
On Dynamic Bin Packing: An Improved Lower Bound

and Resource Augmentation Analysis

Joseph Wun-Tat Chan1∗ Prudence W.H. Wong2† Fencol C.C. Yung3

1Department of Computer Science, King’s College London, UK

joseph.chan@kcl.ac.uk

2Department of Computer Science, University of Liverpool, UK

pwong@liverpool.ac.uk

3Department of Computer Science, University of Hong Kong, Hong Kong

ccyung@graduate.hku.hk

Abstract

We study the dynamic bin packing problem introduced by Coffman, Garey and

Johnson. This problem is a generalization of the bin packing problem in which items

may arrive and depart from the packing dynamically. The main result in this paper is a

lower bound of 2.5 on the achievable competitive ratio, improving the best known 2.428

lower bound, and revealing that packing items of restricted form like unit fractions (i.e.,

of size 1/k for some integer k), for which a 2.4985-competitive algorithm is known, is

indeed easier.

We also investigate the resource augmentation version of the problem where the on-

line algorithm can use bins of size b (> 1) times that of the optimal off-line algorithm.

An interesting result is that we prove b = 2 is both necessary and sufficient for the

on-line algorithm to match the performance of the optimal off-line algorithm, i.e.,

achieve 1-competitiveness. Further analysis gives a trade-off between the bin size

multiplier 1 < b ≤ 2 and the achievable competitive ratio.

1 Introduction

Bin packing is a classical combinatorial optimization problem (see the surveys [5, 8, 11]). The

objective is to pack a set of items into a minimum number of unit-size bins such that the total

size of the items in a bin does not exceed the bin capacity. The on-line version of the problem

assumes that items may arrive at arbitrary time and no advance information is known about

the items not yet arrived. Dynamic bin packing (DBP) was introduced as a generalization

∗This research is partly supported by Hong Kong RGC Grant HKU5172/03E when the author was with

the Department of Computer Science, University of Hong Kong, Hong Kong.
†This research is partly supported by Nuffield Foundation Grant NAL/01004/G.

1

of the on-line bin packing by Coffman, Garey and Johnson [7]. In this generalization, items

may also depart at arbitrary time and both on-line and off-line algorithms are not allowed

to move items from one bin to another. The goal is to minimize the maximum number of

bins used over all time.

The performance of an on-line algorithm A is generally measured by its competitive

ratio [2]. For our problem where a sequence of item arrivals and departures is given, the

competitive ratio c is the worst case ratio between the maximum number of bins used by A
over all time and the maximum number of bins used by the optimal off-line algorithm (which

knows the whole sequence in advance) over all time. Algorithm A is said to be c-competitive.

The infimum over all values c such that A is c-competitive is called the competitive ratio

of A.

Coffman, Garey and Johnson [7] proved that the lower bound on the competitive ratio of

any on-line algorithm on dynamic bin packing is 2.388 1. They also showed that a modified

version of first-fit is 2.788-competitive [7]. Chan, Lam and Wong [3] improved the lower

bound to 2.428 by considering only unit fraction items, where a unit fraction item is an item

of size 1/k for some integer k. They also showed that for packing unit fraction items only,

first-fit is 2.4985-competitive [3]. A natural question arises: Is packing items of restricted

form, such as unit fraction items, as difficult as packing items of general form? Another

aspect, resource augmentation analysis [16] has been studied in the context of on-line bin

packing [12, 13], in which an on-line algorithm can use bins of size b (> 1) times that of

the optimal off-line algorithm. To our knowledge, there is no previous work on resource

augmentation analysis for dynamic bin packing. We address the above questions in this

paper.

Our contributions. This paper presents the following results on DBP.

1. We push up the lower bound on competitive ratio from 2.428 [3] to 2.5 2, giving a neg-

ative answer to the question that packing unit fraction items is as difficult as packing

general items because packing unit fraction items attains a competitive ratio 2.4985 [3]

(< 2.5).

2. We investigate the resource augmentation version, showing an interesting result that

doubling the bin size for the on-line algorithm is both necessary and sufficient to match

the performance of the optimal off-line algorithm, i.e., to attain 1-competitiveness.

Further analysis is made to give a trade-off between the bin size multiplier b (for

1 < b ≤ 2) and the achievable competitive ratio.

Related work. There is a long history of results for the classical bin packing problem and

its variants [5, 8, 11]. The off-line bin packing problem is NP-hard [14]. The best upper bound

1A variant of the problem is to assume a stronger off-line algorithm that can repack the current set of

items into the minimum possible number of bins each time a new item arrives, in which case a stronger

lower bound of 2.5 is achieved [7].
2There was a 2.5 lower bound [7] when the off-line algorithm can repack. Our result achieves the same

bound even when the off-line algorithm does not repack.

2

and lower bound on the competitive ratio for on-line bin packing to date are 1.58889 [17]

and 1.54014 [18], respectively. The upper bound reveals that dynamic bin packing is more

difficult than on-line bin packing. For both dynamic and on-line bin packing, items of various

restricted forms have been studied, which include unit fraction items [1, 3], items of divisible

sizes [6] (where each possible item size can be divided by the next smaller item size), and

items of discrete sizes [4, 9, 10] (where possible item sizes are {1/k, 2/k, · · · , j/k} for some

1 ≤ j ≤ k).

Bar-Noy et al. [1] gave an off-line algorithm for unit fraction bin packing (with permanent

items) that uses H + 1 bins, where H =
∑

i 1/wi and wi is the size of the i-th item. They

also gave an on-line algorithm that uses H+O(
√
H) bins and a lower bound of H+Ω(lnH).

Chan et al. [3] studied dynamic bin packing of unit fraction items giving an upper bound

of 2.4985 and a lower bound of 2.428. For items of divisible sizes, Coffman et al. [6] showed

that First Fit Decreasing produces optimal packing. Discrete sized items [4, 9, 10] are mainly

studied in the context where the item sizes is chosen randomly from {1/k, 2/k, · · · , j/k}.
The expected performance of various algorithms like first fit was stuided.

Resource augmentation analysis for on-line bin packing has been studied [12, 13]; match-

ing upper and lower bounds (up to an additive constant) are given for bounded space bin

packing [12] in which there is a limit on the number of opened bins that can be used at

any time; and a better upper bound has been derived for (unbounded space) on-line bin

packing [13]. Ivkovic and Lloyd studied the fully dynamic bin packing problem [15], which

is a variant of dynamic bin packing that allows repacking of items for each item arrival or

departure. They gave a 1.25-competitive on-line algorithm for the problem [15].

Notations. We now give a precise definition of the problem and the necessary notations

for further discussion. In dynamic bin packing, items arrive and depart at arbitrary time.

Each item comes with a size. We denote by s-item an item of size s. When an item arrives,

it must be assigned to a unit-sized bin immediately without exceeding the capacity of the

assigned bin. At any time, the load of a bin is the total size of items currently assigned to

that bin that have not yet departed. We denote by ℓ-bin a bin of load ℓ. Migration is not

allowed, i.e., once an item is assigned to a bin, it cannot be moved to another bin. The

objective is to minimize the maximum number of bins used over all time.

In the resource augmentation analysis (Sections 3 and 4), an on-line algorithm A is given

size-b bins with 1 ≤ b ≤ 2, while the optimal off-line algorithm uses size-1 bins. Consider any

input sequence σ. Let Ab(σ, t) denote the number of size-b bins used at time t by A, similarly,

we have O1(σ, t) for the optimal off-line algorithm. A is said to be c-competitive if there

exists a constant k such that for any input sequence σ, maxt Ab(σ, t) ≤ c ·maxt O1(σ, t) + k.

The infimum over all values c such that A is c-competitive is called the competitive ratio

of A.

Organization of the paper. In Section 2, we present the 2.5 lower bound. In Sec-

tion 3, we show that doubling the bin size is both necessary and sufficient to achieve 1-

competitiveness. In Section 4, we study the trade-off between bin size and competitive

ratio. Finally, we give some concluding remarks in Section 5.

3

2 A 2.5 lower bound

In this section, we prove that no on-line algorithm can be better than 2.5-competitive.

Consider any on-line algorithm A. Let ǫ = 1
18k

for some large positive even integer k. The

adversary works in stages using items of various sizes including ǫ, 1
6
, 1

3
, 1

2
− ǫ

4
, 1

2
, 1

2
+ ǫ

4
, 2

3
and

1. Roughly speaking, the adversary first releases some items of a particular size. Depending

on how A packs the items, the adversary lets some items depart and further releases some

other items such that the total size of items present at any time is always the same (with

some minor difference). The choices of items to be departed ensures that the space released

from some departed items cannot be reused for newly arrived items, thus, forcing A to use

more new bins.

Recall that for any s > 0, ℓ > 0, we denote by s-item an item of size s, and by ℓ-bin a bin

of load ℓ. When we discuss how items are packed into bins, we use the following notations:

• Item configuration ψ: y∗z describes a load y consisting of y

z
items of size z, e.g., 1

2∗ǫ

means a load 1
2

consisting of 1
2ǫ

items of size ǫ. We skip the subscript when y = z.

• Bin configuration π: (ψ1, ψ2, · · ·), e.g., (1
3
, 1

2∗ǫ
) means a bin is packed with a 1

3
-item

and an addition load 1
2

with ǫ-items, i.e., the load of this bin is 5
6
. In some cases,

it is clearer to state the bin configuration in other ways, e.g., (1
2
, 1

2
), instead of 1

∗
1
2
.

Similarly, we will use 6 × 1
6

instead of 1
∗

1
6
.

• Packing configuration ρ: {x1:π1, x2:π2, · · · } refers to a packing where there are x1 bins

with bin configuration π1, x2 bins with π2, and so on. E.g., {2k:1∗ǫ, k:(1
3
, 1

2 ∗ǫ
)} means

2k bins are each packed with load 1 with ǫ-items and another k bins are each packed

with a 1
3
-item and an addition load 1

2
with ǫ-items.

The adversary releases items in stages such that A uses 45k bins at some point in time

while the total size of items at any time is no more than 18k+ 2. The item sizes are chosen

carefully to allow the optimal off-line algorithm to use at most 18k + 2 bins. Then we have

the following theorem.

Theorem 1. For any online algorithm A for the dynamic bin packing problem, A is not

c-competitive for any c < 2.5.

The rest of this section is devoted to proving Theorem 1. We give the adversary and prove

that A uses 45k bins at the end of the (adversarial) sequence while the optimal off-line

algorithm O uses at most 18k + 2 bins. The sequence is divided into stages. In the first

stage, some small items arrived. In the following stages, we first let some items depart based

on how A packs the items in the previous stage, then more items arrived forcing A to use

new bins. Let ni be the number of new bins used by A in Stage i.

1. In Stage 1, 18k+2
ǫ

items of size ǫ are released, A needs 18k+2 bins, thus, n1 ≥ 18k+2 >

18k. As for O, all items are also packed into 18k + 2 bins, with those non-departing

items packed together (details will be given later).

We distinguish between three cases: n1 ≥ 24k, 24k > n1 ≥ 21k, and 21k > n1 ≥ 18k.

4

ǫ

6k 15k24k

1

2

1

2
11

Figure 1: The final configuration of A achieved by the adversary in Case 1.

O : # bins 2 3k 15k total

Stage 1 - - - 0

1∗ǫ 1∗ǫ 1∗ǫ 18k+2

Stage 2 24
36∗ǫ

- - 24kǫ

24
36∗ǫ

1

2
, 1

2

1

2
, 1

2
18k+24kǫ

Stage 3 24
36∗ǫ

1
2
, 1

2
- 3k+24kǫ

(Final) 24
36∗ǫ

1
2
, 1

2
1 18k+24kǫ

Table 1: The optimal schedule for Case 1. For each stage, the first row is the configuration

just before items arrival and the second row is the configuration at the end of the stage.

The very last row is the final configuration. Bolded entries are new items arrived in the

corresponding stage. The notation y∗z means packing a bin with a load y of z-items. The

last column shows the total load of all the bins.

Case 1: n1 ≥ 24k.

This is a simpler case.

