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1. INTRODUCTION

Let X and Y be two absolutely continuous non-negative random variables (rv’s), which
may be assumed as lifetimes of two components of a system. The probability density
function (pdf), cumulative distribution function (cdf) and survival function (sf) of X
are respectively denoted by f , F and F̄ ; and that of Y by g , G and Ḡ. Let ηX =

f
F̄

and ηY =
g
Ḡ

be the hazard rate functions of X and Y, respectively; and ξX =
f
F and

ξY =
g
G be their corresponding reversed hazard rate functions. Kerridge (1961) pro-

posed a measure of inaccuracy between two pdf’s f and g , given by

KX ,Y =−E f (ln g (X )) =−
∫ ∞

0
(ln g (x)) f (x)d x = I KL

X ,Y + I S
X , (1)

where I KL
X ,Y = E f

�

ln f (X )
g (X )

�

=
∫∞

0

�

ln f (x)
g (x)

�

f (x)d x denotes the Kullback-Leibler diver-
gence (see Kullback and Leibler, 1951), a popular measure of discrimination between
X and Y ; and I S

X = −E f (ln f (X )) = −
∫∞

0 (ln f (x)) f (x)d x denotes the well-known
Shannon (1948) entropy of X . The inaccuracy given in (1)measures the average infor-
mation required to convey which of a number of possibilities is true, to someone who
believes that the probability distribution of the possibilities is g when it is actually
f . Measuring inaccuracy through (1) between two probability distributions involv-
ing current age is not an appropriate tool. To overcome this difficulty, Taneja et al.
(2009) proposed a measure of inaccuracy between X and Y at time t (> 0) as

KX ,Y (t ) =KXt ,Yt
=−

∫ ∞

t

�

ln
g (x)

Ḡ(t )

�

f (x)
F̄ (t )

d x (2)
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and studied its properties, where Xt = (X − t |X > t ) and Yt = (Y − t |Y > t ) denote
the residual lifetime rv’s. KX ,Y (t ) in (2) is known as the measure of residual inaccuracy
between two rv’s Xt and Yt . Note that KX ,Y (t ) reduces to residual entropy due to

Muliere et al. (1993) I S
X (t ) = −

∫∞
t

�

ln f (x)
F̄ (t )

�

f (x)
F̄ (t )

d x, when f = g . Some situations

arise in real life where inaccuracy relies on the past. Based on this idea, Kumar et al.
(2011) defined a measure of inaccuracy between past lifetime distributions of X and Y
as

K̄X ,Y (t ) =KX t ,Y t =−
∫ t

0

�

ln
g (x)
G(t )

�

f (x)
F (t )

d x, (3)

where X t = (t − X |X < t ) and Y t = (t − Y |Y < t ) denote the past lifetime rv’s.
K̄X ,Y (t ) in (3) is known as the measure of past inaccuracy between X and Y . Kundu
and Nanda (2015) obtained several characterization results based on the measure of
inaccuracy for truncated rv’s.

Note that the measure (1) is based on the Kullback-Leibler discrimination and the
Shannon entropy. There have been several attempts on generalizations of these two
measures in the literature. For more on this direction, we refer to Rényi (1961), Varma
(1966), Tsallis (1988), Kapur and Kesavan (1992) and Kapur (1994). These generalized
information measures have many important properties such as smoothness, large dy-
namic range with respect to certain conditions that make them applicable in practice.
Pharwaha and Singh (2009) showed that non-Shannon measures can be used to deter-
mine the randomness of mammograms because of having higher dynamic range than
Shannon’s entropy over a variety of scattering conditions. Non-Shannon measures are
also applicable in estimating scatter density and regularity (see Smolikova et al., 2002).
After the seminal work by Kerridge (1961), several authors devoted their attention to
generalize inaccuracy measure in the discrete domain. They studied their properties
and characterizations. These measures are useful in different areas of science and tech-
nology, particularly in coding theory. For detail, we refer to Nath (1968), Rathie and
Kannappan (1973), Sharma and Autar (1973), Sharma and Gupta (1976), Taneja and
Gupta (1978), Taneja and Tuteja (1986), Bhatia and Taneja (1991), Bhatia (1999) and
the references therein. Motivated by their work, based on the Renyi entropy and its
discrimination, in this paper, we propose dynamic generalized measures of inaccuracy
of order α (6= 1)> 0. A generalization of Kerridge’s measure of inaccuracy (1) is given
by

K R
X ,Y =

1
α− 1

ln

�
∫∞

0 ( f (x))
α (g (x))1−α d x

∫∞
0 ( f (x))

