since any eigenvalue of A0 is semi-
simple with multiplicity 2 claimed by Proposition 2.1, so is for eigenvalue of A with large
module. &

The following fundamental result for system (1.8) is a direct consequence of Theorem 4.2
[15].

Corollary 4.1. A generates a C0-semigroup eAt on H and the spectrum-determined growth

condition holds true for eAt, that is, sðAÞ ¼ oðAÞ, where

sðAÞ :¼ supfRe l j l 2 sðAÞg

is the spectral bound of A and oðAÞ stands for the growth bound of eAt.

Theorem 4.3. The eAt is exponentially stable, that is to say, there exist constants

M41;o40 such that

keAtkpMe�ot

or equivalently

F ðtÞpMe�otF ð0Þ,

where F is the energy function (1.9).

Proof. By the spectrum-determined growth condition claimed by Corollary 4.1 and the
asymptote for eigenvalues of (2.39), eAt is exponentially stable if and only if

Re lo0 8l 2 sðAÞ. (4.2)

Now suppose la� e and let uðxÞ ¼ wðxÞ=l; vðxÞ ¼ a=ðlþ eÞy0ðxÞ. Then Eq. (2.4) becomes

l2uðxÞ � au00ðxÞ þ ay0ðxÞ ¼ 0;

lyðxÞ � v0ðxÞ þ alu0ðxÞ ¼ 0;

lvðxÞ � ay0ðxÞ þ evðxÞ ¼ 0;

uð0Þ ¼ uð1Þ ¼ yð0Þ ¼ yð1Þ ¼ 0:

8>>>><>>>>: (4.3)

Hence Eq. (4.3) is just the eigenvalue problem of Eq. (1.4). By Eq. (1.6), we get
immediately Eq. (4.2). &

5. Results for system (1.4)

In this section, we give the parallel results for system (1.4). As before, we first formulate
system (1.4) into an evolution equation in the state Hilbert space fH defined byfH :¼H1

0ð0; 1Þ � L2ð0; 1Þ � L2ð0; 1Þ � L2ð0; 1Þ,
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equipped with the inner product: for any Fi ¼ ½ui;fi; yi; vi� 2H; i ¼ 1; 2:

hF1;F 2ieH :¼ ahu01; u
0
2iL2 þ hf1;f2iL2 þ hy1; y2iL2 þ

1

a
hv1; v2iL2 .

Define a linear operator fA in fH by

fA
u

f

y

v

26664
37775
>

¼

f

au00 � ay0

v0 � af0

ay0 � ev

26664
37775
>

8

u

f

y

v

26664
37775
>

2 DðfAÞ (5.1)

with

DðfAÞ ¼ fH \ ðH2ð0; 1Þ �H1
0ð0; 1Þ �H1

0ð0; 1Þ �Hð0; 1ÞÞ. (5.2)

Then Eq. (1.4) can be formulated as an evolution equation in fH:

d

dt
ZðtÞ ¼fAZðtÞ; Zð0Þ ¼ Z0 (5.3)

with Zð�; tÞ :¼ uð�; tÞ; utð�; tÞ; yð�; tÞ; vð�; tÞ½ � and Z0 ¼ ½u0; u1; y0; 0�.

Lemma 5.1. Let fA be given in Eqs. (5.1) and (5.2). Then fA�1 exists and is compact on fH.

Therefore sðfAÞ, the spectral set of fA, consists of only isolated eigenvalues with finite

algebraic multiplicity. Moreover,fA is dissipative in fH and thusfA generates a C0-semigroup

of contractions e
eAt on fH.

Proof. This is similar to the proof of Lemma 2.1 withfA�1G ¼ F for any G ¼ ½g1; g2; g3; g4� 2
fH,

where F ¼ ½u;f; y; v� 2 DðfAÞ,
f ¼ g1; v ¼ vð0Þ þ ag1 þ

R x

0 g3ðsÞds;

yðxÞ ¼
e
a

vð0Þxþ
1

a

R x

0 eag1 þ
R s

0 eg3ðxÞdxþ g4ðsÞ
� �

ds;

uðxÞ ¼ u0ð0Þxþ
1

a

R x

0 ayðsÞ þ
R s

0 g2ðxÞdx
� �

ds;

vð0Þ ¼ �
1

e

R 1
0 eag1 þ

R s

0 eg3ðxÞdxþ g4ðsÞ
� �

ds;

u0ð0Þ ¼ �
1

a

R 1
0 ayðsÞ þ

R s

0 g2ðxÞdx
� �

ds:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
And it follows from Eq. (1.6) that for each F ¼ ½u;f; y; v� 2 DðfAÞ,

RehfAF ; FieH ¼ � e
a
kvk2

L2p0,

proving the result. &

Proposition 5.1. sðAÞ ¼ sðfAÞ þ f�eg.
Proof. Since 0 2 rðAÞ \ rðfAÞ and for la� e, the eigenvalue problem (4.3) of fA is
equivalent to the eigenvalue problem (2.4) of A. So the proof will be accomplished if we
can show that �e 2 sðfAÞ but �eesðAÞ. Firstly, we show that �e 2 sðfAÞ. Let l ¼ �e.
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Then Eq. (4.3) becomes

e2uðxÞ � au00ðxÞ þ ay0ðxÞ ¼ 0;

eyðxÞ þ v0ðxÞ þ aeu0ðxÞ ¼ 0;

ay0ðxÞ ¼ 0; uð0Þ ¼ uð1Þ ¼ yð0Þ ¼ yð1Þ ¼ 0:

8><>:
The third equation above gives that y � 0 and hence

e2uðxÞ � au00ðxÞ ¼ 0; uð0Þ ¼ uð1Þ ¼ 0;

v0ðxÞ þ aeu0ðxÞ ¼ 0;

(
which further yields that the above equations have nonzero solution

u � 0; v ¼ constant.