2. In Stage 2, we keep one ǫ-item in 24k bins in A and let all other items depart such

that the packing configuration of A is as follows. A total size of items departed is

18k + 12kǫ. The packing configuration of O is chosen in a much better way.

bins 24k

A ǫ

total size: 24kǫ

bins: 24k

bins 2

O 24

36∗ǫ

total size: 24kǫ

bins: 2

Then 36k items of size 1
2

are released. Note that the total size of items becomes

24kǫ + 18k < 18k + 2. At most one new item can be packed into each existing bin

of A, thus, n2 ≥ (36k − 24k)/2 = 6k. On the other hand, the configuration of O is

bins 2 18k

O 24

36∗ǫ

1

2
, 1

2

total size: 18k + 24kǫ

bins: 18k + 2

5

A : # bins 24k 6k 15k total

Stage 1 - - - 0

Stage 2 ǫ - - 24kǫ

Stage 3 ǫ 1
2

- 3k+24kǫ

Final ǫ 1
2

1 18k+24kǫ

Table 2: The schedule of A for Case 1 right before items arrival in the corresponding stages.

The last row shows the final configuration. The notation y∗z means packing a bin with a

load y of z-items. The last column shows the total load of all the bins.

3. In Stage 3, we keep one ǫ-item in 24k bins and one 1
2
-item in 6k bins of A, and let 30k

items of size 1
2

depart. The packing configuration of A and O becomes

bins 24k 6k

A ǫ 1

2

total size: 3k + 24kǫ

bins: 30k

bins 2 3k

O 24

36 ∗ǫ

1

2
, 1

2

total size: 3k + 24kǫ

bins: 3k + 2

We then release 15k items of size 1, none of which can be packed into an existing bin

of A, thus, n3 = 15k. The total number of bins used by A equals 45k. The packing

configuration of A and O becomes:

bins 24k 6k 15k

A ǫ 1

2
1

total size: 18k + 24kǫ

bins: 45k

bins 2 3k 15k

O 24

36∗ǫ

1

2
, 1

2
1

total size: 18k + 24kǫ

bins: 18k + 2

Table 1 gives a summary of the packing of O while Table 2 shows the configuration

of A right before items arrival in each stage with the final target also shown in Figure 1.

Note that we do not show the configuration of A right after items arrival because it is

the number of new bins that matters, not the exact configuration.

Case 2: 24k > n1 ≥ 21k.

This case requires more stages. We make the following observations on the load of bins used

by A.

Observation 2. If 24k > n1 ≥ 21k, then A uses at least 6k bins of load at least 2
3

+ ǫ, 12k

bins at least 1
2

+ ǫ, and 15k bins at least 1
3

+ ǫ at the end of Stage 1.

Proof. Assume that there are less than 6k bins of load at least 2
3
+ǫ. The remaining bins has a

maximum load of 2
3
. Then the maximum load that has packed is < 6k+(24k−6k)(2

3
) = 18k,

contradicting that a total load of 18k+2 has been released. The other cases are similar.

Stage 2 is divided into two phases.

6

9k 15k

ǫ

21k

1

3

1

3
11

(a) Case 2.1

ǫ

k2k2k2k4k 13k21k

1

3

1

3

1

2
−

ǫ

4

1

2
−

ǫ

4

1

2

1

2

1

2
+ ǫ

4

1

2
+ ǫ

4

2

3

2

3
11

(b) Case 2.2

Figure 2: The final configuration of A achieved by the adversary in Case 2.

• In Phase 1 of Stage 2, we let a total size of 10k + 15kǫ of ǫ-items depart until the

packing configuration of A is shown below. Note that a total size of 8k + 21kǫ of

ǫ-items remained.

bins 6k 6k 3k 6k

A (2

3
+ ǫ)∗ǫ (1

2
+ ǫ)∗ǫ (1

3
+ ǫ)∗ǫ ǫ

total size: 8k + 21kǫ

bins: 21k

We then release 30k items of size 1
3
; the total size of items becomes 18k + 21kǫ.

• In Phase 2, we further let some ǫ-items depart depending how A has packed the 1
3
-

items. If A packs a 1
3
-item into some bin B of load 1

2
+ ǫ, we depart a total size of 1

6

of ǫ-item from B, making its load become 2
3

+ ǫ. For every two such bins, we further

release one 1
3
-item. Repeat departing groups of ǫ-items of size 1

6
and releasing items

of size 1
3

as long as A packs a 1
3
-item into a bin of load 1

2
+ ǫ. This process must

terminate because once A packs a 1
3
-item into a bin, its load becomes 2

3
+ ǫ, meaning

that it cannot accommodate another 1
3
-item.

Let x and y be the number of (1
2
+ ǫ)- and (1

3
+ ǫ)-bins, respectively, that have packed

a 1
3
-item at the end of Stage 2. Suppose x = 2p+ q, for some integers p, q and q = 0

or 1. In Phase 2, the total size of ǫ-items departed is x
6

= 2p+q

6
, and the total number

of 1
3
-items arrived is p.

At the end of Stage 2, the total size of items is 18k + 21kǫ − q

6
, of it, 8k + 21kǫ − 2p+q

6
is

ǫ-items and the number of 1
3
-items is 30k + p.

We now consider the new bins used by A at the end of Stage 2. Let a1 and a2 be

the number of new bins that have packed exactly one 1
3
-item and at least two 1

3
-items,

respectively, so, n2 = a1 + a2.

Observation 3. The number of new bins used by A in Stage 2, n2 ≥ 4k.

7

O : # bins 2 p q 8k−p−q 3k 7k total

Stage 1 - - - - - - 0

1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 18k+2

Stage 2∗ 21
36 ∗ǫ

1∗ǫ 1∗ǫ 1∗ǫ - - 8k+21kǫ

21
36 ∗ǫ

2
3∗ǫ

, 1

3

5
6∗ǫ

1∗ǫ
1

3
, 1

3
, 1

3

1

3
, 1

3
, 1

3
18k+21kǫ− q

6

Stage 3 21
36 ∗ǫ

- - - 1
3
, 1

3
, 1

3
- 3k+21kǫ

(Final) 21
36 ∗ǫ

1 1 1 1
3
, 1

3
, 1

3
1 18k+21kǫ

Table 3: The optimal schedule for Case 2.1. For each stage, the first row is the configuration

just before items arrival and the second row is the configuration at the end of the stage.

The very last row is the final configuration. Bolded entries are new items arrived in the

corresponding stage. The notation y∗z means packing a bin with a load y of z-items. ∗ Note

that in Stage 2, there are two phases: the first row shows the configuration right before the

items arrival in Phase 1 and the second row the end of both phases (in Phase 2, ǫ-items of

a size of 2p+q

6
departed).

A : # bins 6k 6k 3k 6k 9k 15k total

Stage 1 - - - - - - 0

Stage 2 (2
3
+ǫ)∗ǫ (1

2
+ǫ)∗ǫ (1

3
+ǫ)∗ǫ ǫ - - 8k+21kǫ

Stage 3 ǫ ǫ ǫ ǫ 1
3

- 3k+21kǫ

Final ǫ ǫ ǫ ǫ 1
3

1 18k+21kǫ

Table 4: The schedule of A for Case 2.1 right before items arrival in the corresponding

stages. The last row shows the final configuration. The notation y∗z means packing a bin

with a load y of z-items. The last column shows the total load of all the bins.

Proof. The maximum possible load of all bins is ≤ (6k + x)(2
3

+ ǫ) + (6k − x)(1
2

+ ǫ) +

y(2
3

+ ǫ) + (3k − y)(1
3

+ ǫ) + 6k(2
3

+ ǫ) + a2 + a1

3
. This quantity must be ≥ 18k + 21kǫ − q

6

because this is the total load of items at the end of Stage 2. Simplifying the inequality gives
y

3
+ x

6
+ a2 + a1

3
≥ 6k − q

6
. Using the fact that x ≤ 6k − q and y ≤ 3k, we can derive that

a1 + a2 ≥ a1

3
+ a2 ≥ 4k.

We further consider two sub-cases: a1 + a2 ≥ 9k and 9k > a1 + a2 ≥ 4k.

Case 2.1: a1 + a2 ≥ 9k.

Before we move on to how the adversary continues, we first show how O packs items in

Stage 2. Recall that in Stage 2, a total size of 10k + 15kǫ + 2p+q

6
of ǫ-items departed. A

total number of 30k+p of 1
3
-items arrived in this stage, which will be packed by O as follows.

8

bins 2 p q 8k−p−q 10k

O 21

36∗ǫ

2

3∗ǫ
, 1

3

5

6∗ǫ
1∗ǫ

1

3
, 1

3
, 1

3

total size: 18k + 21kǫ− q

6

bins: 18k + 2

We then proceed to Stage 3. Table 3 gives a summary of the packing of O while Table 4

shows the configuration of A right before items arrival in each stage with the final target

also shown in Figure 2(a).

• In Stage 3, we keep 21k items of size ǫ and 9k items of size 1
3

and let all other items

depart such that the configuration of A is as follows. The corresponding configuration

of O is also shown below.

bins 21k 9k

A ǫ 1

3

total size: 3k + 21kǫ

bins: 30k

bins 2 3k

O 21

36∗ǫ

1

3
, 1

3
, 1

3

total size: 3k + 21kǫ

bins: 3k + 2

• Finally, we release 15k items of size 1. All these items require a new bin, thus, n3 = 15k.

The total number of bins used by A becomes 21k+9k+15k = 45k. The configuration

of A and O is as follows.

bins 21k 9k 15k

A ǫ 1

3
1

total size: 18k + 21kǫ

bins: 45k

bins 2 3k 15k

O 21

36∗ǫ

1

3
, 1

3
, 1

3
1

total size: 18k + 21kǫ

bins: 18k + 2

Case 2.2: 9k > a1 + a2 ≥ 4k.

Before we move on to how the adversary continues, we first show how O packs items in

Stage 2. Recall that in Stage 2, a total size of 10k + 15kǫ + 2p+q

6
of ǫ-items departed. A

total number of 30k+p of 1
3
-items arrived in this stage, which will be packed by O as follows.

bins 2 k k + p q 11k−p−q 5k

O 33

36∗ǫ

1

3∗ǫ
, 1

3
, 1

3
(1

3
− ǫ)∗ǫ,

1

3
, 1

3
(1

2
− ǫ)∗ǫ,

1

3
(2

3
− ǫ)∗ǫ,

1

3

1

3
, 1

3
, 1

3

total size: 18k + 21kǫ− q

6

bins: 18k + 2

We then proceed with the adversary. Table 5 gives a summary of the packing of O while

Table 6 shows the configuration of A right before items arrival in each stage with the final

target also shown in Figure 2(b). Recall that a1 and a2 denote the number of new bins used

by A in Stage 2 that have packed exactly one 1
3
-item and at least two 1

3
-items, respectively.

We observe a further bound on a2.

Observation 4. For Case 2.2, we have a2 > k.

Proof. In the proof of Observation 3, we have shown that a1

3
+a2 ≥ 4k, i.e., 2a2

3
≥ 4k− a1+a2

3
.

Since a1 + a2 < 9k, we have a2 ≥ 2a2

3
> 4k − 3k = k.