α d x

�

= I R
X ,Y + I R

X , (4)

where

I R
X ,Y =

1
α− 1

ln

�

E f

�

f (X )
g (X )

�α−1�

=
1

α− 1
ln
�∫ ∞

0
( f (x))α (g (x))1−α d x

�

and

I R
X =

1
1−α

ln
�

E f ( f (X )
α−1
�

=
1

1−α
ln
�∫ ∞

0
( f (x))α d x

�
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are the Renyi’s discrimination measure between X and Y Asadi et al. (2005), Gil (2011);
and Renyi’s entropy measure of X Rényi (1961), respectively. Note that when α→ 1,
then (4) reduces to (1). Also for f = g , (4) coincides with the Renyi entropy I R

X . In
analogy to (2) and (3), generalized measures of inaccuracy of orderα between the resid-
ual lifetime distributions; and the past lifetime distributions are respectively defined
as

K R
X ,Y (t ) =

1
α− 1

ln







∫∞
t

�

f (x)
F̄ (t )

�α � g (x)
Ḡ(t )

�1−α
d x

∫∞
t

�

f (x)
F̄ (t )

�α
d x






(5)

= I R
X ,Y (t )+ I R

X (t ) (6)

and

K̄ R
X ,Y (t ) =

1
α− 1

ln





∫ t
0

�

f (x)
F (t )

�α � g (x)
G(t )

�1−α
d x

∫ t
0

�

f (x)
F (t )

�α
d x



 (7)

= Ī R
X ,Y (t )+ Ī R

X (t ). (8)

In Equations (6) and (8), I R
X ,Y (t ) =

1
α−1 ln

�

∫∞
t

�

f (x)
F̄ (t )

�α � g (x)
Ḡ(t )

�1−α
d x
�

and Ī R
X ,Y (t ) =

1
α−1 ln

�

∫ t
0

�

f (x)
F (t )

�α � g (x)
G(t )

�1−α
d x
�

respectively represent residual and past Renyi discrim-

ination measures of order α between X and Y , whereas

I R
X (t ) =

1
1−α

ln
�∫ ∞

t

�

f (x)
F̄ (t )

�α

d x
�

and

Ī R
X (t ) =

1
1−α

ln
�∫ t

0

�

f (x)
F (t )

�α

d x
�

represent the residual and past Renyi entropy measures of order α. We call the mea-
sures given in (5) and (7) as measures of residual and past inaccuracy of order α, respec-
tively. Henceforth, increasing and decreasing are used as non-strict sense. Throughout
the paper, we also assume that α (6= 1)> 0.

In the following examples, we discuss the role of the generalized inaccuracy mea-
sures of order α between the residual and past lifetime distributions.

EXAMPLE 1. Consider the rv’s as described in Example 1.1 of Di Crescenzo and Lon-
gobardi (2004) with different notation. The pdf’s of the rv’s X and Yβ are given by

f (x) = 1, 0< x < 1 and g (x|β) =β
�

x− 1
2

�

+1, 0< x < 1, −2≤β≤ 2, respectively.

Note that when x = 1
2 , K R

X ,Yβ
=K R

X ,Y−β
forβ ∈ [−2,2], that is, the inaccuracy measure of

order α between X and Yβ is equal to the inaccuracy measure of order α between X and
Y−β. Further, for β 6= 0, we have from (5)

K R
X ,Yβ
(t ) =

1
α− 1

ln





∫ 1
t

�

β
�

x − 1
2

�

+ 1
�1−α

d x

(1− t )
�

1− t (t−1)β
2 − t

�1−α



 . (9)
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(a) (b)

Figure 1 – Figure (a) represents the plot of the measure (9) for t ∈ (0,1), with β = 1.7 (top
line) andβ=−1.7 (bottom line), whereas Figure (b) represents the plot of the measure (10) for
t ∈ (0,1), with β= 1.7 (bottom line) and β=−1.7 (top line).

Moreover, from Figure 1(a) we observe that K R
X ,Yβ
(t ) 6= K R

X ,Y−β
(t ) in general for all t ∈

(0,1). Hence, we reach to the conclusion that though K R
X ,Yβ

= K R
X ,Y−β

, the inaccuracy

measure of order α of Xt and Yβ t
is different from that of Xt and Y−β t

.

