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Abstract—Future wireless networks will enjoy ubiquitous con-
nectivity by taking advantage of the IP core convergence which
is seen as the lingua franca of heterogeneous access networks
ecosystem. It is expected that the prevalence of WLAN and
the advent of IEEE 802.11n standard will continue to offer
compelling opportunities and therefore be considered as one
of the de-facto wireless access network. However, it is known
that wireless network conditions in general are diverse owing
to both traffic and wireless channel variations. This raises the
importance of exploiting diversity across a multiple access points
(multi-AP) WLAN, which requires an advanced network control
mechanism to effectuate uniform load distribution, so that QoS of
users and composite capacity can be improved. Although various
load distribution algorithms for WLAN have been investigated
in literature, there is a lack of performance comparison between
different algorithms. In this paper, we present a comparison of
three dynamic load distribution algorithms, viz. predictive load
balancing (PLB), predictive QoS balancing (PQB) and reactive
QoS balancing (RQB) for infrastructure-based WLAN with DCF
access mechanism based on OPNET simulations.

I. INTRODUCTION

IEEE 802.11 WLAN is one of the de-facto wireless access
networks offering broadband connectivity, thanks to its perva-
sive deployments over many diverse environments. The forth-
coming 802.11n standard will further accentuate its benefits for
high-speed ubiquitous broadband wireless access. However,
delivering QoS demanding applications such as voice over
WLAN (VoWLAN) are very challenging, particularly in the
context of future IP-based wireless networking scenario where
hotspot of multi-AP are physically co-located.

In general, network operators are motivated to maximize
their revenue by maintaining a high system utilization while
the end users demand good QoS. It is known that QoS
would inevitably deteriorate when network is driven beyond
its capacity limits. Hotspots are typically deployed under such
circumstances to cope with heightened traffic demands. How-
ever, the composite network capacity will not scale with the
increasing number of APs when stations select AP based on
received signal strength only, without QoS considerations such
as load control or an appropriate network control mechanism
such as admission control. This problem is further complicated
by the typical non-uniform load distribution across APs in
public hotspots such as convention centers and airports where
users tend to correlate temporally and spatially. Consequently,
these cause sporadic congestions in AP with the strongest
signal strength. Therefore, load and/or admission control must

be incorporated in such multi-AP hotspots so that diversity
could be exploited to harness composite network capacity and
QoS improvements. The context of diversity in this paper
refers to the dynamic network conditions in AP owing to both
traffic and wireless channel variations. The former depend on
the class of services e.g. real-time (RT) and non-real-time
(NRT), type of traffic sources e.g. constant bit rate (CBR)
and variable bit rate (VBR), and proportion of service classes
whilst the latter depend on different propagation and fading
environments. Particularly, wireless channel impairments are
commonplace in hotspot and indoor WLAN, arising from
frequent non-line-of-sight (NLOS) transmissions caused by
structures and obstacles.

Traditionally, load control is concerned with load distri-
bution to improve network QoS performance by transferring
stations from heavily to lightly loaded networks. This allows
stations to take advantage of the spare network capacity which
would otherwise be left unused. However, it is also important
to consider the state of wireless channel, which places fun-
damental limits on the network QoS performance, when dis-
tributing load across wireless networks [1]. Admission control
is also critical for provisioning of QoS by regulating input
traffic and preventing overloading of network. It works by
conducting an assessment to check whether a new flow could
be admitted without compromising the QoS requirements of
existing flows. Hence, admission control policy dictates the
provisioning of either guaranteed or predictive QoS. In fact,
admission control and load control are often not dissociable.
The main reason is that both rely on the knowledge of load
metric in order to make their decisions. Henceforth, we treat
both load and admission control interchangeably in the context
of this paper.