9

O : # bins 2 k k+p q p 11k−2p−q k k 2k k total

Stage 1 - - - - - - - - - - 0

1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 18k+2

Stage 2∗ 33
36 ∗ǫ

1
3 ∗ǫ

k bins: (1
3
−ǫ)∗ǫ (2

3
−ǫ)∗ǫ (2

3
−ǫ)∗ǫ (2

3
−ǫ)∗ǫ - - - - 8k+21kǫ

p bins: (2
3
−ǫ)∗ǫ - - - -

33
36 ∗ǫ

1
3 ∗ǫ

, 1
3

, 1
3

(1
3
−ǫ)∗ǫ,

1
3
, 1
3

(1
2
−ǫ)∗ǫ,

1
3

(2
3
−ǫ)∗ǫ,

1
3

(2
3
−ǫ)∗ǫ,

1
3

1
3
, 1

3
, 1
3

1
3

, 1
3

, 1
3

1
3
, 1
3

, 1
3

1
3

, 1
3
, 1
3

18k+21kǫ−
q

6

Stage 3 33
36 ∗ǫ

1
3 ∗ǫ

(1
6
−ǫ)∗ǫ,

1
3

(1
6
−ǫ)∗ǫ,

1
3

(1
6
−ǫ)∗ǫ,

1
3

(1
2
−ǫ)∗ǫ

1
3
, 1

3
, 1
3

1
3

- - 7k+ 2k
3

+21kǫ

33
36 ∗ǫ

1
3 ∗ǫ

, (1
6
−ǫ)∗ǫ,

1
3
, (1

6
−ǫ)∗ǫ,

1
3
, (1

6
−ǫ)∗ǫ,

1
3
, (1

2
−ǫ)∗ǫ,

1
3
, 1

3
, 1
3

1
3
, 1

2
−

ǫ
4
, 1

2
−

ǫ
4
, 17k+ 2k

3

1
2

−
ǫ
4

1
2

−
ǫ
4

1
2
−

ǫ
4

1
2
−

ǫ
4

1
2

−
ǫ
4

1
2

−
ǫ
4

1
2
−

ǫ
4

1
2
−

ǫ
4

+16kǫ

Stage 4 33
36 ∗ǫ

1
3 ∗ǫ

(1
6
−ǫ)∗ǫ,

1
3

(1
6
−ǫ)∗ǫ,

1
3

(1
6
−ǫ)∗ǫ,

1
3

(1
2
−ǫ)∗ǫ

1
3
, 1

3
, 1
3

1
3

1
2
−

ǫ
4

- 8k+ 2
3
k+20.5kǫ

33
36 ∗ǫ

1
3 ∗ǫ

, 1
2

(1
6
−ǫ)∗ǫ,

1
3
, (1

6
−ǫ)∗ǫ,

1
3
, (1

6
−ǫ)∗ǫ,

1
3
, (1

2
−ǫ)∗ǫ,

1
3
, 1

3
, 1
3

1
3
, 1

2
1
2
−

ǫ
4
, 1

2
1
2

, 1
2

17k+ 2k
3

1
2

1
2

1
2

1
2

+20.5kǫ

Stage 5 33
36 ∗ǫ

1
3 ∗ǫ

(1
6
−ǫ)∗ǫ,

1
3

(1
6
−ǫ)∗ǫ,

1
3

(1
6
−ǫ)∗ǫ,

1
3

(1
2
−ǫ)∗ǫ,

1
3
, 1

3
, 1
3

1
3

1
2
−

ǫ
4

1
2
, 1

2
9k+ 2k

3
+20.5kǫ

33
36 ∗ǫ

1
3 ∗ǫ

, (1
6
−ǫ)∗ǫ,

1
3
, (1

6
−ǫ)∗ǫ,

1
3
, (1

6
−ǫ)∗ǫ,

1
3
, (1

2
−ǫ)∗ǫ,

1
3
, 1

3
, 1
3

1
3
, 1

2
−

ǫ
4
, 1

2
, 1

2
17k+ 2k

3

1
2
+ ǫ

4
1
2
+ ǫ

4
1
2
+ ǫ

4
1
2
+ ǫ

4
1
2
+ ǫ

4
1
2
+ ǫ

4
1
2
+ ǫ

4
+24.5kǫ

Stage 6 21
36 ∗ǫ

1
3 ∗ǫ

1
3

1
3

1
3

1
3 ∗ǫ

1
3
, 1

3
, 1
3

1
3

1
2
−

ǫ
4
, 1

2
, 1

2
8k+ 2k

3

1
2
+ ǫ

4
+21kǫ

21
36 ∗ǫ

1
3 ∗ǫ

1
3
, 2

3
1
3
, 2

3
1
3
, 2

3
1
3 ∗ǫ

, 2
3

1
3
, 1

3
, 1
3

1
3
, 2

3
1
2
−

ǫ
4
, 1

2
, 1

2
17k+ k

3

1
2
+ ǫ

4
+21kǫ

Stage 7 21
36 ∗ǫ

- - - - - 1
3
, 1

3
, 1
3

1
3
, 2
3

1
2
−

ǫ
4
, 1

2
, 1

2
5k

1
2
+ ǫ

4
+21kǫ

(Final) 21
36 ∗ǫ

1 1 1 1 1 1
3
, 1

3
, 1
3

1
3
, 2
3

1
2
−

ǫ
4
, 1

2
, 1

2
18k

1
2
+ ǫ

4
+21kǫ

Table 5: The optimal schedule for Case 2.2. For each stage, the first row is the configuration

just before items arrival and the second row is the configuration at the end of the stage.

The very last row is the final configuration. Bolded entries are new items arrived in the

corresponding stage. The notation y∗z means packing a bin with a load y of z-items. ∗ Note

that in Stage 2, there are two phases: the first row shows the configuration right before the

items arrival in Phase 1 and the second row the end of both phases (in Phase 2, ǫ-items of

a size of 2p+q

6
departed).

The remaining stages run as follows. To make it easier to follow, recall that after the

departure of a size of 10k + 15kǫ of ǫ-items in Stage 2, the configuration of A was

bins 6k 6k 3k 6k

A (2

3
+ ǫ)∗ǫ (1

2
+ ǫ)∗ǫ (1

3
+ ǫ)∗ǫ ǫ

total size: 8k + 21kǫ

bins: 21k

After this, 30k + p items of size 1
3

arrived and a further size of 2p+q

6
of ǫ-items departed. A

uses at least 4k new bins in this stage. At the end of Stage 2, the number of bins used by A
is at least 25k.

3. In Stage 3,

• We first let a total size of 2k+ 2p+q

6
of ǫ-items and a total number of 25k−p−q of

1
3
- items depart until the configuration of A is as follows. Note that we can have

10

A : # bins 6k 2p+q 6k−2p−q 3k 6k k 3k 2k 2k 2k k 13k total

Stage 1 - - - - - - - - - - - - 0

Stage 2 (2
3+ǫ)∗ǫ (1

2+ǫ)∗ǫ (1
2+ǫ)∗ǫ (1

3+ǫ)∗ǫ ǫ - - - - - - - 8k+21kǫ

Stage 3 (1
2+ǫ)∗ǫ

1
3 , (1

6+ǫ)∗ǫ (1
2+ǫ)∗ǫ ǫ ǫ 1

3 , 1
3

1
3 - - - - - 7k+2k

3 +21kǫ

Stage 4 (1
2+ǫ)∗ǫ

1
3 , (1

6+ǫ)∗ǫ (1
2+ǫ)∗ǫ ǫ ǫ 1

3 , 1
3

1
3

1
2− ǫ

4 - - - - 8k+ 2k
3 +20.5kǫ

Stage 5 (1
2+ǫ)∗ǫ

1
3 , (1

6+ǫ)∗ǫ (1
2+ǫ)∗ǫ ǫ ǫ 1

3 , 1
3

1
3

1
2− ǫ

4
1
2 - - - 9k+ 2k

3 +20.5kǫ

Stage 6 (1
3+ǫ)∗ǫ

1
3 , ǫ (1

3+ǫ)∗ǫ ǫ ǫ 1
3 , 1

3
1
3

1
2− ǫ

4
1
2

1
2+ ǫ

4 - - 8k+2k
3 +21kǫ

Stage 7 ǫ ǫ ǫ ǫ ǫ 1
3

1
3

1
2− ǫ

4
1
2

1
2+ ǫ

4
2
3 - 5k+21kǫ

Final ǫ ǫ ǫ ǫ ǫ 1
3

1
3

1
2− ǫ

4
1
2

1
2+ ǫ

4
2
3 1 18k+21kǫ

Table 6: The schedule of A for Case 2.2 right before items arrival in the corresponding

stages. The last row shows the final configuration. The notation y∗z means packing a bin

with a load y of z-items. The last column shows the total load of all the bins.

such configuration for A because a2 > k (by Observation 4) and a1 +a2 ≥ 4k (by

Observation 3). We also show the corresponding configuration of O.

bins 6k 2p + q 6k−2p−q

A (1

2
+ ǫ)∗ǫ

1

3
, (1

6
+ǫ)∗ǫ (1

2
+ǫ)∗ǫ

9k k 3k

ǫ 1

3
, 1

3

1

3

total size: 7k + 2k
3

+ 21kǫ

bins: 25k

bins 2 k k+2p+q

O 33

36∗ǫ

1

3∗ǫ
(1

6
−ǫ)∗ǫ,

1

3

11k−2p−q k k

(1

2
−ǫ)∗ǫ

1

3
, 1

3
, 1

3

1

3

total size: 7k + 2k
3

+ 21kǫ

bins: 15k + 2

• We then release 20k items of size 1
2
− ǫ

4
. For A, only bins of load ǫ and 1

3
can

accommodate one such item, therefore, n3 ≥ (20k−12k)/2 = 4k > 2k. Note that

although n3 = 4k, the adversary only relies on the fact that n3 > 2k. The number

of bins used by A is at least 27k. The corresponding packing configuration of O
is

bins 2 k k+2p+q 11k−2p−q

O 33

36∗ǫ

1

3∗ǫ
, 1

2
− ǫ

4
(1

6
−ǫ)∗ǫ,

1

3
, 1

2
− ǫ

4
(1

2
−ǫ)∗ǫ,

1

2
− ǫ

4

k k 3k

1

3
, 1

3
, 1

3

1

3
, 1

2
− ǫ

4

1

2
− ǫ

4
, 1

2
− ǫ

4

total size: 17k + 2k
3

+ 21kǫ− 5kǫ = 17k + 2k
3

+ 16kǫ

bins: 18k + 2

4. In Stage 4,

• We let 18k items of size (1
2
− ǫ

4
) depart until the configuration of A is as follows.

The corresponding configuration of O is also shown.

11

bins 6k 2p + q 6k−2p−q

A (1

2
+ ǫ)∗ǫ

1

3
, (1

6
+ǫ)∗ǫ (1

2
+ǫ)∗ǫ

9k k 3k

ǫ 1

3
, 1

3

1

3

2k

1

2
− ǫ

4

total size: 8k + 2k
3

+ 21kǫ− kǫ
2

bins: 27k

bins 2 k k+2p+q

O 33

36∗ǫ

1

3∗ǫ
(1

6
−ǫ)∗ǫ,

1

3

11k−2p−q k k

(1

2
−ǫ)∗ǫ

1

3
, 1

3
, 1

3

1

3

2k

1

2
− ǫ

4

total size: 8k + 2k
3

+ 21kǫ− kǫ
2

bins: 17k + 2

• Next we release 18k items of size 1
2
. For A, only bins of load ǫ, 1

3
and 1

2
− ǫ

4
can

accommodate one such item, therefore, n4 ≥ (18k−14k)/2 = 2k. The number of

bins used by A is at least 29k. The corresponding packing configuration of O is

bins 2 k k+2p+q 11k−2p−q

O 33

36∗ǫ

1

3∗ǫ
, 1

2
(1

6
−ǫ)∗ǫ,

1

3
, 1

2
(1

2
−ǫ)∗ǫ,

1

2

k k 2k k

1

3
, 1

3
, 1

3

1

3
, 1

2

1

2
− ǫ

4
, 1

2

1

2
, 1

2

total size: 17k + 2k
3

+ 21kǫ− kǫ
2

bins: 18k + 2

5. In Stage 5,

• We let 16k items of size 1
2

depart until the packing configuration of A is as follows.

bins 6k 2p + q 6k−2p−q

A (1

2
+ ǫ)∗ǫ

1

3
, (1

6
+ǫ)∗ǫ (1

2
+ǫ)∗ǫ

9k k 3k

ǫ 1

3
, 1

3

1

3

2k 2k

1

2
− ǫ

4

1

2

total size: 9k + 2k
3

+ 21kǫ− kǫ
2

bins: 29k

bins 2 k k+2p+q

O 33

36∗ǫ

1

3∗ǫ
(1

6
−ǫ)∗ǫ,

1

3

11k−2p−q k k

(1

2
−ǫ)∗ǫ

1

3
, 1

3
, 1

3

1

3

2k k

1

2
− ǫ

4

1

2
, 1

2

total size: 9k + 2k
3

+ 21kǫ− kǫ
2

bins: 18k + 2

• We then release 16k items of size 1
2
+ ǫ

4
. For A, only bins of load ǫ, 1

3
and 1

2
− ǫ

4

can accommodate one such item, therefore, n5 ≥ 16k − 14k = 2k. The number

of bins used by A is at least 31k. The corresponding configuration of O is

bins 2 k k+2p+q 11k−2p−q

O 33

36∗ǫ

1

3∗ǫ
, 1

2
+ ǫ

4
(1

6
−ǫ)∗ǫ,

1

3
, 1

2
+ ǫ

4
(1

2
−ǫ)∗ǫ,

1

2
+ ǫ

4

k k 2k k

1

3
, 1

3
, 1

3

1

3
, 1

2
+ ǫ

4

1

2
− ǫ

4
, 1

2
+ ǫ

4

1

2
, 1

2

total size: 17k + 2k
3

+ 21kǫ + 7kǫ
2

bins: 18k + 2

6. In Stage 6,

12

• We let a total size of 2k of ǫ-items and a total number of 14k of (1
2
+ ǫ

4
)-item

depart until the configuration of A is as follows.