EXAMPLE 2. Note that under the assumptions of Example 1, we can show that K R
X ,Yβ

=

K R
X ,Y−β

, for x = 1
2 , where β ∈ [−2,2], that is, the inaccuracy measure of order α between

X and Yβ is equal to that of X and Y−β. Further, for β 6= 0, we have from (7)

K̄ R
X ,Yβ
(t ) =

1
α− 1

ln





∫ t
0

�

β
�

x − 1
2

�

+ 1
�1−α

d x

t
�

t (t−1)β
2 + t

�1−α



 , (10)

which is plotted in Figure 1(b ). From the figure, we observe that K̄ R
X ,Yβ
(t ) 6= K̄ R

X ,Y−β
(t ) in

general for all t ∈ (0,1). Thus, we conclude that though K R
X ,Yβ

= K R
X ,Y−β

, the inaccuracy

measure of order α of X t and Yβt is not equal to that of X t and Y−βt .

The remainder of the paper is arranged as follows. In Section 2, we study some
properties and characterization results of the measure of inaccuracy of order α be-
tween residual lifetime distributions. Several bounds of K R

X ,Yβ
(t ) are obtained. Results

are extended to weighted distributions and examples are provided. Similar results are
derived based on the measure of inaccuracy of order α between past lifetime distribu-
tions in Section 3. In Section 4, a nonparametric estimator for the residual inaccuracy
of order α is proposed, and is validated through a numerical example. Finally, some
concluding remarks have been added in Section 5.

2. SOME RESULTS ON K R
X ,Y (t )

As mentioned earlier, in this section, we study some properties and characterizations
of K R

X ,Y (t ) given by (5). Our first theorem shows how K R
X ,Y (t ) is affected by a common
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increasing transformation of X and Y .

THEOREM 1. Let φ be a strictly increasing function. Then

K R
X ,Y (φ

−1(t )) =K R
φ(X ),φ(Y )(t ).

PROOF. From (5) we have

K R
φ(X ),φ(Y )(t ) =

1
α− 1

ln











∫∞
t

( f (φ−1(x)))α(g(φ−1(x)))1−αd x

(F̄ (φ−1(t )))α(Ḡ(φ−1(t )))1−αφ′(φ−1(x))
∫∞

t
( f (φ−1(x)))αd x

(F̄ (φ−1(t )))αφ′(φ−1(x))











=
1

α− 1
ln







∫∞
φ−1(t )

( f (z))α(g (z))1−αd z

(F̄ (φ−1(t )))α(Ḡ(φ−1(t )))1−α
∫∞
φ−1(t )

( f (z))αd z

(F̄ (φ−1(t )))α







= K R
X ,Y (φ

−1(t )).

This completes the proof.

As an application of Theorem 1, we consider the following example.

EXAMPLE 3. Suppose that X1 follows Pareto I (b1,a) and X2 follows Pareto I (b2,a)
such that fX1

(x) = b1
a (

x
a )
−(b1+1), x > a; a, b1 > 0 and fX2

(x) = b2
a (

x
a )
−(b2+1), x >

a; a, b2 > 0. Then

K R
X1,X2
(t ) =

1
α− 1

h

(1−α) ln b2− ln t + ln
� α(b1+ 1)− 1
α(b1+ 1)+ (1−α)(b2+ 1)− 1

�i

.

Clearly K R
X1,X2
(t ) is a function of t . Now let φ(x) = x − a. Then φ(X ) follows Pareto

II (Lomax) distribution. Note that φ(x) is a strictly increasing function. If Y1 = φ(X1)
and Y2 =φ(X2) then Y1 and Y2 follow Pareto II distribution with common parameter a.
Using Theorem 1, we can easily find the expression of K R

Y1,Y2
(t ), given by

K R
Y1,Y2
(t ) =

1
α− 1

h

(1−α) ln b2− ln(t + a)+ ln
� α(b1+ 1)− 1
α(b1+ 1)+ (1−α)(b2+ 1)− 1

�i

which otherwise not directly obtain.

Next, we obtain characterization of exponential distribution.

THEOREM 2. Let X and Y be two non-negative rv’s with cdf’s F and G, respectively.
Further, let K R

X ,Y (t ) be independent of t for all t > 0. Then G is exponential if F is
exponential.

PROOF. From (5) it is not hard to obtain the following relation

[K R
X ,Y (t )]

′+ηY (t ) =
ηαX (t )e

(α−1)I R
X (t )

α− 1

h

1−η1−α
Y (t )e−(α−1)K R

X ,Y (t )
i

. (11)
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As F is exponential, we have ηX (t ) is constant. Also, from Theorem 3.1 of Abraham
and Sankaran (2006), we know that if X is exponentially distributed then I R

X (t ) =
constant. Under the given assumptions, from (11)

Aη1−α
Y (t )+ηY (t ) = B , (12)

where A and B are arbitrary constants. Assume that ηY (t ) is differentiable. Now by
differentiating from (12) with respect to t , we get

η′Y (t )[A(1−α)η
−α
Y (t )+ 1] = 0,

implies ηY (t ) = constant. Thus G is exponential. This completes the proof.