Load distribution algorithms can be broadly classified as
static, dynamic or adaptive. The main difference between
static and dynamic load distribution algorithms is that the
latter utilize additional system state information, which enables
exploitation of short-term fluctuations, to improve the quality
of their decisions. Dynamic load distribution algorithms can
be further categorized as load balancing or QoS balancing
algorithms. Both algorithms have the same primary function of
avoiding under-utilized networks when distributing load. The
subtle difference is the former attempt to equalize load while
the latter attempt to equalize QoS across networks to improve
QoS for all flows. Adaptive load distribution algorithms are
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an extension of dynamic load distribution algorithms with the
capability to adapt their parameters or policies dynamically in
response to the varying system state.

Although various load distribution algorithms for WLAN
have been investigated in literature, there is a lack of perfor-
mance comparison between different algorithms. In this paper,
we present a comparison of three dynamic load distribution
algorithms, viz. one belonging to the class of load balancing
algorithm and the other two belonging to the class of QoS
balancing algorithm for infrastructure-based WLAN with DCF
access mechanism under diverse network conditions. The
remainder of the paper is organized as follows. Section II
discusses the related work. Section III describes the different
dynamic load distribution algorithms. Section IV illustrates
the comparative performance evaluation. Section V presents
the conclusions and future work.

II. RELATED WORK

A key issue in designing any load or admission control
algorithms is to identify a suitable load metric to estimate the
available network capacity accurately. Bianchi and Tinnirello
[2] first introduced the notion of ‘packet level’ load metric and
showed that load balancing of WLAN can be improved.

Derivation of packet level load metrics could be categorized
in two main threads, viz. model-based and measurement-
based. In model-based approach, packet level load metrics
are obtained by analyzing the WLAN DCF using the two-
dimensional Markov chain model either with or without the
aid of theoretical queueing models. Zhai et al. [3] integrated
Bianchi’s model [4] with M/M/1/K and M/G/1/K queue-
ing models to give non-saturation throughput, packet delay
and loss bounds. The authors also showed that although
M/G/1/K provides better accuracy than M/M/1/K in
general, they do not exhibit significant difference in the non-
saturation region. Malone et al. [5] extended Bianchi’s model
to non-saturation conditions by incorporating post-backoff
states under bufferless network assumption. The authors also
considered stations with different arrival rates but with same
packet lengths. In measurement-based approach, packet level
load metrics are obtained by either direct measurements or
estimations from the system itself. Velayos et al. utilized
throughput of AP to reflect the load of a network. Ong and
Khan [6] employed packet delay of AP to capture both net-
work and wireless channel variations which are indicative of
the network load. Above all, channel utilization estimation first
proposed by Garg and Kappes [7] gave the best representation
of the effective network load.

The level of centralization also plays a crucial role in
dynamic load distribution algorithms. Balachandran et al.
[8] presented an adaptive load balancing solution where a
centralized admission control server contains load information
of all APs. Velayos et al. [9] proposed a decentralized load
balancing scheme where APs are then classified based on
their throughput in one of the three states, viz. underloaded,
overloaded or balanced. It is known that both centralized

and decentralized architectures have their pros and cons. Re-
cently, a terminal-oriented network-assisted (TONA) handover
architecture, which is a compromise between centralized and
decentralized ones, is proposed in [6].

III. DYNAMIC LOAD DISTRIBUTION ALGORITHMS

The comparison of the three dynamic load distribution
algorithms is summarized in Table. I. Since these algorithms
span across different levels of centralization, their performance
is investigated based on IP-based TONA handover architecture
[6] which can be configured to support different levels of
centralization. Here, we draw a distinction between different
radio resource management (RRM) distributions according to
the levels of centralization. Accordingly, network-centralized
RRM refers to RRM decisions made in a central access
point controller (APC), network-distributed RRM refers to
RRM decisions distributed between APs, and network-device
distributed RRM refers to RRM decisions distributed between
AP and stations. In what follows, we give an overview of
the three dynamic load distribution algorithms which aim
to redistribute load across a multi-AP WLAN by exploiting
diversity of dynamic network conditions to trigger vertical
handovers. References to the respective models used in each
of the dynamic load distribution algorithms are provided as it
is beyond the scope of this paper to exposit their intricacies.