bins 6k 2p + q 6k−2p−q

A (1

3
+ ǫ)∗ǫ

1

3
, ǫ (1

3
+ǫ)∗ǫ

9k k 3k

ǫ 1

3
, 1

3

1

3

2k 2k 2k

1

2
− ǫ

4

1

2

1

2
+ ǫ

4

total size: 8k + 2k
3

+ 21kǫ

bins: 31k

bins 2 k k+2p+q

O 21

36 ∗ǫ

1

3∗ǫ

1

3

11k−2p−q k k

1

3∗ǫ

1

3
, 1

3
, 1

3

1

3

2k k

1

2
− ǫ

4
, 1

2
+ ǫ

4

1

2
, 1

2

total size: 8k + 2k
3

+ 21kǫ

bins: 18k + 2

• We then release 13k items of size 2
3
. For A, only bins of load ǫ and 1

3
can

accommodate one such item, therefore, n6 ≥ 13k− 12k = k. The number of bins

used by A is at least 32k. The corresponding configuration of O is

bins 2 k k+2p+q 11k−2p−q

O 21

36∗ǫ

1

3∗ǫ

1

3
, 2

3

1

3∗ǫ
, 2

3

k k 2k k

1

3
, 1

3
, 1

3

1

3
, 2

3

1

2
− ǫ

4
, 1

2
+ ǫ

4

1

2
, 1

2

total size: 17k + k
3

+ 21kǫ

bins: 18k + 2

7. In Stage 7,

• We let a total size of 4k− 2p+q

3
of ǫ-items, a total number of k+2p+ q of 1

3
-items,

and a number of 12k of 2
3
-items depart until the configuration of A is as follows.

bins 21k 4k 2k

A ǫ 1

3

1

2
− ǫ

4

2k 2k k

1

2

1

2
+ ǫ

4

2

3

total size: 5k + 21kǫ

bins: 32k

bins 2 k k

O 21

36∗ǫ

1

3
, 1

3
, 1

3

1

3
, 2

3

2k k

1

2
− ǫ

4
, 1

2
+ ǫ

4

1

2
, 1

2

total size: 5k + 21kǫ

bins: 5k + 2

• A final of 13k items of size 1 are released, making n7 = 13k. Totally, A uses

21k + 4k + 2k + 2k + 2k + k + 13k = 45k bins.
bins 21k 4k 2k 2k

A ǫ 1

3

1

2
− ǫ

4

1

2

2k k 13k

1

2
+ ǫ

4

2

3
1

total size: 18k + 21kǫ

bins: 45k

bins 2 13k k

O 21

36∗ǫ
1 1

3
, 1

3
, 1

3

k 2k k

1

3
, 2

3

1

2
− ǫ

4
, 1

2
+ ǫ

4

1

2
, 1

2

total size: 18k + 21kǫ

bins: 18k + 2

13

ǫ 11

2m 7m 9m12m

1

6

1

6

1

3

1

3

(a) Case 3.1

ǫ

4m 6m

1

2
−

ǫ

4

1

2
−

ǫ

4

1

2
+ ǫ

4

1

2
+ ǫ

4

2

3

2

3
11

2m2m2m2m12m

1

6

1

6

1

3

1

3

(b) Case 3.2

Figure 3: The final configuration of A achieved by the adversary in Case 3.

In both Case 2.1 and Case 2.2, we show that there is an adversarial sequence such that

the on-line algorithm A uses 45k bins at the end while the optimal off-line algorithm uses

no more than 18k + 2 bins at any time.

Case 3: 21k > n1 ≥ 18k.

For the sake of simplicity, we let m = 3k/2. In other words, 14m > n1 ≥ 12m. The following

observation can be proved by contradiction, similar to Observation 2.

Observation 5. If 14m > n1 ≥ 12m, then A uses at least 8m bins with load at least 2
3

+ ǫ,

10m bins with at least 1
2

+ ǫ, and 11m bins with at least 1
3

+ ǫ at the end of Stage 1.

2. In Stage 2, we let a total size of 16m
3

+ 12mǫ of ǫ-items depart until the configuration

of A becomes

bins 8m 2m m m

A (2

3
+ ǫ)∗ǫ (1

2
+ ǫ)∗ǫ (1

3
+ ǫ)∗ǫ ǫ

total size: 6m + 2m
3

+ 12mǫ

bins: 12m

We then release 32m items of size 1
6
. The total size of items becomes 12m+ 12mǫ. A

(2
3
+ǫ)-bin can accommodate one item, (1

2
+ǫ)-bin two, (1

3
+ǫ)-bin three, and ǫ-bin five.

Number of new bins required by A is at least (32m− 8m− 4m− 3m− 5m)/6 = 2m.

3. Stage 3 is divided into two phases.

• In Phase 1 of Stage 3, we let 30m items of size 1
6

depart until the configuration

of A becomes

14

bins 8m 2m m m 2m

A (2

3
+ ǫ)∗ǫ (1

2
+ ǫ)∗ǫ (1

3
+ ǫ)∗ǫ ǫ 1

6

total size: 7m + 12mǫ

bins: 14m

We then release 15m items of size 1
3
.

• Phase 2 is similar to Stage 2 of Case 2. If A packs a 1
3
-item into a bin of load

1
2
+ǫ, we depart a total size of 1

6
of ǫ-items from that bin. For every two such bins,

we further release one 1
3
-item. Repeat departing ǫ-items of size 1

6
and releasing

items of size 1
3

as long as A packs 1
3
-item into bin of load 1

2
+ ǫ.

Let x and y be the number of bins with load 1
2

+ ǫ and 1
6
, respectively, that has

packed at least one 1
3
-item at the end of Stage 3. Suppose x = 2p + q, for some

integers p and q and q = 0 or 1. In Phase 2, a total size of 2p+q

6
of ǫ-items departed

while p items of size 1
3

arrived.

At the end of Stage 3, the total size of items is 12m + 12mǫ − q

6
, among them, 6m +

2m
3

+ 12mǫ − 2p+q

6
are ǫ-items, the number of 1

6
-items is 2m, and the number of 1

3
-items is

15m+ p.

We now consider the new bins used by A at the end of Stage 3. Let a1 and a2 be

the number of new bins that have packed exactly one 1
3
-item and at least two 1

3
-items,

respectively, i.e., n3 = a1 + a2. We observe the following property about a1 + a2.

Observation 6. The number of new bins used by A in Stage 3, n3 = a1 + a2 ≥ 2m.

Proof. Considering the load of the bins and the total size of all items, we have (8m+x)(2
3
+

ǫ)+(2m−x)(1
2
+ǫ)+m(2

3
+ǫ)+m(2

3
+ǫ)+y(2

3
+ 1

6
)+(2m−y)(1

6
)+a2+ a1

3
≥ 12m+12mǫ− q

6
.

Simplifying gives x
6

+ 2y

3
+ a2 + a1

3
≥ 4m. Using the properties x ≤ 2m− q, and y ≤ 2m, we

can derive that a1 + a2 ≥ 2m.

We further consider two subcases: a1 + a2 ≥ 7m and 7m > a1 + a2 ≥ 2m.

Case 3.1: a1 + a2 ≥ 7m

Before we move on to how the adversary continues, we first show how O packs items in

Stages 2 and 3.

2. In Stage 2, a total size of 16m
3

+ 12mǫ of ǫ-items departed. After the arrival of 32m

items of size 1
6
, the configuration of O becomes

bins 1 m 2m 4m 5m

O 1∗ǫ
2

3∗ǫ
, 1

6
, 1

6
1∗ǫ 1∗ǫ 6 × 1

6

total size: 12m + 12mǫ

bins: 12m + 1

3. In Stage 3, 30m items of size 1
6

and a total size of 2p+q

6
of ǫ-items departed. The

number of 1
3
-items arrived is 15m+ p. The configuration of O becomes

15

O : # bins 1 1 m p q 2m−p−q 4m m m m 2m total

Stage 1 - - - - - - - - - - - 0

1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 12m+2

Stage 2 1∗ǫ - 2

3∗ǫ
1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ - - - - 6m+2m

3
+12mǫ

1∗ǫ - 2

3∗ǫ
, 1

6
, 1

6
1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 6 × 1

6
6 × 1

6
6 × 1

6
6 × 1

6
12m+12mǫ

Stage 3∗ 1∗ǫ - 2

3∗ǫ
1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ

1

6
, 1

6
- - - 7m+12mǫ

1∗ǫ - 2

3∗ǫ
, 1

3

2

3∗ǫ
, 1

3

5

6∗ǫ
1∗ǫ 1∗ǫ

1

6
, 1

6
, 1

3
, 1

3

1

3
, 1

3
, 1

3

1

3
, 1

3
, 1

3

1

3
, 1

3
, 1

3
12m+12mǫ−q

6

Stage 4 1∗ǫ - - - - - - 1

6
, 1

6
, 1

3
, 1

3

1

3
, 1

3
, 1

3

1

3
, 1

3
- 2m+2m

3
+12mǫ

(Final) 1∗ǫ - 1 1 1 1 1 1

6
, 1

6
, 1

3
, 1

3

1

3
, 1

3
, 1

3

1

3
, 1

3
1 11m+2m

3
+12mǫ

Table 7: The optimal schedule for Case 3.1. For each stage, the first row is the configuration

just before items arrival and the second row is the configuration at the end of the stage.

The very last row is the final configuration. Bolded entries are new items arrived in the

corresponding stage. The notation y∗z means packing a bin with a load y of z-items. ∗ Note

that in Stage 3, there are two phases: the first row shows the configuration right before the

items arrival in Phase 1 and the second row the end of both phases (in Phase 2, ǫ-items of

a size of 2p+q

6
departed).

bins 1 m + p q 2m−p−q 4m m 4m

O 1∗ǫ
2

3∗ǫ
, 1

3

5

6∗ǫ
1∗ǫ 1∗ǫ

1

6
, 1

6
, 1

3
, 1

3

1

3
, 1

3
, 1

3

total size: 12m + 12mǫ − q

6

bins: 12m + 1

We then proceed to Stage 4. Table 7 gives a summary of the packing of O while Table 8

shows the configuration of A right before items arrival in each stage with the final target

also shown in Figure 3(a).

• In Stage 4, we let 8m+ p items of size 1
3

and a total size of 6m+ 2m
3
− 2p+q

6
of ǫ-items

depart until the configuration of A is as follows. The number of 1
3
-items remained is

7m, 1
6
-items is 2m, and ǫ-items is 12m. Total size departed equals (9+ 1

3
)m− q

6
> 9m.

This configuration is possible because a1 + a2 ≥ 7m.

bins 12m 2m 7m

A ǫ 1

6

1

3

total size: 2m + 2m
3

+ 12mǫ

bins: 21m

bins 1 m m m

O 1∗ǫ
1

6
, 1

6
, 1

3
, 1

3

1

3
, 1

3
, 1

3

1

3
, 1

3

total size: 2m + 2m
3

+ 12mǫ

bins: 3m + 1

• Then release 9m items of size 1, requiring 9m new bins. Therefore, the total number

of bins used by A equals 12m+ 2m+ 7m+ 9m = 30m = 45k.

bins 12m 2m 7m 9m

A ǫ 1

6

1

3
1

total size: 11m + 2m
3

+ 12mǫ

bins: 30m

bins 1 m m m 9m

O 1∗ǫ
1

6
, 1

6
, 1

3
, 1

3

1

3
, 1

3
, 1

3

1

3
, 1

3
1

total size: 11m + 2m
3

+ 12mǫ

bins: 12m + 1

16

A : # bins 8m 2m m m 2m 7m 9m total

Stage 1 - - - - - - - 0

Stage 2 (2
3
+ǫ)∗ǫ (1

2
+ǫ)∗ǫ (1

3
+ǫ)∗ǫ ǫ - - - 6m+2m

3
+12mǫ

Stage 3 (2
3
+ǫ)∗ǫ (1

2
+ǫ)∗ǫ (1

3
+ǫ)∗ǫ ǫ 1

6
- - 7m+12mǫ

Stage 4 ǫ ǫ ǫ ǫ 1
6

1
3

- 2m+2m
3

+12mǫ

Final ǫ ǫ ǫ ǫ 1
6

1
3

1 11m+2m
3

+12mǫ

Table 8: The schedule of A for Case 3.1 right before items arrival in the corresponding

stages. The last row shows the final configuration. The notation y∗z means packing a bin

with a load y of z-items. The last column shows the total load of all the bins.