Hence �e 2 sðfAÞ. Next, we show that �eesðAÞ. Similarly, plugging l ¼ �e into Eq. (2.4)
will lead

e2wðxÞ � aw00ðxÞ � aey0ðxÞ ¼ 0;

e2yðxÞ � aew0ðxÞ � ay00ðxÞ � e2yðxÞ þ eaw0ðxÞ ¼ 0;

wð0Þ ¼ yð0Þ ¼ yð1Þ ¼ wð1Þ ¼ 0;

8><>: (5.4)

which leads

e2wðxÞ � aw00ðxÞ � aey0ðxÞ ¼ 0;

ay00ðxÞ ¼ 0; wð0Þ ¼ yð0Þ ¼ yð1Þ ¼ wð1Þ ¼ 0:

(
The second equation with boundary conditions yields y � 0 and hence

e2wðxÞ � aw00ðxÞ ¼ 0; wð0Þ ¼ wð1Þ ¼ 0.

A simple computation shows that the above equation admits only zero solution. So does
for Eq. (5.4). Therefore, �eesðAÞ. The proof is complete. &

Theorem 5.1. Let fA be defined by Eqs. (5.1)–(5.2). Then the eigenvalues of fA have the

asymptotic expansions (2.37). And the corresponding eigenfunctions

½ukðxÞ; lkukðxÞ; ykðxÞ; vkðxÞ�; k 2 Z
	 

½�ukð1� xÞ;�lkukð1� xÞ; ykð1� xÞ; vkð1� xÞ�; k 2 Z
	 
(

have the following asymptotic expansions with j ¼ 1; 2;

u0kðxÞ ¼ ry1eðy1rlkþb1Þx � ry2eðy2rlk�b2Þx þ Oðk�1Þ;

lkukðxÞ ¼ eðy1rlkþb1Þx � eðy2rlk�b2Þx þ Oðk�1Þ;

ykðxÞ ¼ eðy1rlkþb1Þx � eðy2rlk�b2Þx þ Oðk�1Þ;

vkðxÞ ¼ ry1eðy1rlkþb1Þx � ry2eðy2rlk�b2Þx þ Oðk�1Þ:

8>>>><>>>>: (5.5)

Moreover, f½uk; lkuk; yk; vk�; k 2 Zg are approximately normalized in fH in the sense that

there exist positive constants ~c1 and ~c2, independent of k, such that

~c1pku0kkL2 ; klkukkL2 ; kykkL2 ; kvkkL2p~c2; 8k 2 Z. (5.6)
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Proof. Since from Proposition 5.1, sðAÞ ¼ sðfAÞ þ f�eg, the eigenvalues of fA have the
same asymptotic expansions (2.37). As for the second part, notice Eq. (3.2) and the
relationship between ðl; u; y; vÞ and ðl;w; yÞ that

w ¼ lu; v ¼
ay0

lþ e
,

Eq. (5.5) can then be deduced from Eqs. (3.5)–(3.8) by setting, respectively,

uðxÞ ¼
w1ðx; lÞ

2r3l4
; yðxÞ ¼

w3ðx; lÞ

2r3l3
; vðxÞ ¼

w4ðx; lÞ

2r3ðlþ eÞl3
. (5.7)

Finally Eq. (5.6) is a direct consequence of Eqs. (5.5) and (3.10). The proof is
complete. &

Theorem 5.2. Let fA be defined by Eqs. (5.1)–(5.2). Then
(i)
 There exists a sequence of generalized eigenfunctions offA, which forms a Riesz basis forfH. Moreover, for any l 2 sðfAÞ with jlj sufficiently large, l is semi-simple, that is, it has

the same algebraic and geometric multiplicities and the multiplicity is two.
(ii)
 The C0-semigroup e
eAt satisfies the spectrum-determined growth condition: sðfAÞ ¼

oðfAÞ.

(iii)
 e

eAt is exponentially stable, that is to say, there exist constants M041;o040 such that

ke
eAtkpM0e

�o0t

or equivalently

EðtÞpM0e
�o0tEð0Þ

where E is the energy function (1.5).
Proof. The proof of (i) can follow exactly the same way as that for Theorem 4.2 by taking

fA0

w

f

y

v

26664
37775
>

¼

f

au00 � ay0

v0 � af0

ay0

26664
37775
>

8

w

f

y

v

26664
37775
>

2 DðfA0Þ ¼ DðfAÞ. (5.8)

ThefA0 is just the operatorfA with e ¼ 0. By noting the fact that the relationship betweenfA
and fA0 is the same as that A and A0, we get through the proof. The details are omitted.

The proofs for (ii) and (iii) are similar to Corollary 4.1 and Theorem 4.3. The details are
omitted also. &
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