A. Predictive QoS Balancing Algorithm

In PQB algorithm, the load metric is based on packet
delay and packet loss rate which are derived by combining
two analytical models, viz. Markov chain model which ana-
lyzes the WLAN DCF operation and M/M/1/K queueing
model to analyze the WLAN QoS performance under varying
traffic and wireless channel conditions. Here, we modify
Zhai’s model [3] to reflect the unbalanced load situation of
an infrastructure-based VoWLAN in a wireline-to-wireless
topology. The VoWLAN consists of one AP, N − 1 WLAN
stations and N − 1 ethernet stations, which are connected
through a wireline backbone. When considering 2-way voice
conversations between WLAN and ethernet stations, the traffic
load flowing through the AP is N − 1 times that of a WLAN
station since AP transmits half of the voice traffic to WLAN
stations. In addition, we introduce traffic variability between
WLAN stations by considering heterogeneous voice codecs
of different packetization intervals and packet length. Further-
more, we consider wireless channel variability between BSSs
by factoring in transmission failures in both medium access
control (MAC) data frame and acknowledgment (ACK) frame.
We assume a Gaussian wireless channel where each bit has
the same bit error probability and bit errors are i.i.d. over the
entire frame. We ignore the effects of distance and assume that
all stations have same bit error rate (BER) and frame error rate
(FER) as in Ni’s model [10]. We also model the freezing of
backoff counter during times when medium is busy according
to Ziouva’s model [11]. Collectively, our analytical model
accounts for: (i) unbalanced traffic load between stations and
AP of an infrastructure-based WLAN; (ii) diverse traffic flows
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TABLE I
COMPARISON BETWEEN DYNAMIC LOAD DISTRIBUTION ALGORITHMS.

Attributes Model-Based Measurement-Based
Algorithm Type QoS balancing Load balancing QoS balancing

Load Metric Packet delay, packet loss [3],[10],[11] Channel utilization [7] Packet delay [6], channel utilization [7]

Traffic Profiling
Mean arrival rates, collision Estimated peak and/or Measured packet delay,

probability, queue characteristics mean channel utilization estimated mean channel utilization
Admission Control Hard Limit Hard Limit Soft Limit

Centralization Network-centralized RRM Network-distributed RRM Network-device distributed RRM
Information Exchange Between APC-APs Between APs Between APC-AP-Stations

Utilization Medium Low High
Handover Events/Complexity High Low Medium

QoS Provision Predictive QoS
Stability Period 10 Beacon Intervals

Candidate Selection QoS satisfaction factor (QSF < 1)
Network Selection Greedy Approach

between stations; and (iii) diverse wireless channel conditions
between BSSs of a multi-AP hotspot scenario. The load metric
is then used as upper bounds of admissible traffic load, which
include the new flow and any existing flows of an AP, in a
centralized admission control to provision predictive QoS. We
remark that these bounds are more proper as compared to those
used in PLB algorithm since collision probability and queue
characteristics of the AP are considered. However, PQB will
generally result in higher complexity.

B. Predictive Load Balancing Algorithm

In PLB algorithm, the load metric is based on channel
utilization which estimates the fraction of channel occupation
time per observation interval. Accordingly, the channel utiliza-
tion of each flow and the corresponding network capacity are
estimated as

CUn
total =

∑
j∈flows

CUn
j , n = 1, . . . , N,

CUn
j + CUn

total < CUmax,
(1)

where 0 ≤ CUn
total ≤ 1 is total channel utilization of nth

AP, CUn
j is channel utilization of jth flow and CUmax is the

admission threshold. A new RT flow can be accepted without
affecting QoS of existing flows if (1) is true. For error-prone
wireless channel, we need to consider the average FER and
account for the factor of (1 − FER), when computing the
channel utilization of each flow i.e. CUn