Case 3.2: 7m > a1 + a2 ≥ 2m

Before we move on to how the adversary continues, we first show how O packs items in

Stages 2 and 3.

2. In Stage 2, a total size of 16m
3

+ 12mǫ of ǫ-items departed with a total size of 6m +
2m
3

+ 12mǫ of ǫ-items remained from Stage 1. After the arrival of 32m items of size
1
6
-items, the configuration of O becomes

bins 2 m 4m m m 3m 2m

O 18

24 ∗ǫ

2

3∗ǫ
, 1

6
, 1

6
(1

3
−ǫ)∗ǫ, 4 × 1

6
(2

3
−ǫ)∗ǫ,

1

6
, 1

6
(1−ǫ)∗ǫ 1∗ǫ 6 × 1

6

total size: 12m + 12mǫ

bins: 12m + 2

3. In Stage 3, 30m items of size 1
6

and a total size of 2p+q

6
of ǫ-items departed. The

number of 1
3
-items arrived is 15m+ p. The configuration of O becomes

bins 2 m 4m m+p q m−p−q 3m 2m

O 18

24∗ǫ

2

3∗ǫ
, 1

6
, 1

6
(1

3
−ǫ)∗ǫ,

1

3
, 1

3
(2

3
−ǫ)∗ǫ,

1

3
(5

6
−ǫ)∗ǫ (1−ǫ)∗ǫ 1∗ǫ

1

3
, 1

3
, 1

3

total size: 12m + 12mǫ − q

6

bins: 12m + 2

We then proceed with the adversary. Table 9 gives a summary of the packing of O while

Table 10 shows the configuration of A right before items arrival in each stage with the final

target also shown in Figure 3(b). We have one more observation.

Observation 7. For Case 3.2, we have a2 + y ≥ 2m, i.e., a2 ≥ 2m− y.

Proof. The observation can be proved by using the inequalities x
6
+ 2y

3
+a2+ a1

3
≥ 4m (shown

in the proof of Observation 6), x ≤ 2m and a1 + a2 < 7m.

The remaining stages run as follows. Recall that in Stage 3, the configuration of A after

30m items of size 1
6

depart.

17

O : # bins 2 m 4m m p p q m−2p−q 3m 2m total

Stage 1 - - - - - - - - - - 0

1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 1∗ǫ 12m+2

Stage 2 18
24 ∗ǫ

2
3 ∗ǫ

(1
3
− ǫ)∗ǫ (2

3
−ǫ)∗ǫ (1−ǫ)∗ǫ (1−ǫ)∗ǫ (1−ǫ)∗ǫ (1−ǫ)∗ǫ 1∗ǫ - 6m+ 2m

3
+12mǫ

18
24 ∗ǫ

2
3 ∗ǫ

, 1
6
, 1
6

(1
3
− ǫ)∗ǫ, (2

3
−ǫ)∗ǫ, (1−ǫ)∗ǫ (1−ǫ)∗ǫ (1−ǫ)∗ǫ (1−ǫ)∗ǫ 1∗ǫ 6 ×

1
6

12m

4 ×
1
6

1
6

, 1
6

+12mǫ

Stage 3∗ 18
24 ∗ǫ

2
3 ∗ǫ

, 1
6
, 1
6

(1
3
− ǫ)∗ǫ (2

3
−ǫ)∗ǫ (1−ǫ)∗ǫ (1−ǫ)∗ǫ (1−ǫ)∗ǫ (1−ǫ)∗ǫ 1∗ǫ - 7m+12mǫ

18
24 ∗ǫ

2
3 ∗ǫ

, 1
6
, 1
6

(1
3
− ǫ)∗ǫ, (2

3
−ǫ)∗ǫ, (2

3
−ǫ)∗ǫ, (1−ǫ)∗ǫ (5

6
−ǫ)∗ǫ (1−ǫ)∗ǫ 1∗ǫ

1
3

, 1
3

, 1
3

12m

1
3
, 1
3

1
3

1
3

+12mǫ−
q

6

O : # bins+ 2 m 2m m m 2p+q 2m−2p−q 3m 2m total

Stage 4 18
24 ∗ǫ

2
3 ∗ǫ

, 1
6
, 1
6

(1
6
− ǫ)∗ǫ,

1
3

(1
6
− ǫ)∗ǫ,

1
3

(1
6
− ǫ)∗ǫ,

1
3

(1
6
−ǫ)∗ǫ,

1
3

(1
2
−ǫ)∗ǫ 1∗ǫ - 7m+12mǫ

18
24 ∗ǫ

2
3 ∗ǫ

, 1
6
, 1
6

(1
6
− ǫ)∗ǫ,

1
3
, (1

6
− ǫ)∗ǫ,

1
3
, (1

6
− ǫ)∗ǫ,

1
3
, (1

6
−ǫ)∗ǫ,

1
3
, (1

2
−ǫ)∗ǫ, 1∗ǫ

1
2

−
ǫ
4
, 1
2

−
ǫ
4

12m

1
2

−
ǫ
4

1
2
−

ǫ
4

1
2
−

ǫ
4

1
2
−

ǫ
4

1
2
−

ǫ
4

+9.5mǫ

Stage 5 18
24 ∗ǫ

2
3 ∗ǫ

, 1
6
, 1
6

(1
6
− ǫ)∗ǫ,

1
3

(1
6
− ǫ)∗ǫ,

1
3

(1
6
− ǫ)∗ǫ,

1
3

(1
6
−ǫ)∗ǫ,

1
3

(1
2
−ǫ)∗ǫ 1∗ǫ

1
2
−

ǫ
4

8m+11.5mǫ

18
24 ∗ǫ

2
3 ∗ǫ

, 1
6
, 1
6

(1
6
− ǫ)∗ǫ,

1
3
, (1

6
− ǫ)∗ǫ,

1
3
, (1

6
− ǫ)∗ǫ,

1
3
, (1

6
−ǫ)∗ǫ,

1
3
, (1

2
−ǫ)∗ǫ, 1∗ǫ

1
2
−

ǫ
4
, 1

2
+ ǫ

4
12m

1
2
+ ǫ

4
1
2
+ ǫ

4
1
2
+ ǫ

4
1
2
+ ǫ

4
1
2
+ ǫ

4
+13.5mǫ

Stage 6 12
24 ∗ǫ

1
6
, 1
6
, 1

3
1
3

1
3

1
3

1
3 ∗ǫ

1∗ǫ
1
2
−

ǫ
4
, 1
2
+ ǫ

4
7m+ m

3
+12mǫ

12
24 ∗ǫ

1
6
, 1
6
, 2

3
1
3
, 2

3
1
3
, 2

3
1
3
, 2

3
1
3
, 2

3
1
3 ∗ǫ

, 2
3

1∗ǫ
1
2
−

ǫ
4
, 1
2
+ ǫ

4
12m+12mǫ

Stage 7 12
24 ∗ǫ

1
6
, 1
6
, 2
3

1
3
, 2
3

2
3

- - - - 1
2
−

ǫ
4
, 1
2
+ ǫ

4
5m+ 2m

3
+12mǫ

(Final) 12
24 ∗ǫ

1
6
, 1
6
, 2
3

1
3
, 2
3

2
3

1 1 1 1 1
2
−

ǫ
4
, 1
2
+ ǫ

4
11m+ 2m

3
+12mǫ

Table 9: The optimal schedule for Case 3.2. For each stage, the first row is the configuration

just before items arrival and the second row is the configuration at the end of the stage.

The very last row is the final configuration. Bolded entries are new items arrived in the

corresponding stage. The notation y∗z means packing a bin with a load y of z-items. ∗ Note

that in Stage 3, there are two phases: the first row shows the configuration right before the

items arrival in Phase 1 and the second row the end of both phases (in Phase 2, ǫ-items of a

size of 2p+q

6
departed). + Note that the 4-6th columns with bins 2m,m,m are the 4m bins

in the 3rd column above while the column 2m−2p−q are the m and m−2p−q bins in the

5th and 9th columns above.

18

A : # bins 8m 2p+q 2m−2p−q m m y 2m−y 2m−y y 2m 2m 4m 6m total

Stage 1 - - - - - - - - - - - - - 0

Stage 2 (2

3
+ǫ)∗ǫ (1

2
+ǫ)∗ǫ (1

2
+ǫ)∗ǫ (1

3
+ǫ)∗ǫ ǫ - - - - - - - - 6m+2m

3
+12mǫ

Stage 3 (2

3
+ǫ)∗ǫ (1

2
+ǫ)∗ǫ (1

2
+ǫ)∗ǫ (1

3
+ǫ)∗ǫ ǫ 1

6

1

6
- - - - - - 7m+12mǫ

Stage 4 (1

2
+ǫ)∗ǫ (1

6
+ǫ)∗ǫ,

1

3
(1

2
+ǫ)∗ǫ (1

3
+ǫ)∗ǫ ǫ 1

6
, 1

3

1

6

1

3
, 1

3

1

3
- - - - 7m+12mǫ

Stage 5 (1

2
+ǫ)∗ǫ (1

6
+ǫ)∗ǫ,

1

3
(1

2
+ǫ)∗ǫ (1

3
+ǫ)∗ǫ ǫ 1

6
, 1

3

1

6

1

3
, 1

3

1

3

1

2
− ǫ

4
- - - 8m+11.5mǫ

Stage 6 (1

3
+ǫ)∗ǫ ǫ, 1

3
(1

3
+ǫ)∗ǫ (1

3
+ǫ)∗ǫ ǫ 1

6
, 1

3

1

6

1

3
, 1

3

1

3

1

2
− ǫ

4

1

2
+ ǫ

4
- - 7m+m

3
+12mǫ

Stage 7 ǫ ǫ ǫ ǫ ǫ 1

6

1

6

1

3

1

3

1

2
− ǫ

4

1

2
+ ǫ

4

2

3
- 5m+2m

3
+12mǫ

Final ǫ ǫ ǫ ǫ ǫ 1

6

1

6

1

3

1

3

1

2
− ǫ

4

1

2
+ ǫ

4

2

3
1 11m+2m

3
+12mǫ

Table 10: The schedule of A for Case 3.2 right before items arrival in the corresponding

stages. The last row shows the final configuration. The notation y∗z means packing a bin

with a load y of z-items. The last column shows the total load of all the bins.

bins 8m 2m m m 2m

A (2

3
+ ǫ)∗ǫ (1

2
+ ǫ)∗ǫ (1

3
+ ǫ)∗ǫ ǫ 1

6

total size: 7m + 12mǫ

bins: 14m

There were then 15m+p items of size 1
3

arrived and a further size of 2p+q

6
of ǫ-items departed.

A uses 2m more bins in this stage. At the end of Stage 3, A uses at least 16m bins.