To estimate the effects of different covariates influencing the times to the failures
of a system, Cox introduced the notion of proportional hazard rate model in 1972.
This model has some useful applications in different areas of science and technology.
We refer to Cox and Oakes (1984) for various applications of this model. Assume that
the survival functions of the rv’s X and Y are related by

F̄ (x) = (Ḡ(x))θ, x > 0, (13)

where θ > 0 is known as proportionality constant.

THEOREM 3. Suppose that K R
X ,Y (t ) is independent of t . Also let the distribution func-

tions of X and Y satisfy the proportional hazard rate model. Then

I R
X (t ) = ln

�

B −Cηα−1
X (t )

�
1

1−α ,

where B = θα

A(1−α) and C = θ
1−α .

PROOF. Under the assumption that K R
X ,Y (t ) is independent of t , we have

AḠ1−α(t )
∫ ∞

t
f α(x)d x =

∫ ∞

t
f α(x)g 1−α(x)d x, (14)

where A is a constant independent of t . Differentiating (14) with respect to t and re-
arranging the terms, we obtain

∫ ∞

t
f α(x)d x =

f α(t )
A(1−α)

h 1
ηαY (t )

− A
ηY (t )

i

. (15)

Now using the proportional hazard rate model (13), we have ηX (t ) = θηY (t ). Thus
from (15), the required result follows.

The following remark is an immediate consequence of the Theorem 3.

REMARK 4. Let X be an exponentially distributed rv. Then, K R
X ,Y (t ) is independent

of t if and only if X and Y satisfy the proportional hazard rate model.
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EXAMPLE 4. Consider a series system with n components having lifetimes Xi , i =
1, . . . , n. Assume that Xi ’s are independent and identically distributed with a common
pdf f (x|σ) = σ e−σ x , x > 0, σ > 0. The lifetime of the system is Z = mi n{X1, . . . ,Xn}.
Moreover, it is not difficult to show that F̄Z (x) = (F̄Xi

(x))n , where F̄Z (x) and F̄Xi
(x) are sf’s

of Z and Xi , i = 1, . . . , n, respectively. This implies that Z and Xi satisfy the proportional
hazard rate model. For i = 1, . . . , n, we obtain

K R
Xi ,Z
(t ) =

1
α− 1

ln
h (σ/n)α−1

α(n+α− nα)

i

,

provided n+α− nα 6= 0, independent of t .

In our next two consecutive theorems we provide relation between K R
X ,Y (t ) and

K R
X ,Y . The following definition is useful in this regard.

DEFINITION 5. A non-negative rv X is said to have

(i) increasing (decreasing) failure rate (IFR (DFR)) if ηX (t ) is increasing (decreasing) in
t > 0.

(ii) new better (worse) than used (NBU (NWU)) if F̄ (x + t ) ≤ (≥)F̄ (x)F̄ (t ) for all
x, t > 0.

Also,
I F R⇒NBU and DF R⇒NW U .

THEOREM 6. For the rv’s X and Y , if

(i) ηX (t )
ηY (t )

is increasing (decreasing) in t ,

(ii) both X and Y have increasing (decreasing) failure rate, then for α < 1

K R
X ,Y (t )≥ (≤)K

R
X ,Y .

PROOF. Note that K R
X ,Y (t ) is the sum of the measures I R

X ,Y (t ) and I R
X (t ). Also, it

is easy to show that I R
X ,Y (t ) can be expressed as

I R
X ,Y (t ) =

1
α− 1

ln
∫ 1

0

f α−1
t (F −1

t (y))
gα−1

t (G−1
t (y))

d y, (16)

where ft (gt ) is the pdf of Xt (Yt ) and Ft (Gt ) is the cdf of Xt (Yt ). Moreover, along
the arguments used in the proof of the Theorem 2.2 of Ebrahimi and Kirmani (1996)
and for α < 1, we obtain

f α−1
t (F −1

t (y))
gα−1

t (F −1
t (y))

=
ηα−1

X (F −1(1− (1− y)F̄ (t )))

ηα−1
Y (F −1(1− (1− y)Ḡ(t )))

(1− y)α−1

Ḡα−1
t (F −1

t (y))

≤ (≥)
ηα−1

X (F −1(y))

ηα−1
Y (F −1(y))

(1− y)α−1

Ḡα−1
t (F −1

t (y))

≤ (≥)
ηα−1

X (F −1(y))

ηα−1
Y (F −1(y))

(1− y)α−1

Ḡα−1(F −1(y))
=

f α−1(F −1(y))
gα−1(F −1(y))

,
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where the first and second inequalities are due to the conditions stated in (i) and (i i),
respectively. Therefore, for α < 1 we have

I R
X ,Y (t )≥ (≤)

1
α− 1

ln
∫ 1

0

f α−1(F −1(y))
gα−1(F −1(y))

d y = I R
X ,Y . (17)

Thus, from (17) and the Corollary 4.1 of Abraham and Sankaran (2006), the proof
completes.