j

/
(1 − FER), since

the entire transmission will fail. This load metric is widely
used for both load and admission control algorithms due to its
simplicity. Here, we implement PLB in a decentralized fashion
as in [9]. Guaranteed QoS can be provisioned when both peak
and mean channel utilization are used as upper bounds of ad-
missible traffic load. Network utilization is usually acceptable
when flows are smooth with CBR sources. However, when
flows are bursty with VBR sources, such guaranteed QoS
inevitably results in low utilization. Higher network utilization
can be achieved by relaxing the bounds to use mean channel
utilization only but this means that only predictive QoS can
be provisioned. Furthermore, the admission threshold for RT
flows is typically restricted to 80−90%. It is often argued that
this buffer caters for variability of VBR sources and ensures
that NRT flows can be accommodated within the buffered
capacity. However, finding an optimal admission threshold

in not trivial since the saturation point of WLAN depends
on the proportion of traffic mixes e.g. RT vs. NRT flows
and CBR vs. VBR sources. In other words, there will be a
different impact on the network load even for the same average
data rate. Hence, a better approach might be removing the
admission threshold and rely on measurements of the existing
flows to regulate input flows. Such measurements should be
conservative by using historical knowledge of the fluctuations
in network conditions.

C. Reactive QoS Balancing Algorithm

In RQB algorithm, the load metric is based on measured
packet delay and mean channel utilization which are utilized
as upper bounds of admissible traffic load in network-device
distributed RRM implementation found in [6]. RQB leverages
on link layer measurements, such as packet delay, as QoS
metric to characterize the perceived quality of each AP. The
key advantages of adopting link layer measurement are: (i) it
could be used to quantify both QoS explicitly and wireless
channel variations implicitly, since QoS metric in general
varies accordingly to wireless channel conditions; and (ii) it
mitigates the difficulty of estimating the actual bandwidth oc-
cupancy for each flow, particularly in the presence of dynamic
traffic patterns and wireless channel conditions when em-
ployed as load metric for soft admission control. Accordingly,
soft refers to the number of admissible connections which is
not fixed but variable depending on the class of services e.g.
RT and NRT flows, type of traffic sources e.g. CBR and VBR,
proportion of service classes, and prevailing wireless channel
conditions. This differs from the traditional hard admission
control, which is typically used for homogeneous voice traffic,
where the number of admissible connections can be easily pre-
determined. These bounds are more relaxed as compared to
the previous two algorithms, thus are referred as soft limits.
Here, the mean channel utilization is used without imposing
any admission threshold to RT flows. This essentially removes
the hard limit and encourages higher network utilization.
However, additional packet delay measurements need to be
incorporated to account for the past network traffic varia-
tions. Accordingly, the measurements directly optimize the
expected packet delay, making it adaptive to dynamic network
conditions. This improves the flexibility of the admission
control but at the expense of occasional violations, which
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limit it to provision predictive QoS, and moderate complexity.
The network utilization gain would become more significant
when there is a high degree of statistical multiplexing e.g. in
broadband WLANs.

D. Candidate Selection and Network Selection

To facilitate candidate selection, we quantify QoS require-
ments of the stations as a function of two QoS metrics. Each
QoS element is the ratio of the required QoS metric threshold
and the measured QoS value. QoS satisfaction factor (QSF) is
defined as the minimum between the two QoS elements,

QSF = min
i∈Links

[
PDt

PDm
i

,
PLRt

PLRm
i

]
, (2)

where PDt is packet delay threshold and PLRt is packet
loss rate threshold while PDm

i is measured packet delay and
PLRm

i is measured packet loss rate of ith links i.e. both
uplink and downlink. QSF < 1 when QoS requirements of
stations cannot be met. This condition is used by stations in
all three dynamic load distribution algorithms to trigger QoS-
based vertical handover.

