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Abstract We study a time-dependent thermoelastic coupling within free vibrations of piezomagnetic (PM)
microbeams considering the flexomagnetic (FM) phenomenon. The flexomagneticity relates to amagnetic field
with a gradient of strains. Here, we use the generalized thermoelasticity theory of Lord–Shulman to analyze
the interaction between elastic deformation and thermal conductivity. The uniformmagnetic field is permeated
in line with the transverse axis. Using the strain gradient approach, the beam yields microstructural properties.
The analytical solving process has been gotten via applying sine Fourier technique on displacements. Graphical
illustrations are assigned to shape numerical examples concerning variations in essential physical quantities.
It was observed that the flexomagnetic effect could be extraordinary if the thermal conductivity of the material
is higher or the thermal relaxation time of the heat source is lesser. This theoretical study will provide the
way of starting studies on magneto-thermoelastic small-scale piezo-flexomagnetic structures based on the heat
conduction models.

Keywords Piezo-flexomagnetic microbeam · Thermoelastic free vibrations · Lord–Shulman theory · Strain
gradient theory · Analytical solution

Abbreviations

A Area of the cross section of the beam
q31 Component of the third-order piezomagnetic tensor
a33 Component of the second-order magnetic permeability tensor
S Slenderness ratio
b Width of the beam
t Time
C11 Elasticity modulus
T0 Environment temperature
Cv Specific heat
w Transverse displacement of the midplane
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e-mail: victor.eremeev@pg.edu.pl; eremeyev.victor@gmail.com; victor.eremeev@unica.it

M. Malikan
e-mail: mohammad.malikan@pg.edu.pl; mohammad.malikan@yahoo.com

V. A. Eremeyev
Research and Education Center “Materials”, Gagarina Sq, Don State Technical University, 1, Rostov on Don, Russia 344000

V. A. Eremeyev
DICAAR, Università Degli Studi di Cagliari, Via Marengo, 2, 09123 Cagliari, Italy

http://orcid.org/0000-0001-7356-2168
http://orcid.org/0000-0002-8128-3262
http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-022-02149-7&domain=pdf


182 M. Malikan and V. A. Eremeyev

ekk Volumetric strain
z Thickness coordinate
f31 Component of fourth-order flexomagnetic tensor
αT Thermal expansion coefficient
g31 Component the sixth-order gradient elasticity tensor
� Thermal conductivity
h Thickness of the beam
εxx Strain component
Iz Area moment of inertia
θ Dynamical temperature changes
I0, I2 Mass moments of inertia
ν ‘Poisson’s ratio
l Microscale parameter
ρ Mass density
L Length of the beam
σxx Stress component
MT Thermal moment
τ0 Thermal relaxation time
m Mode number
ψ Magnetic potential
NMag In-plane axial magnetic force
ω Natural frequency

1 Introduction

Thermal effects may play a crucial role in engineering structures at all scales. Considering micro-electro-
mechanical systems (MEMS), i.e., mechanical systems at small scales and low temperatures, one faces the
problem of heat propagation description. It has already been recognized that the classical theory of heat transfer
based on the Fourier law has some limitations. These restrictions can include the infinite speed of heat, so non-
classical theories with finite thermal wave speed were proposed. In particular, Lord and Shulman proposed one
of the most straightforward approaches, modifying the conventional Fourier law with relaxation time [1–3]. In
this theory, the flux rate is applied in the form of the Fourier law. According to this theory, the heat equation of
hyperbolic type ensures the displacement distributions and the finite speed of heat wave propagation. For other
thermoelastic approaches, see [4–13]. Vattré and Pan [4] presented a three-dimensional thermoelastic study
on the multilayered anisotropic plates in nonlocal media, including imperfection in interfaces. Allam et al.
[5] used Green–Naghdi thermoelastic model to investigate electro-magneto-thermoelastic characteristics of a
thick plate. Nobili and Pichugin [6] studied an asymptotic linear model using time-harmonic motion for a ther-
moelastic orthorhombic structure. Barretta et al. [7] proposed a stress-driven approach to study nonlocal beams
by preparing thermoelastic coupling. In another study, Barretta et al. [8] investigated the thermo-mechanics
of a laminated nonlocal beam supposed in a nonisothermal environment. Mahmoud Hosseini [9] selected the
Green–Naghdi approach to probe the thermoelastic behavior of a small-scaleMEMS/NEMSbeam. Shakeriaski
and Ghodrat [10] developed nonlinear forms of Lord–Shulman and Cattaneo-type thermoelastic models for
media exposed to a laser shock. Othman and Lotfy [11] formulatedGreen–Lindsay and Lord–Shulman theories
for studying wave propagation on a porous micropolar media. Sobhy and Zenkour [12] reported a new version
for Green–Naghdi thermomechanics models to examine wave propagation of annular disks. Pourasghar and
Chen [13] proposed a hyperbolic (non-Fourier) for heat conduction and calculated linear and nonlinear natural
frequencies for a microbeam made of functionally graded materials reinforced by carbon nanotubes. Taati
et al. [14] derived a couple stress thermomechanical model to address micro-size effects of shear-deformable
beams based on a non-Fourier thermoelastic relation. Abouelregal et al. [15] established a study on the rotating
thermoelastic nanobeams pertaining to a dynamic force and different heat sources.