4. In Stage 4, we keep a total size of 5m + m
3

+ 12mǫ − 2p+q

3
of ǫ-items, a total number

of 2m of 1
6
-items, and a total number of 4m + 2p + q of 1

3
-items; and let a total size

of 5m− q

6
of items depart until the configuration of A is as follows.

bins 8m 2p+q 2m−2p−q

A (1

2
+ ǫ)∗ǫ (1

6
+ ǫ)∗ǫ,

1

3
(1

2
+ ǫ)∗ǫ

m m y

(1

3
+ ǫ)∗ǫ ǫ 1

6
, 1

3

2m−y 2m−y y

1

6

1

3
, 1

3

1

3

total size: 7m + 12mǫ

bins: 16m

bins 2 m

O 18

24∗ǫ

2

3∗ǫ
, 1

6
, 1

6

4m 2p+q

(1

6
−ǫ)∗ǫ,

1

3
(1

6
−ǫ)∗ǫ,

1

3

2m−2p−q 3m

(1

2
−ǫ)∗ǫ 1∗ǫ

total size: 7m + 12mǫ

bins: 10m + 2

Next release 10m items of size 1
2
− ǫ

4
. For A, only bins of load 1

3
+ ǫ, ǫ, 1

6
, 1

3
and 1

2

can accommodate one such item, therefore, n4 ≥ (10m − 4m − y)/2 ≥ 2m because

y ≤ 2m. The number of bins used by A is at least 18m. The corresponding packing

configuration of O is

bins 2 m 4m 2p+q 2m−2p−q 3m 2m

O 18

24∗ǫ

2

3 ∗ǫ
, 1

6
, 1

6
(1

6
−ǫ)∗ǫ,

1

3
, 1

2
− ǫ

4
(1

6
−ǫ)∗ǫ,

1

3
, 1

2
− ǫ

4
(1

2
−ǫ)∗ǫ,

1

2
− ǫ

4
1∗ǫ

1

2
− ǫ

4
, 1

2
− ǫ

4

total size: 12m + 12mǫ − 2.5mǫ = 12m + 9.5mǫ

bins: 12m + 2

19

5. In Stage 5, we let 8m items of size 1
2
− ǫ

4
depart until the configuration of A is as follows.

bins 8m 2p+q 2m−2p−q

A (1

2
+ ǫ)∗ǫ (1

6
+ ǫ)∗ǫ,

1

3
(1

2
+ ǫ)∗ǫ

m m y

(1

3
+ ǫ)∗ǫ ǫ 1

6
, 1

3

2m−y 2m−y y

1

6

1

3
, 1

3

1

3

2m

1

2
− ǫ

4

total size: 8m+11.5mǫ

bins: 18m

bins 2 m

O 18

24∗ǫ

2

3∗ǫ
, 1

6
, 1

6

4m 2p + q

(1

6
−ǫ)∗ǫ,

1

3
(1

6
−ǫ)∗ǫ,

1

3

2m−2p−q 3m

(1

2
−ǫ)∗ǫ 1∗ǫ

2m

1

2
− ǫ

4

total size: 8m+11.5mǫ

bins: 12m + 2

Release 8m items of size 1
2
+ ǫ

4
. For A, only bins of load 1

3
+ ǫ, ǫ, 1

6
, 1

3
, and 1

2
− ǫ

4
can

accommodate one such item, therefore, n5 ≥ 8m−m−m−(2m−y)−y−2m = 2m. The

number of bins used by A is at least 20m. The corresponding packing configuration

of O is

bins 2 m 4m 2p+q 2m−2p−q 3m 2m

O 18

24∗ǫ

2

3 ∗ǫ
, 1

6
, 1

6
(1

6
−ǫ)∗ǫ,

1

3
, 1

2
+ ǫ

4
(1

6
−ǫ)∗ǫ,

1

3
, 1

2
+ ǫ

4
(1

2
−ǫ)∗ǫ,

1

2
+ ǫ

4
1∗ǫ

1

2
− ǫ

4
, 1

2
+ ǫ

4

total size: 12m + 12mǫ + 1.5mǫ = 12m + 13.5mǫ

bins: 12m + 2

6. In Stage 6, we keep a total size of 3m+ 2m
3

+ 12mǫ− 2p+q

3
of ǫ-items, a total number

of 2m of 1
6
-items, a total number of 4m+ 2p + q of 1

3
-items, a total number of 2m of

1
2
− ǫ

4
-items, and a total number of 2m of 1

2
+ ǫ

4
-items. We let 6m items of size 1

2
+ ǫ

4
and

a total size of m+ 2m
3

of ǫ-items depart until the configuration of A is as follows.

bins 8m 2p+q 2m−2p−q

A (1

3
+ ǫ)∗ǫ ǫ, 1

3
(1

3
+ ǫ)∗ǫ

m m y

(1

3
+ ǫ)∗ǫ ǫ 1

6
, 1

3

2m−y 2m−y y

1

6

1

3
, 1

3

1

3

2m 2m

1

2
− ǫ

4

1

2
+ ǫ

4

total size: 7m + m
3

+ 12mǫ

bins: 20m

bins 2 m

O 12

24∗ǫ

1

6
, 1

6

4m 2p+q

1

3

1

3

2m−2p−q 3m

1

3∗ǫ
1∗ǫ

2m

1

2
− ǫ

4
, 1

2
+ ǫ

4

total size: 7m + m
3

+ 12mǫ

bins: 12m + 2

We release 7m items of size 2
3
. For A, only bins of load ǫ, 1

6
and 1

3
can accommodate

such item, therefore, n6 ≥ 7m −m − (2m − y) − y = 4m. The number of bins used

by A is at least 24m. The corresponding configuration of O is

20

bins 2 m 4m 2p+q 2m−2p−q 3m 2m

O 12

24∗ǫ

1

6
, 1

6
, 2

3

1

3
, 2

3

1

3
, 2

3

1

3∗ǫ
, 2

3
1∗ǫ

1

2
− ǫ

4
, 1

2
+ ǫ

4

total size: 12m + 12mǫ

bins: 12m + 2

7. In Stage 7, we keep 12m items of size ǫ, 2m items of size 1
6
, 2m items of size 1

3
, 2m

items of size 1
2
− ǫ

4
, 2m items of size 1

2
+ ǫ

4
, and 4m items of size 2

3
. We let a total size

of 6m+ m
3

of items depart until the configuration of A is as follows.

bins 12m 2m 2m

A ǫ 1

6

1

3

2m 2m 4m

1

2
− ǫ

4

1

2
+ ǫ

4

2

3

total size: 5m + 2m
3

+ 12mǫ

bins: 24m

bins 2 m 2m

O 12

24∗ǫ

1

6
, 1

6
, 2

3

1

3
, 2

3

m 2m

2

3

1

2
− ǫ

4
, 1

2
+ ǫ

4

total size: 5m + 2m
3

+ 12mǫ

bins: 6m + 2

We then release another 6m items of size 1, therefore, n7 = 6m. The total number of

bins used by A is 30m = 45k.

bins 12m 2m 2m 2m

A ǫ 1

6

1

3

1

2
− ǫ

4

2m 4m 6m

1

2
+ ǫ

4

2

3
1

total size: 11m + 2m
3

+ 12mǫ

bins: 30m

bins 2 m 2m

O 12

24∗ǫ

1

6
, 1

6
, 2

3

1

3
, 2

3

m 2m 6m

2

3

1

2
− ǫ

4
, 1

2
+ ǫ

4
1

total size: 11m + 2m
3

+ 12mǫ

bins: 12m + 2

In summary, for all three cases, A uses 30m = 45k bins while there is a schedule that

uses at most 12m+ 2 = 18k + 2 bins and thus Theorem 1 follows.

3 1-competitive if and only if size-2 bins are used

In this section, we show that using size-2 bins is both necessary (Theorem 9) and sufficient

(Theorem 8) to achieve 1-competitiveness. Any-fit (AF) is an algorithm that always packs

a new item into a non-empty bin arbitrarily as long as the bin can accommodate the item.

Theorem 8. Any fit algorithm with size-2 bins is 1-competitive.

Proof. Suppose AF uses n size-2 bins for a sequence of items. When AF first uses n bins

due to the arrival of a new item X (size ≤ 1), all the existing n − 1 bins must have a load

greater than 1, otherwise, X can be packed into one of these bins and AF does not need

to open a new bin. In other words, the total load of items is at least n − 1 + s where s

is the size of X. Any algorithm using unit-size bins needs at least n bins to pack all these

items. Therefore, the maximum number of size-2 bins used by AF is at most that used by

the optimal off-line algorithm.

21

Theorem 9. No on-line algorithm can be 1-competitive by using size-x bins, for any x < 2.

Proof. Suppose x = 2 − ǫ, for some small ǫ > 0. Let k be a positive integer such that
2
k
≥ ǫ > 1

k
. Notice the size satisfies the property 2− 2

k
≤ 2−ǫ = x < 2− 1

k
. The adversary

works in two phases.

In the first phase, release k3 items of size 1
k
. The total load of the items is k2 and all

items can be packed into k2 unit-size bins. If the on-line algorithm uses more than k2 bins,

we are done. So we only need to consider the case in which the on-line algorithm uses at

most k2 bins. We are going to prove that the on-line algorithm uses at least 2k bins with

load at least 1− 1
k
. Let Y be the number of such bins. Note that the maximum possible load

of items of size 1
k

in a size-(2−ǫ) bin is 2− 2
k

and the maximum possible load of items of size
1
k

such that the load is strictly less than 1− 1
k

is 1− 2
k
. Then the total load accommodated by

the on-line algorithm is at most Y (2− 2
k
)+ (k2−Y)(1− 2

k
) = k2 −2k+Y . This load cannot

be smaller than the total load of items, i.e, k2 − 2k + Y ≥ k2. In other words, Y ≥ 2k.

In the second phase, we retain a load of 1−1
k

in k bins and let all other items depart.

Then release k2 − k + 1 items of size 1. Notice that none of these items can be packed into

an existing bin because 1 + 1− 1
k

is greater than x, the size of the bin. Therefore, the total

number of bins used by the on-line algorithm is k2 + 1.

On the other hand, the optimal off-line algorithm can pack the items released in the first

phase in a way that those retained in the second phase are packed into k − 1 bins and the

departing items into the other k2 − k + 1 bins. The latter bins can be reused for the size-1

items released in the second phase. Hence, the maximum number of unit-size bins used by

the optimal off-line algorithm is k2, which is strictly smaller than the maximum number of

size-x bins used by the on-line algorithm, i.e., the on-line algorithm is not 1-competitive.

4 Trade-off between bin size and competitive ratio

In this section, we discuss results where the on-line algorithm uses bins of size 1 < b < 2

while the optimal off-line algorithm uses bins of unit size. We first give a general lower

bound for any on-line algorithm. Then we analyze the performance of first-fit (packs to the

first bin that can fit), best-fit (heaviest loaded bin) and worst-fit (lightest loaded bin) giving

their upper bounds.

4.1 General lower bound for 1 < b < 2

In this section, we describe two adversaries, one gives better lower bound for 1 < b < 1.5

and the other for 1.5 ≤ b < 2. The first adversary attempts to obtain the following lemma.

Lemma 10. No on-line algorithm using size-b bins can be better than 2
b
-competitive.

Proof. Consider any on-line algorithm A. Let ǫ be a small constant such that 1
ǫ

is an integer

and k = 1
ǫ
−2. The adversary runs in 3 stages, using items of 3 sizes: ǫ, b

2
+ǫ and 1, each type

arriving in different stage. Roughly speaking, ǫ-items are released in Stage 1; items depart

in Stage 2 so that a (b
2
+ǫ)-item can be packed into existing bins but not a 1-item; finally in

22

b

k(2

b
− 1)k(2

b
− 1) 2k(1 − 1

b
)

(b−1+ǫ)∗ǫ
b

2
+ǫb

2
+ǫ 11

Figure 4: The final configuration of the on-line algorithm achieved by the adversary in

Lemma 10.

Stage 3, more items depart so that all 1-items arriving have to be packed in separate new

bins. The exact number of items arriving and departing are as follows.

1. Release ǫ-items of total size k. If A uses more than 2k
b

bins, we are done. If A uses at

most 2k
b

bins, we claim that there must be at least (2
b
− 1)k bins with load ≥ b− 1+ ǫ,

otherwise, the total possible load accommodated by A is less than ((2
b
− 1)k − 1)b +

(k + 1)(b− 1 + ǫ) = k − 1 + (k + 1)ǫ < k, contradiction.

2. Let items depart until the configuration of A becomes { k(2
b
− 1):(b− 1 + ǫ)∗ǫ }.

Then release k items of size b
2
+ǫ. At most one such item can be packed into an existing

bin or an empty bin. So, at least k − (2
b
− 1)k = 2k(1 − 1

b
) new bins are opened.

3. Let items depart until the configuration of A is { k(2
b
−1):(b−1+ǫ)∗ǫ, 2k(1− 1

b
):(b

2
+ǫ) }.

Finally, release k(2
b
− 1) items of size 1. None of the items can be packed into existing

bins, thus, another (2
b
− 1)k new bins are opened. Number of bins used becomes 2k

b
.

(See Figure 4.)