The network selection in all three dynamic load distribution
algorithms is based on the greedy approach. The reason being
obtaining an optimal allocation of stations to available APs that
maximize the composite network capacity is a combinatorial
problem which is NP-hard. For PQB (PLB) algorithm, the AP
which maximizes the difference between the estimated bounds
and predefined QoS metric (load metric) thresholds is selected.
For RQB algorithm, network selection is implemented ac-
cording to [6] where AP with the highest network quality
probability, which is based on packet delay measurement,
is selected. A Bayesian learning process is used to capture
historical variations of network traffic conservatively, making
it reliable for use in soft admission control.

IV. COMPARATIVE PERFORMANCE EVALUATION

We simulate a hotspot of three 802.11b APs in a wireline-
to-wireless topology as in [6], operating with data rate of
1Mbps under error-prone wireless channel conditions using
OPNET

TM
Modeler R© 14.5 wireless module. VoIP traffic is

generated using heterogeneous voice codecs as in Table. II
and VBR source is simulated using ON-OFF model according
to ITU [12]. We introduce an unbalanced load of five G.711,
five G.729, five G.723.1 stations in BSS 1 and two G.711,
two G.729, two G.723.1 stations in each of BSS 2 and BSS 3.
An error-prone Gaussian wireless channel is simulated where
BER of wireless channels in BSS 1, 2 and 3 are 10−9, 10−5

and 10−6, respectively. The motivation is to examine the
worst-case scenario when the total offered load approaches
the composite network capacity of three BSSs under diverse
wireless channel conditions. We assume no hidden terminals
and exclude RTS-CTS mechanism. All stations are roaming to
support handover events which are coordinated to one event
at a time.

For QoS performance evaluation, we adopt Jain’s fairness
index to quantify the effect of different dynamic load distri-
bution algorithms on QoS fairness among APs. Suppose xi is

TABLE II
TRAFFIC GENERATION PARAMETERS.

Traffic Packet Size Inter-arrival Avg. Data Rate
Type (Bytes) (ms) (kbps)
G.711 80 10 64
G.729 20 20 8

G.723.1 24 30 6.4

the QoS metric i.e. packet delay or packet loss rate of AP i,
then the QoS balance index (QBI) is defined as,

QBI(x) =
(∑

i
xi

)2
/

n
(∑

i
x2

i

)
, (3)

where n is the number of APs over which the load will be
redistributed. The QoS balance index 0 ≤ QBI ≤ 1 is a
continuous function which is independent of scale. It has a
value of 1 when all APs have the exactly the same QoS metric
and a value of 1/n when APs are extremely unbalanced, which
is 0 in the limit as n → ∞.

A. Simulation Results

In this study, we investigate the impact of three different
dynamic load balancing algorithms on QoS, throughput and
handover performance. PLB is evaluated under different ad-
mission thresholds of CUmax = 0.8 denoted as PLB(80%)
and CUmax = 0.9 denoted as PLB(90%). PQB is evaluated
with a packet delay threshold of 60ms and a packet loss rate
threshold of 1%. RQB is evaluated with CUmax = 1.0 i.e.
no admission threshold for RT flows and also a packet delay
threshold of 60ms. The key motivation is to compare the QoS
fairness between APs and number of handover events when
different dynamic load distribution algorithms are deployed.
In addition, we reveal an interesting relationship, which is the
cornerstone of QoS balancing algorithms, between aggregate
QSF of stations defined in (2) and aggregate throughput of
stations as well as QoS fairness between APs defined in (3).

We analyze our results starting from 100s (0 − 100s is
the warm-up period). According to the definition of (3), QBI
should be close to one ideally to offer QoS fairness. From Fig.
1 (a), we observe that RQB outperforms PLB(80%) by 67%,
PLB(90%) by 39% and PQB by 5% in terms of QBI of packet
delay between APs. Similarly from Fig. 1 (b), we observe that
RQB outperforms PLB(80%) by 100%, PLB(90%) by 72%
and PQB by 7% in terms of QBI of packet loss rate between
APs. Clearly, the state of balance i.e. QoS fairness between
APs is dependent on the type of dynamic load distribution
algorithms which we would now discuss.