REMARK 7. From the Theorem 6, we conclude that under the assumptions made, the
inaccuracy between two systems of age t is never smaller (larger) than the inaccuracy when
those systems were new for α < 1.

REMARK 8. For two absolutely continuous non-negative random variables X and Y,
if (i) ηX (t )

ηY (t )
is increasing (decreasing) in t , (ii) both X and Y are NBU (NWU) and (iii) X

has DFR (IFR), then for α > 1, we obtain K R
X ,Y (t ) ≤ (≥)K

R
X ,Y . However, if X is both

NBU and DFR (NWU and IFR), then X follows exponential.

Bounds of probability measures are useful when either the measure does not have a
closed form or it is difficult to compute. The following theorems provide some upper
and lower bounds of K R

X ,Y (t ), which are functions of hazard rate and Renyi’s residual
entropy.

DEFINITION 9. Let X and Y be two non-negative rv’s with pdf’s f and g , respec-
tively. Then X is said to be less than or equal to Y in likelihood ratio ordering, denoted

by X
l r
≤Y, if f (t )

g (t ) is decreasing in t > 0.

THEOREM 10. Let X
l r
≤Y. Then

(a) K R
X ,Y (t )≤

α

α− 1
ln
�ηX (t )
ηY (t )

�

+ I R
X (t ), i f α > 1

and

(b ) K R
X ,Y (t )≥

α

α− 1
ln
�ηX (t )
ηY (t )

�

+ I R
X (t ), i f α < 1.

PROOF. (a) Making use of X
l r
≤Y and x > t in (5), we obtain

K R
X ,Y (t ) ≤

1
α− 1

ln
∫ ∞

t

f α(t )g (x)

F̄ α(t )Ḡ1−α(t )gα(t )
d x + I R

X (t )

=
α

α− 1
ln
�ηX (t )
ηY (t )

�

+ I R
X (t )

as
�

f (x)
g (x)

�α
≤
�

f (t )
g (t )

�α
for α > 1. Similarly, for α < 1, it is not hard to obtain the inequal-

ity given in Part (b). This completes the proof.
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Let the pdf of X be f , and w be a non-negative function withµw = E(w(X ))<∞.
Also, let fw , Fw and F̄w , respectively be the pdf, cdf and sf of a weighted rv Xw , where
fw = w f /µw , Fw = E(w(X )|X < t )F /µw and F̄w = E(w(X )|X > t )F̄ /µw . The next
corollary is a consequence of the Theorem 10, since

ηX (t )
ηXw
(t )
=

E(w(X )|X > t )
w(t )

.

We omit the proof here. Note that the corollary provides the bounds of the dynamic
measure of inaccuracy of order α for residual lifetime distributions of X and Xw . Let

w be increasing. Then it is easy to show that f
fw

is decreasing. Hence, X
l r
≤Xw .

COROLLARY 11. Let w be increasing. Then

(a) K R
X ,Xw
(t )≤ α

α− 1
ln
�E(w(X )|X > t )

w(t )

�

+ I R
X (t ), i f α > 1

and

(b ) K R
X ,Xw
(t ) ≥ α

α− 1
ln
�E(w(X )|X > t )

w(t )

�

+ I R
X (t ), i f α < 1.

We consider the following example which illustrates the Corollary 11.

EXAMPLE 5. Let a rv X follow Pareto I (a, b ), where b > 0 and a > 1. Consider the

weight function w(x) = x. Therefore, it can be easily established that X
l r
≤Xw . Moreover,

K R
X ,Xw
(t ) =

α

α− 1
ln
�E(w(X )|X > t )

w(t )

�

+ I R
X (t )+

1
α− 1

ln
� a− 1

a+α− 1

�

. (18)

Thus from (18), the inequalities in Corollary 11 follow.