Note that k(2
b
− 1) + 2k(1− 1

b
) = k. Now, we show that there is a schedule that uses at

most k +O(1) unit-size bins at any time. To achieve this, at the end of Stage 3, we require

that the ǫ-items and (b
2

+ ǫ)-items to be packed into at most k − (2
b
− 1)k +O(1) bins, i.e.,

2k(1 − 1
b
) + O(1) bins. Since ǫ is a small constant, it is possible to pack ǫ-items with a

(b
2

+ ǫ)-item to make a load of very close to 1, precisely, at least 1−ǫ. It can be verified

that the total size of ǫ-items and (b
2

+ ǫ)-items, i.e., k(2
b
− 1)(b− 1 + ǫ) + 2k(1 − 1

b
)(b

2
+ ǫ),

equals 2k(1− 1
b
) +O(1), implying that they can be packed into 2k(1− 1

b
) +O(1) bins. This

implies a packing for Stage 2 such that the rest of the k − 2k(1 − 1
b
) items of size b

2
+ ǫ are

each packed into a separate unit-sized bin and the total number of bins used is k+O(1). In

Stage 1, the ǫ-items can be packed into the k +O(1) bins since the total size is only k.

The second adversary makes use of unit fraction items, i.e., in the form 1
w
, for some

integer w. Let m be the largest integer such that b − 1
m
< 1 and let k = m!(m − 1)!. We

define the functions α(i) and β(i) for any positive integer 1 ≤ i ≤ m as follows. Let α(1) =

k, β(i) =
∑i

j=1 α(j),

α(i) = β(i− 1)
(

m+1−i
m+2−i

− m−i
m+1−i

)

.

In other words, α(i) = β(i−1)
(m+2−i)(m+1−i)

. E.g., α(2) = k
m(m−1)

, α(3) =
k+ k

m(m−1)

(m−1)(m−2)
.

Before we show the lemma for the second adversary, we state the following property to

be used in the analysis.

23

Fact 11. Both α(i) and β(i) are integer multiples of (m− i+ 1)!(m− i)!

Proof. By definition, α(1) = β(1) = m!(m − 1)!, the fact is true for i = 1. Suppose the

fact is true for all j ≤ p for some p. By definition, α(p + 1) = β(p)
(m+1−p)(m−p)

which is a

multiple of (m − p)!(m − p − 1)!, by the induction hypothesis. Also by induction, β(p) is

a multiple of (m − p + 1)!(m − p)!, i.e., β(p) is also a multiple of (m − p − 1)!(m − p)!.

Notice that β(p + 1) = β(p) + α(p + 1) and since both β(p) and α(p + 1) are multiples of

(m− p)!(m− p− 1)!, β(p+ 1) is also a multiple of (m− p)!(m− p− 1)!.

Lemma 12. No on-line algorithm using size-b bins, for 1 < b < 2, can be better than
β(m)

m!(m−1)!
-competitive, where m is the largest integer such that b− 1

m
< 1.

Proof. Consider any on-line algorithm A. The adversary runs in m stages. In Stage 1, we

release 1
m

-items up to a total size of k, i.e., km such items. For each stage 2 ≤ i ≤ m, we let

some items released in previous stage depart and then release some 1
m+1−i

-items, such that

in Stage i, the following invariants are maintained: (1) items of a total size β(i − 1)m+1−i
m+2−i

depart and the same size of 1
m+1−i

-items are released, keeping the total size of items being k;

and (2) A uses at least α(i) new bins at the end of the stage. Stage i proceeds as follows.

a. Retain one 1
m+2−i

-item from each of the α(i− 1) new bins used in Stage i− 1 and let all

other 1
m+2−i

-items depart, i.e., only retain α(i− 1) such items.

b. Release items of size 1
m+1−i

until the total size of all items is k.

We are going to prove by induction that the invariants are maintained. Notice that the

total size of items that we have considered is always an integer, which can be showed to be

a consequence of Fact 11.

We first show that the invariants hold for Stage 2. The total size of 1
m

-items departed

equals β(1)−α(1) 1
m

= β(1)m−1
m

. A total size of β(1)m−1
m

items of size 1
m−1

are then released.

Notice that at most m − 2 such items can be packed into an existing bins, otherwise, the

load of a bin is at least 1
m

+ 1 > b, by the definition of m. In other words, a total size of at

least β(1)(m−1
m

− m−2
m−1

) items cannot be packed into existing bins, implying that A needs at

least α(2) new bins. Therefore, the invariants hold for Stage 2.

Suppose the invariants hold for all stages up to Stage p for some p ≥ 2. Consider

Stage p + 1. The total size of items departed equals β(p − 1)m+1−p

m+2−p
− α(p − 1) 1

m+1−p
. By

some arithmetic, we can show that this equals β(p) m−p

m+1−p
. After the departure, every existing

bin has a load of at least 1
m

. Using a similar argument as the base case, at most m−p−1

items of size 1
m−p

released in this stage can be packed into existing bins, leaving a total size

of β(p) m−p

m+1−p
− β(p)m−p−1

m−p
to be packed into at least α(p + 1) new bins. Therefore, the

invariants also hold for Stage p+ 1. At the end of Stage m, A uses a total of at least β(m)

bins.

Consider the optimal off-line algorithm. Note that the total size of items at any time

is kept at k. Furthermore, the total size of items of the same type of items departing and

arriving is always an integer because of Fact 11, and since the item size is unit fraction,

we can always pack the same type of item fully into the same unit-size bin. Therefore, the

optimal off-line algorithm only needs k bins.

24

The corollary below follows directly from Lemmas 10 and 12 (see Figure 5 for the trend).

Corollary 13. No on-line algorithm using size-b bins is better than max{ β(m)
m!(m−1)!

, 2
b
}-

competitive, where m is the largest integer such that b− 1
m
< 1.

4.2 Performance of First-Fit for 1 < b < 2

We first analyze the upper bound of the first-fit algorithm (FF) using size-b bins. To simplify

the discussion, we refer to two properties pointed out by Coffman et al. [7]. (1) We can focus

on the input sequences such that the maximum number of bins used by FF when the last

item is packed and not before. (2) No non-empty bin ever becomes empty during the

execution of FF on input sequences satisfying the first property. It can be shown [7] that

the two properties are satisfied because FF will work out the same packing for the modified

input sequence, e.g., a modified sequence in which the items packed to that non-empty bin

are removed. By the second property, we can label the non-empty bins by the order they

became non-empty, i.e., bin i refers to the i-th bin used by FF, and the labels never change.

Theorem 14. The competitive ratio of FF using size-b bins is at most min{2b+1
2b−1

, 5−b
(2b−1)

,
b2+3

b(2b−1)
}.

Proof. Let k denote the maximum number of bins used by the optimal off-line algorithm

using unit-size bins and n be the maximum number of size-b bins used by FF. Suppose x

is the largest labelled among the bins (i.e., the last bin) that FF ever packs an item of

size ≤ 1/2. Let B be the last bin that FF opens with an item of size ≤ b/2. When FF

opens B, let y be the number of bins (including B) with label > x whose smallest item has

a size in the range (1/2, b/2]. Let z = n − x − y. We claim that the following inequalities

hold.

(x− 1)(b− 1
2
) ≤ k (1)

xb
2

+ (y − 1) ≤ k (2)

(x+ y)(b− 1) + zb
2

≤ k (3)

x(b− 1) + y

2
+ zb

2
≤ k (4)

y + z ≤ k (5)

(1) When FF packs an item of size at most 1
2

into the x-th bin, all existing bins must have

a load at least b− 1
2
, otherwise, FF would pack the item into those bins instead. The total

item size is ≥ (x− 1)(b− 1
2
), which must be ≤ k, the total size that can be accommodated

by the optimal off-line algorithm using unit-size bins; Inequality (1) follows. (2) When FF

opens the bin B with an item of size ≤ b
2
, the first x bins must have load at least b

2
; and there

must be at least y− 1 bins with label > x containing two items of size at least 1
2
, otherwise,

there will be a bin with load ≤ b
2

and FF does not need to open B. Thus, Inequality (2)

follows. (3) When FF packs the first item into bin-n, all existing bins must have a load at

least b − 1 (otherwise, FF can pack the item in those bins instead of opening a new bin)

and there must be z bins containing an item of size ≥ b
2
. (4) A similar argument gives

25

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.2 1.4 1.6 1.8 2

co
m

pe
tit

iv
e

ra
tio

bin size

BF upper/lower bound
WF upper bound
WF lower bound
FF upper bound

General lower bound

Figure 5: Trade-off between bin size b and competitive ratio.

Algorithm upper bound lower bound

BF
1

b− 1

1

b− 1

WF
4

b2
min{2 + b

b
,
b2 − 8b+ 20

4b
}

FF min{2b+ 1

2b− 1
,

5 − b

(2b− 1)
,
b2 + 3

b(2b− 1)
} max{ β(m)

m!(m− 1)!
,
2

b
}

Table 11: Summary of results for bin size 1 ≤ b < 2.

Inequality (4). (5) is due to the fact that items packed to the last y + z bins must have

size greater than 1
2
, each of them must be packed into a different bin in the optimal off-line

algorithm that uses unit-size bins.

Using Inequalities (1) and (5), we have (i) x+ y + z ≤ 2k
2b−1

+ 1 + k = 2b+1
2b−1

k + 1. Using

Inequalities (1), (2) and (3), we can show that (ii) x+y+z ≤ 5−b
(2b−1)

k+O(1). Inequalities (1),

(2) and (4) give (iii) x+ y + z ≤ b2+3
b(2b−1)

k +O(1). Together the theorem follows.

Figure 5 shows how the competitive ratio of FF varies with b. Notice that our formula

in Theorem 14 reaches the value 1 when b = 2 matching Theorem 8; yet when b = 1, the

value is 3, not matching the existing best upper bound of 2.788 [7]. We leave it as an open

question to close the gap between the upper and lower bounds.

4.3 Performance of Best-Fit and Worst-Fit for 1 < b < 2

To have a more complete picture about the performance of the class of any-fit algorithms, we

also study the performance of best-fit (BF) and worst-fit (WF) (see the upper three curves

in Figure 5 and Table 11).

26

Theorem 15. (i) BF using size-b bins is 1
b−1

-competitive, this bound is tight. (ii) WF

using size-b bins is 4
b2

-competitive; on the other hand, its competitive ratio is no better than

min{2+b
b
, b2−8b+20

4b
}.

Proof. Upper bound of BF. Suppose BF uses a maximum of n bins. When BF first packs

an item into bin n, the load of each of the other n − 1 bins for i < n is at least b − 1,

otherwise, BF can pack the item into those bins instead of opening a new bin. Therefore,

the optimal off-line algorithm needs k ≥ (n−1)(b−1) bins, and hence the competitive ratio

of BF is at most 1
b−1

since n ≤ k
b−1

+ 1.

Upper bound of WF. Let k denote the maximum number of unit-size bins used by the

optimal off-line algorithm. Suppose WF uses a maximum of n size-b bins. Let x be the

number of bins that do not contain items of size > b
2

at the time instance t1 when WF packs

the first item into bin n. For each of these x bins, say Bi, let tBi
≤ t1 be the latest time

instance such that Bi changes from empty to non-empty. Let B be the bin such that tB is

the largest. Let y = n− x. We claim the following inequalities hold.

yb

2
+ x(b− 1) ≤ k (6)

(x− 1) b
2

≤ k (7)

The inequalities can be proved in a similar way as in the analysis for FF.

(6) At t1, WF has packed an item of size greater than b
2

into n−x bins (by the definition

of x). Furthermore, at t1, WF packs an item into bin n, thus, each of the first n−1 bins must

have at least a load of b− 1. Therefore, the total load of items at t1 is at least y b
2
+x(b− 1).

(7) Consider the time instance tB. There are two cases for the item that WF packs

into B: the size of the item is less than or equal to b
2
, and the size is greater than b

2
. In the

former case, the total load of items at tB is at least (x− 1)(b− b
2
) = (x− 1) b

2
. In the latter

case, bin B has an item of size greater than b
2

at tB but no such item at t1. Therefore, there

must be a time instance that WF packs an item to bin B while its load is at least b
2
. By the

property of WF, the load of all the other bins is also at least b
2

at that time instance, i.e.,

the total load is at least (x − 1) b
2
; otherwise, WF should have packed the item into those

bins instead. In both cases, the total load at tB is at least (x− 1) b
2
.

By the two inequalities and simple arithmetic, we can show that n = x + y ≤ 4
b2

+ 1.

The lower bounds for both BF and WF will be given below. It is worth mentioning that the

lower bound of BF can be extended to the case where b = 1 so that the competitive ratio of

BF is unbounded.