On the whole, both QoS balancing algorithms achieve better
QoS fairness as compared to load balancing algorithm. QoS
balancing algorithms exhibit better performance for two main
reasons. First, the load metrics of both PQB and RQB contain
at least one of the QoS metrics under study. This directly
optimizes the expected packet delay and packet loss rate while
the load metric of PLB is indirectly related to the investigated
QoS metrics. Second, the load metric of PLB is based on
mean channel utilization where the admission threshold is
set to 80% (90%) of an AP maximum capacity. Since only
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(a) QBI of packet delay.
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(b) QBI of packet loss rate.
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(c) Aggregate QSF and throughput of stations.

Fig. 1. QoS balance index between APs, and aggregate QoS satisfaction factor and throughput of stations.
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(a) CDF of average downlink packet delay.
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(b) CDF of average aggregate packet loss rate.
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(c) CDF of number of handover events.

Fig. 2. CDF of average downlink packet delay and aggregate packet loss rate, and number of handover events in a multi-AP WLAN.

BSS 1 is overloaded in the simulated scenario, the admission
threshold creates an aggregate buffer capacity of 40% (20%)
preemptively in BSS 2 and BSS 3. This places a hard limit
which prevents opportunistic exploitation of possibly spare
capacity. Although this strategy attempts to protect existing
flows, it inevitably results in higher blocking probability for
incoming handover attempts. Hence, BSS 1 suffers sustained
overloading which degrades the QoS fairness between APs.
This impact will be magnified with decreasing admission
threshold which acts to create more buffered capacity which
is evident from Figs. 1 (a) and (b). Moreover, choosing an
optimal admission threshold in not trivial since the saturation
point of WLAN depends on class of services e.g. RT and NRT
flows, type of traffic sources e.g. CBR and VBR, proportion
of service classes, and prevailing wireless channel conditions.
Therefore, it is very difficult to obtain accurate characterization
of RT flows as a priori knowledge in presence of such dynamic
network conditions. We note that PQB also utilizes hard limit
but admission threshold is not required. Hence, QoS fairness of
PQB comes in between RQB, and PLB(80%) and PLB(90%).

On the other hand, RQB also employs mean channel uti-
lization as one of its load metric but relaxes the bounds by
eliminating the admission threshold. Instead, it operates on a
soft admission control using packet delay measurement. The
salient advantage of measurement-based soft admission control
is that it relies on historic variations of network conditions
captured through measurements to mitigate the difficulty in
characterizing bandwidth occupancy of RT flows. Hence, a
higher network utilization can be achieved by allowing ex-
ploitation of spare capacity opportunistically which is evident

in the case of RQB over PLB(80%) and PLB(90%), where
both are design to provision predictive QoS. Although there
would be sporadic violations of packet delay as shown in Fig. 2
(a), this would be outweighed by the remarkable QoS fairness
improvements as shown in Figs. 1 (a) and (b) which are direct
consequences of the packet loss rate improvements as shown
in Fig. 2 (b).

In terms of handover performance as shown in Fig. 2
(c), PLB(80%) has the least number of handover events as
compared to PLB(90%), RQB and PQB. When comparing
between the two QoS balancing algorithms, PQB has the most
number of handover events while RQB has moderate number
of handover events which comes in between PLB(80%) and
PLB(90%). In general, QoS balancing algorithms tend to
accrue more handover events as compared to load balanc-
ing algorithm since their load metric does not impose any
admission threshold to create buffered capacity preemptively.
However, QoS balancing algorithms provide better overall
QoS performance in terms of packet delay and packet loss
rate as compared to load balancing algorithms since their load
metrics contain at least one of the QoS metrics under study.