REMARK 12. For all α (6= 1),

K R
X ,Y (t )≤ ln

�ηX (t )
ηY (t )

�

+ I R
X (t ), i f X

l r
≤Y

and

K R
X ,Xw
(t )≤ ln

�E(w(X )|X > t )
w(t )

�

+ I R
X (t ), i f X

l r
≤Xw .

Our next theorem provides lower bound of K R
X ,Y (t ) in terms of the hazard rate

function.

THEOREM 13. Suppose that g (x) is decreasing in x. Then

K R
X ,Y (t )≥− ln(ηY (t ))

for α 6= 1.
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PROOF. We have g (x)≤ g (t ), as g (x) is decreasing in x and x > t . Using this we
have from (5)

K R
X ,Y (t ) ≥

1
α− 1

ln
∫ ∞

t

f α(x)
F̄ α(t )

g 1−α(t )

Ḡ1−α(t )
d x + I R

X (t ) =− ln(ηY (t )).

This completes the proof.

Note that the hazard rate function of Xw can be written asηXw
(t ) = w(t )

E(w(X )|X>t )ηX (t ).
Therefore, Theorem 13 leads to the following corollary.

COROLLARY 14. Suppose fw (x) is decreasing in x. Then

K R
X ,Xw
(t )≥− ln

� w(t )ηX (t )
E(w(X )|X > t )

�

for α 6= 1.

EXAMPLE 6. Consider a rv X and the weight function as in Example 5. Then K R
X ,Xw
(t )

in (18) can be written further as the following form

K R
X ,Xw
(t ) =− ln

� w(t )ηX (t )
E(w(X )|X > t )

�

+
1

α− 1
ln
�aα+α− 1

a+α− 1

�

. (19)

In the following theorem we obtain upper bound of K R
X ,Xw
(t ), in terms of hazard

rate and Renyi’s residual entropy.

THEOREM 15. Let the weight function w(x) be increasing in x. Then for α 6= 1,

K R
X ,Xw
(t )≤ I R

X (t )+ ln
�E(w(X )|X > t )

w(t )

�

.

PROOF. Given that w(x) is increasing. Therefore, from (5) we have

K R
X ,Xw
(t ) ≤ I R

X (t )+
1

α− 1
ln
h 1

F̄ (t )

∫ ∞

t
f α(x)

� w(t ) f (x)
E(w(X )|X > t )

�1−αi
d x

= I R
X (t )+ ln

�E(w(X )|X > t )
w(t )

�

.

This completes the proof.

EXAMPLE 7. Consider the rv X as described in Example 5. Then K R
X ,Xw
(t ), obtained

in (18) can be written as

K R
X ,Xw
(t ) = I R

X (t )+ ln
�E(w(X )|X > t )

w(t )

�

+
1

α− 1
ln
� a

a+α− 1

�

. (20)

Therefore, from (20) it is not hard to verify the Theorem 15.
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In the following theorem, we consider three non-negative rv’s X1,X2 and X3 and
obtain bounds of K R

X1,X3
(t )−K R

X2,X3
(t ).

THEOREM 16. Suppose that the rv’s X1, X2 and X3 have pdf’s f1, f2, f3; sf’s F̄1, F̄2, F̄3

and hazard rate functions η1, η2, η3, respectively. Assume X1

l r
≤X2, that is, f2

f1
is increasing

in x. Then

(a) K R
X1,X3
(t )−K R

X2,X3
(t )≤ α

α− 1
ln
�η1(t )
η2(t )

�

+ I R
X1
(t )− I R

X2
(t ), i f α > 1,

and

(b ) K R
X1,X3
(t )−K R

X2,X3
(t )≥ α

α− 1
ln
�η1(t )
η2(t )

�

+ I R
X1
(t )− I R

X2
(t ), i f α < 1.

PROOF. (a) Under the given hypothesis, we have f1(x)
f2(x)
≤ f1(t )

f2(t )
. Therefore, for α >

1, from (5) we deduce that

K R
X1,X3
(t ) ≤ 1

α− 1
ln
∫ ∞

t

f α2 (x) f
α

1 (t )

f α2 (t )F̄
α
1 (t )

f 1−α
3 (x)

F̄ 1−α
3 (t )

d x + I R
X1
(t )

= K R
X2,X3
(t )+

α

α− 1
ln
�η1(t )
η2(t )

�

+ I R
X1
(t )− I R

X2
(t ).

This completes the proof of Part (a). Part (b) follows similarly.

EXAMPLE 8. Suppose Xi follows exponential distribution with parameterσi > 0, i =

1,2. Assume that X1 and X2 are independently distributed and σ1 >σ2. Hence, X1

l r
≤X2.