Lower bound of BF. Recall that BF packs a newly arrived item to the heaviest loaded

bin that can fit the item. Roughly speaking, the adversary runs in stages and attempts to

make BF use one more bin in each stage each with load just less than b
2

(all being small

items) at the end of the stage. To force BF to do this, an (large) item of size just greater

than b
2

arrives in each stage, followed by some small items of total size just less than b
2
; then

the large item departs. The sizes of the items are set in a way such that BF has to use a

new bin for the large item, making this bin of higher priority for packing the small items

arriving in the same stage. Precisely, the adversary works as follows.

Let k be an arbitrarily large integer. We define a sequence of small positive constants ǫi,

for 1 ≤ i ≤ k, such that (i) ǫ1 < min{1− b
2
, b−1}, and (ii) ǫi+1 = ǫi

2
. To simplify the proof,

27

we assume that we can pick an ǫk satisfying the above properties such that b− 1 is divisible

by ǫk (the other case can be proved similarly). The adversary runs in k stages.

In Stage 1, b−1+ǫ1
ǫk

items of size ǫk are released, i.e., a load of b−1+ ǫ1 is released. In each

subsequent stage, Stage i for 2 ≤ i ≤ k, an item of size 1−ǫi−1+ǫi is first released, followed

by b−1+ǫi

ǫk
items of size ǫk, and then the (1−ǫi−1+ǫi)-item departs. Notice the following

properties of the items released:

1. The load of ǫk items released in each stage is less than b
2

because b− 1 + ǫ1 < b− 1 +

(1 − b
2
) = b

2
and the number of ǫk items released in each stage is decreasing as ǫi is

decreasing.

2. The size of the (1−ǫi−1+ǫi)-item released in Stage i, for i ≥ 2 is larger than b
2

since

1 − ǫi−1 + ǫi = 1 − ǫi−1

2
> 1 − ǫ1 ≥ 1 − (1 − b

2
) = b

2
.

3. All the items released in the same stage can be packed into a single bin of size b because

(1 − ǫi−1 + ǫi) + ǫk
b−1+ǫi

ǫk
= b− ǫi−1 + 2ǫi = b.

With these properties, we will show that BF uses ≥ k bins while the optimal off-line algo-

rithm uses ≤ k(b− 1) + 2 bins, implying that BF is no better than 1
b−1

-competitive.

We claim that in each stage, BF packs the newly arrived items into a new bin making

its load become b− 1 + ǫi at the end of the stage. The claim holds for Stage 1 because BF

packs all those items into a single bin whose load becomes b − 1 + ǫ1. Assume the claim

holds up to Stage i.

In Stage i+1, BF must pack the new (1−ǫi−1+ǫi)-item into a new bin, otherwise, if it is

packed into an existing bin 1 ≤ j ≤ i, the load of this bin becomes (b−1+ǫj)+(1−ǫi+ǫi+1) =

b + ǫj − ǫi+1 > b because ǫi+1 = ǫi

2
< ǫj , contradiction. Note that the load of any existing

i bins is at most b − 1 + ǫ1 and the load of the new bin is 1 − ǫi + ǫi+1. By Property (2)

above, the load of the new bin is the highest among all bins. Therefore, BF packs the

further arriving items of size ǫk into the new bin instead of the existing bins (this can be

done because of Property (3)). The departure of the 1−ǫi+ǫi+1 item leaves the new bin to

have a load of b− 1 + ǫi+1 and the claim holds for Stage i+ 1. Thus, BF uses k bins.

On the other hand, the optimal off-line algorithm can use a dedicate bin to store the

1 − ǫi + ǫi+1 items (at any time, there is at most one such item), and k(b − 1) + 1 bins to

store the ǫk items because the total load of such items is k(b − 1) +
∑

ǫi ≤ k(b − 1) + 2ǫ1.

Altogether the optimal off-line algorithm only uses k(b − 1) + 2 bins. Therefore, BF using

size-b bins, b > 1, is no better than 1
b−1

-competitive.

Lower bound of WF. Recall that WF packs a newly arrived item to the lightest loaded

bin that can fit the item. Let k be an arbitrarily large integer constant such that kb is

an integer. The adversary attempts to first force WF to use 2k bins each with a load just

more than b
2
. Then some items depart from the first 2k bins and items with increasing size

are released, this repeats until the load of each of the first 2k bins is just more than b − 1.

Finally, more items of size 1 are released, which have to be packed into some new bins. We

are going to show that WF uses min{(2 + b)k, (b2−8b+20)k
4

} + O(1) bins while the optimal

off-line algorithm uses ≤ kb+ 3 bins.

28

Let x = (b − 1)k + 1, and y = b
2
k + 1 . Intuitively, x and y are the minimum numbers

of items of size 1
k

required to make the load of a bin greater than b− 1 and b
2
, respectively.

The adversary works in 3 stages. In Stage 1, the following steps are repeated for 2k times:

(i) an item of size b
2

is released, (ii) followed by an item with size 1
k
, (iii) the item with size

b
2

departs, and (iv) finally y − 1 items of size 1
k

are released. Consider how WF packs the

above item into bins of size b. We observe that after every round of the 4 steps, WF uses

one more bin and each of the existing bins contains y items of size 1
k
, i.e., has a load of more

than b
2
. The base case is easy. Assume the observation holds after some round. Then, the

newly released item of size b
2

cannot be packed into any existing bin, requiring a new bin.

The 1
k
-item followed is also packed into a new bin because WF packs to the lightest load

bin (all existing bins have load > b
2
). After the departure of the b

2
item, the new bin used

has the lightest load among the others, and so all the remaining y− 1 items are packed into

this bin as well, making its load y

k
> b

2
.

Stage 2 is divided into y − x rounds. In round j, for 1 ≤ j ≤ y − x− 1, an 1
k
-item from

each of the bins used in Stage 1 departs, then 2 items of size y+j

k
are released. We claim that

at the end of round j, for any 1 < j < y − x − 1, WF uses 2k + 2j bins and each of them

has a load ≥ y−j

k
. In round 1, the newly arrived y+1

k
-items have to be packed into a new bin

because each of the first 2k bins have a load of y−1
k

after items departed and y+1
k

+ y−1
k
> b.

The 2 newly arrived y+1
k

-items are also packed into 2 different bins because their size is > b
2
.

Two new bins are used and thus the claim holds for round 1. Assume that the claim holds for

round j. In round j+1, all of the existing bins have a load of ≥ y−j−1
k

after items departed.

The newly arrived y+j+1
k

-items have to be packed into a new bin because y−j−1
k

+ y+j+1
k

> b.

The two newly arrived y+j+1
k

-items also have to be packed into 2 different bins because their

size > b
2
. WF uses 2k + 2j + 2 bins, each has a load ≥ y−j−1

k
, and the claim holds. At the

end of Stage 2, WF uses 2k+ 2(y− x− 1) = 2k+ k(2− b) bins and each of them has a load

≥ x
k
.

In Stage 3, items of size 1 are released. The amount of 1-items are set in a way such

that the optimal off-line algorithm can pack all items into kb + 3 bins as we claimed. In

other words, we require that (i) the number of 1-items plus the number of items of size

larger than b
2
> 1

2
(those released in Stage 2) does not exceed kb + 3 since each of these

items have to be packed in a separate bin of size 1; and (ii) the number of 1-items plus the

total item size left at the end of Stage 2 does not exceed kb+ 3. By arithmetic, this means

min{2(b− 1)k, (b2−4b+4)k
4

} items with size 1 are released (note that we can pick k in such a

way that it is divisible by 4). In this stage, all the min{2(b − 1)k, (b2−4b+4)k
4

} items of size

1 have to be packed into different new bins because x
k

+ 1 > b and b < 2. Combining the 3

stages, WF uses min{(2 + b)k, (b2−8b+20)k
4

} +O(1) bins at the end of Stage 3.

On the other hand, during Stage 1, the optimal off-line algorithm can use 1 bin to hold

the item with size b
2
, and pack the other items with 1

k
into kb + 2 bins. The 1

k
items are

arranged such that the departing items in Stage 2 comes from 2 groups, the group G1

consists of 2((2−b)k
2

) bins, and the group G2 consists of min{2(b− 1)k, (b2−4b+4)k
4

} bins. Note

that in each round of Stage 2, total size of items depart is 2, and total size of items release

≤ 2. The items are arranged such that in round j of Stage 2, (y + j) items depart from 2

of the bins in G1, and remaining items depart from bins in G2. The space in the 2 bins

29

of G1 can be reused to pack the 2 newly released size y+j

k
items, and the space in G2 can

be later reused to pack the size 1 items in Stage 3. Hence, the number of bins used by the

optimal off-line algorithm is at most kb + 1. As a result, WF using size-b bins is no better

than min{2+b
b
, (b2−8b+20)

4b
}-competitive.

5 Concluding remarks

In this paper, we have shown a 2.5 lower bound for dynamic bin packing, revealing that

dynamic bin packing of general items is more difficult than unit fraction items. An open

question is to close the gap between this 2.5 lower bound and the 2.788 upper bound [7]. We

believe it is possible to push down the upper bound by analyzing some modified version of

FF. One can also analyze other algorithms, like the class of Harmonic algorithms [18], yet our

preliminary study showed that some versions of Harmonic algorithm have a non-constant

lower bound for DBP; further investigation on other variants of Harmonic algorithms is

desirable. We also give the first resource augmentation analysis for dynamic bin packing,

showing that doubling bin size is both necessary and sufficient to achieve 1-competitiveness.

Trade-off between bin size and competitive ratio is also studied. Note that the formula

derived for the upper bound of FF does not yet match the general lower bound. We are

attempting to give tighter bounds to close the gap.

References

[1] A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted version

of bin packing. ACM Transactions on Algorithms, 3(3), 2007.

[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, 1998.

[3] W. T. Chan, T. W. Lam, and P. W. H. Wong. Dynamic bin packing of unit fractions

items. In Proceedings of the 32nd International Colloquium on Automata, Languages

and Programming (ICALP), volume 3580 of Lecture Notes in Computer Science, pages

614–626. Springer. 2005.

[4] E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor, R. R.

Weber, and M. Yannakakis. Bin packing with discrete item sizes, Part I: Perfect packing

theorems and the average case behavior of optimal packings. SIAM Journal Discrete

Mathematics, 13:38–402, 2000.

[5] E. G. Coffman, Jr., G. Galambos, S. Martello, and D. Vigo. Bin packing approximation

algorithms: Combinatorial analysis. In D.-Z. Du and P. M. Pardalos, editors, Handbook

of Combinatorial Optimization, Kluwer Academic Publishers, 1998.

[6] E. G. Coffman, Jr., M. Garey, and D. Johnson. Bin packing with divisible item sizes.

Journal of Complexity, 3:405–428, 1987.

30

[7] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM

Journal on Computing, 12(2):227–258, 1983.

[8] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms for bin

packing: A survey. In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard

Problems, PWS Publishing, pages 46–93, 1996.

[9] E. G. Coffman, Jr., D. S. Johnson, L. A. McGeoch, P. W. Shor, and R. R. Weber. Bin

packing with discrete item sizes, Part III: Average case behavior of FFD and BFD. In

preparation.

[10] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber. Bin packing with

discrete item sizes, Part II: Tight bounds on first fit. Random Structures and Algorithms,

10:69–101, 1997.

[11] J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat and

G. J. Woeginger, editors, On-line Algorithms—The State of the Art, volume 1442 of

Lecture Notes in Computer Science, pages 147–177. Springer. 1996.

[12] J. Csirik and G. J. Woeginger. Resource augmentation for online bounded space bin

packing. Journal of Algorithms, 44(2):308–320, 2002.

[13] L. Epstein and R. van Stee. Online bin packing with resource augmentation. In G. Per-

siano and R. Solis-Oba, editors, Proceedings of the Second International Workshop on

Approximation and Online Algorithms (WAOA), volume 3351 of Lecture Notes in Com-

puter Science, pages 23–35. Springer. 2004.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979.

[15] Z. Ivkovic and E. L. Lloyd. Fully dynamic algorithms for bin packing: Being (mostly)

myopic helps. SIAM Journal on Computing, 28(2):574–611, 1998.

[16] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of

ACM, 47(4):617–643, 2000.

[17] S. S. Seiden. On the online bin packing problem. Journal of ACM, 49(5):640–671, 2002.

[18] A. van Vliet. An improved lower bound for on-line bin packing algorithms. Information

Processing Letter, 43(5):277–284, 1992.

31