From Fig. 1 (c), it is interesting to observe that both QoS
balancing algorithms have lower aggregate QSF but higher
aggregate throughput as compared to load balancing algorithm,
from the stations’ perspective. More specifically, the aggregate
throughput increases with decreasing QSF. Similarly from
Figs. 1 (a) and (b), QoS fairness also increases with decreasing
aggregate QSF. This suggests that tradeoffs exist between
aggregate QSF and throughput of stations as well as QoS
fairness between APs. For every decrease in aggregate QSF
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of stations, there is a corresponding increase in aggregate
throughput of stations and QoS fairness between APs. In
other words, QoS balancing algorithms trade aggregate QSF
of stations for QoS fairness between APs in order to main-
tain a QoS-balanced system which in turn yields a higher
aggregate throughput of stations. When comparing between
the two QoS balancing algorithms, it is clear that RQB is able
to achieve higher QoS fairness between APs and aggregate
throughput of stations, and generate lesser handover events as
compared to PQB but at the expense of lower aggregate QSF
of stations. Although RQB results in a lower aggregate QSF,
we notice from Figs. 2 (a) and (b) that both RQB and PQB
have similar average downlink packet delay and aggregate
packet loss rate from the composite system’s perspective. This
reiterates the advantage of using a measurement-based soft
admission control which improves its flexibility in presence
of dynamic network conditions by exploiting spare capacity in
an opportunistic manner while allowing occasional violations.

B. Discussions

The performance of all three dynamic load distribution
algorithms, which depends largely on their load metrics, has
various tradeoffs. Load balancing algorithm which uses mean
channel utilization as load metric has the advantages of lower
complexity and lesser handover events. However, it results
in lower utilization due to the required admission threshold
for RT flows which creates buffered capacity that may not be
utilized efficiently. Furthermore, how to choose an admission
threshold for RT flows optimally or adaptively is non-trivial
since it is very difficult to obtain accurate characterization of
RT flows as a priori knowledge in presence of dynamic net-
work conditions. On the other hand, QoS balancing algorithms
use QoS metric as load metric which has the advantages of
higher utilization, QoS fairness and aggregate throughput of
stations since its load metric directly optimizes the expected
packet delay and packet loss rate of the system. However, they
tend to be more complex, generate more handover events and
result in lower aggregate QSF of stations which is a tradeoff
for achieving higher utilization.

When comparing between the two QoS balancing algo-
rithms, we note that the measurement-based soft admission
control employed in RQB has evident advantages over the
hard admission control found in PQB. Particularly, RQB yields
higher utilization, QoS fairness and aggregate throughput of
stations with lesser handover events, thanks to the Bayesian
learning process which captures historical variations of net-
work conditions reliably for use in soft admission control to
exploit any available capacity opportunistically and adapt to
dynamic network conditions. Another significant advantage
of RQB is that it uses a generalized measurement-based
approach which can be deployed in any wireless networks
since it requires only link layer measurements to quantify both
QoS explicitly and wireless channel variations implicitly. On
the contrary, PQB employs a model-based approach where
generalization for different wireless networks is challenging
and generally requires remodeling efforts. We note that IEEE

1900.4 standard [13], which has gained much attention re-
cently, is an example of such measurement-based system.

V. CONCLUSION AND FUTURE WORK

We evaluate the comparative performance between three
dynamic load distribution algorithms, viz. predictive load
balancing (PLB), predictive QoS balancing (PQB) and reactive
QoS balancing (RQB) in terms of QoS fairness between APs,
aggregate QSF and throughput of stations, and number of
handover events. The QoS metrics considered are packet delay
and packet loss rate which are typically used to character-
istic the quality of VoIP traffic. Initial results suggest that
performance of all three algorithms depends largely on their
load metrics. Particularly, RQB achieves higher (significantly
higher) network utilization and QoS fairness, and similar
(much better) QoS performance as compared to PQB (PLB
evaluated at both admission thresholds of 80% and 90%).
Results also show that the generalized measurement-based
approach employed in RQB is adaptive to dynamic network
conditions, arising from both traffic and wireless channel
variations. For future work, we plan to investigate the class
of adaptive load distribution algorithm where load metrics can
be dynamically adjusted according to prevailing system states.
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