Consider another rv X3 =min{X1,X2}. Then

K R
X1,X3
(t )−K R

X2,X3
(t ) =

α

α− 1
ln
�η1(t )
η2(t )

�

+ I R
X1
(t )− I R

X2
(t )

+
1

α− 1
ln
�σ1+σ2−σ1α

σ1+σ2−σ2α

�

,
(21)

provided σ1+σ2−σ1α > 0 and σ1+σ2−σ2α > 0, proves the inequality in Theorem 16.

THEOREM 17. Consider three rv’s X1, X2 and X3 as described in Theorem 16. Fur-

ther, assume X2

l r
≤X3, that is, f3

f2
is increasing in x > 0. Then for α 6= 1,

K R
X1,X2
(t )−K R

X1,X3
(t )≥− ln

�η2(t )
η3(t )

�

.

PROOF. Under the given conditions, we have f2(x)
f3(x)
≤ f2(t )

f3(t )
. Therefore, from (5) for

α 6= 1, we obtain

K R
X1,X2
(t ) ≥ 1

α− 1
ln
∫ ∞

t

f α1 (x) f
1−α

2 (t )

f 1−α
3 (t )F̄ α1 (t )

f 1−α
3 (x)

F̄ 1−α
2 (t )

d x + I R
X1
(t )

= K R
X1,X3
(t )− ln

�η2(t )
η3(t )

�

.

Hence the result follows.
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EXAMPLE 9. Let the rv’s X2 and X3 follow Pareto I (a2, b2) and Pareto I (a3, b3), re-
spectively, where a2, b2,a3, b3 > 0 and b2 > b3. Also, assume that X2 and X3 are indepen-

dently distributed. It can be shown that X2

l r
≤X3. Consider another rv X1 =min{X2,X3}.

Then

K R
X1,X2
(t )−K R

X1,X3
(t ) =− ln

�η2(t )
η3(t )

�

+
1

α− 1
ln
�a2α+ a3

a3α+ a2

�

. (22)

Therefore, from (22) the Theorem 17 can be easily verified.

3. SOME RESULTS ON K̄ R
X ,Y (t )

In this section we consider time dependent measure of inaccuracy of order α between
past lifetime distributions K̄ R

X ,Y (t ) defined in (7). Even if the past lifetime information
divergence measures appears to be a dual of its residual version (5), Di Crescenzo and
Longobardi (2004) have identified some importance of Kullback-Leibler divergence
measure for past lifetime rv’s. Since K̄ R

X ,Y (t ) is a generalized divergence, thus a separate
study of the same is also worthwhile. However, as most of the results are parallel to
its residual version, the statements of the results in past lifetime are omitted. The
following theorem shows how K̄ R

X ,Y (t ) is affected by an increasing transformation of
X and Y .

THEOREM 18. Let φ be a strictly increasing function. Then

K̄ R
X ,Y (φ

−1(t )) = K̄ R
φ(X ),φ(Y )(t ).

EXAMPLE 10. Consider two rv’s X1 and X2 following exponential distributions with
mean σ1 and σ2, respectively. Here, K̄ R

X1,X2
(t ) can be obtained as

K̄ R
X1,X2
(t ) =

α
h

1− e−t
�

α
σ1
+ 1−α

σ2

�i

σ1σ
α
2

�

1− e−
αt
σ1

��

1− e−
t
σ2

�α �
α
σ1
+ 1−α

σ2

�

. (23)

Further, letφ(x) = x1/γ , x > 0, γ > 0. Note thatφ is a strictly increasing function. It can
be showed that Y1 =φ(X1) and Y2 =φ(X2) follow Weibull distribution with a common
shape parameter γ , and scale parameters σ1 and σ2, respectively. Then, in order to derive
the expression of K̄ R

Y1,Y2
(t ), one has to use the result of Theorem 18 which otherwise not

able to obtain directly. Note that K̄ R
Y1,Y2
(t ) can be obtained by substituting φ−1(t ) = t γ

in place of t in (22), given by

K̄ R
Y1,Y2
(t ) =

α
h

1− e−t γ
�

α
σ1
+ 1−α

σ2

�i

σ1σ
α
2

�

1− e−
αtγ

σ1

��

1− e−
tγ

σ2

�α �
α
σ1
+ 1−α

σ2

�

.
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4. NUMERICAL EXAMPLE

In this section, we propose a nonparametric kernel-based density estimator for K R
X ,Y (t )

and is validated through the simulated random samples. We use kernel density estima-
tor for f and empirical estimator for the survival function F̄ , and g is assumed to be
a known density.

TABLE 1
Simulation results.

α t
n = 10 n = 25

Bias MSE Bias MSE
1 -1.10 1.34 -0.93 0.91

0.5 1.2 -1.32 1.90 -0.90 0.87
1.4 -1.63 2.83 1.37 1.99
1.5 -1.92 3.87 -1.41 2.10
1.6 -1.94 3.91 -1.56 2.60
1 -0.47 0.39 -0.33 0.20

0.75 1.2 -0.94 1.13 -0.64 0.46
1.4 -1.16 1.51 -0.75 0.65
1.5 -1.23 1.72 -0.87 0.86
1.6 -1.18 1.67 0.77 0.74
1 0.46 0.80 0.30 0.22

1.5 1.2 0.06 0.48 0.01 0.14
1.4 -0.20 0.28 -0.15 0.29
1.5 -0.33 0.44 -0.31 0.29
1.6 -0.16 0.78 -0.15 0.36

α t
n = 10 n = 25

Bias MSE Bias MSE
2 1 0.69 0.96 0.33 0.21

1.2 0.14 0.57 -0.07 0.16
1.4 0.02 0.44 0.02 0.38
1.5 0.06 0.52 0.16 0.41
1.6 -0.15 0.63 0.03 0.53
1 0.67 0.97 1.17 3.23

2.5 1.2 0.26 0.83 0.27 0.80
1.4 0.33 0.75 0.20 0.83
1.5 0.01 0.91 0.26 1.03
1.6 0.09 0.87 -0.06 0.49

Let (X1,X2, . . . ,Xn) be a random sample taken from a population with probabil-
ity density function f and survival function F̄ . Then a nonparametric estimator of
K R

X ,Y (t ) is defined by

K̂ R
X ,Y (t ) =

1
α− 1

log
∫ ∞

t

�

fn(x)

F̄n(t )

�α�
g (x)

Ḡ(t )

�1−α

d x

+
1

1−α
log

∫ ∞

t

�

fn(x)

F̄n(t )

�α

d x,

(24)

where fn(x) =
1

nhn

n
∑

i=1
K
�

x−Xi
hn

�

denotes the kernel density estimator of f , F̄n(t ) =

1
n

n
∑

i=1
I (Xi > t ) the empirical estimator of F̄ , and I (Xi > t ) the indicator variable. We

assume that Y follows Pareto I (b ,a) distribution with probability density function

g (x) =
b
a

� x
a

�−b−1
; x > a; a, b > 0. (25)

For the simulation under complete sample, we have generated samples from Pareto I
density g in (25) with a = 1 and b = 3 respectively. K̂ R

X ,Y (t ) for various values of t
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and sample sizes n = 10 and n = 25 are calculated. The kernel function is taken to

be Gaussian kernel, K(u) = 1p
2π

e−
u2

2 , with bandwidth hn = n−
1
2 and 50 iterations are

carried out. To find the bias, we further assume that f is also Pareto I with the form
(25), and parameters a = 0.5 and b = 2.5 respectively. The bias and mean squared error
(MSE) of K̂ R

X ,Y (t ) for different values of α and t are computed and given in Table 1. It

is evident from Table 1 that MSE of K̂ R
X ,Y (t ) decreases as the sample size increases and

in terms of bias and MSE, the estimator is more ideal when α = 2. Since K̂ R
X ,Y (t ) is

obtained as a plug-in estimator in the nonparametric setup, the asymptotic normality
of (24) is direct using the standard nonparametric estimation theory. A numerical
study of K̄ R

X ,Y (t ) is similar and hence omitted.

5. CONCLUSION

In this paper, based on the Renyi entropy, we proposed some dynamic generalized
measures of inaccuracy of order α(6= 1) > 0 between two probability distributions.
Note that as α tends to 1, these measures reduce to the dynamic inaccuracy measures
due to Taneja et al. (2009) and Kumar et al. (2011). Some characterization results and
bounds of the proposed measure in residual time are obtained. Numerical example
using a nonparametric estimator is given to illustrate the usefulness of the generalized
residual measure of inaccuracy of order α.
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SUMMARY

Generalized information measures play an important role in the measurement of uncertainty
of certain random variables, where the standard practice of applying ordinary uncertainty mea-
sures fails to fit. Based on the Renyi entropy and its divergence, we propose a generalized mea-
sure of inaccuracy of order α (6= 1) > 0 between two residual and past lifetime distributions
of a system. We study some important properties and characterizations of these measures. A
numerical example is given to illustrate the usefulness of the proposed measure.

Keywords: Kerridge inaccuracy measure; Renyi entropy; Reliability measures; Characteriza-
tion.