It is worth mentioning that magnetic micro-particle (MMP) materials are used in molecular biology among
various MEMS applications. MMPs can be used in many biomedical applications, including ribonucleic
acid purification, magnetic cell separation, see, e.g., [16–18] and reference therein. One of the MMPs’ most
promising uses is to separate cancer cells from human blood cells.

Elements ofMEMS such as micro-beams andmicro-plates are widely used as accelerometer sensors, gyro-
scopes, and many others [19–24]. However, the most crucial challenge is the possible mechanical, magnetic,
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and thermal interactions. Therefore, accurate modeling of MEMS requires the proper description of these
fields.

With the increasing use of intelligent structures, piezomagnetic characteristics as sensors and actuators have
recently received particular attention from scientists. Piezomagnetic produces a magnetic field under the influ-
ence ofmechanical stresses caused by external forces, inwhich there are changes in the direction and intensity of
magnetization. The direct use of this property is in the construction of sensors such as accelerometers and strain
gauges. An additional physical characteristic, which has magnetic particles or particular magnetic microsen-
sors, is flexomagneticity. The main difference between the two properties is that flexomagneticity influences
any materials having symmetries. What is more, piezomagneticity presents the coupling between strain and
magnetization. For flexomagneticity, it is coupling between strain gradient and magnetization [25–32]. Fur-
thermore, in microscale, the usage of flexomagneticity is significant in MMPs technology. That is why the
interest in developing flexomagneticity property has been crucial in recent years.

Flexomagneticity (FM) effect is a novel discovery in the field of micro-/nanobeam technology. Recent
studies have been done in the area of static and dynamics of piezomagnetic–flexomagnetic beams. Precursors
in these fields are Sidhardh and Ray [33] and Zhang et al. [34]. In these preliminary studies, the authors focused
on small-scale sensors and actuators, in which the flexomagneticity effect is observed. Zhang et al. focused on
an actuator nanobeam subjected to static bending. The static bending calculation was considered according to
the Euler–Bernoulli beam theory and the cantilever beam boundary conditions. The applied forceswere applied
uniformly and vertically to the length of the structure. Furthermore, surface elasticity was considered in this
research. Moreover, the authors investigated both direct and converse magnetizations on different boundary
conditions. The results of this study showed that flexomagnetic property is size-dependent. In addition to this,
Sidhardh and Ray performed static bending on the piezomagnetic–flexomagnetic nanosize beam. The authors
considered the clamped-free ends boundary conditions, and the calculations were performed according to the
Euler–Bernoulli displacement kinematic field. Additionally, the direct and inverse magnetization effects were
examined. Furthermore, the size dependencywas discussed with the usage of the surface elasticity for the small
beam. Finally, the results presented that the behavior of the flexomagnetic effect is scale-dependent, according
to quantitative assessment. What is more, the authors ignored the piezomagnetic effect of nanostructures
and achieved the same conclusion. On the other hand, Malikan and Eremeyev [35] performed a vibrational
mode study on the Euler–Bernoulli piezomagnetic–flexomagnetic small-scale beam. According to the nonlocal
stress-driven elasticity model, the size-dependent effect was analyzed for the linear frequency analysis. The
attainments of this investigation illustrated that the flexomagneticity property is size-dependent.

Recently,Malikan and Eremeyev [36] performed a study on small-size structures with piezomagnetic–flex-
omagnetic properties. In this research, they examined the nonlinear calculation of natural structure frequencies.
As a result, according to the nonlocal strain gradient elasticity model, they confirmed the size-dependency
of the flexomagneticity phenomenon. What is more, the same authors Malikan and Eremeyev [37] examined
nanosize beams with the piezo-flexomagnetic effect undergoing large deformations. The evaluation was per-
formed with the usage of analytical–numerical solution procedures. Based on the results, it was concluded that
the design should consider piezo-flexomagnetic properties in nano-electro-mechanical systems (NEMS).What
is more, the flexomagnetic effect usage causes a reduction of the deformations of these structures. Additionally,
Malikan et al. [38] explored piezo- and flexomagnetic effects in magnetic nanoparticles. The obtained results
give new light and achievements in the smart nanosensor’s design, as in this study, the structure’s post-buckling
behavior was scrutinized.

Lately, Malikan et al. [39] studied the porous states in a piezomagnetic–flexomagnetic beam structure
considering the size effect’s impact. Reached from their results, the flexomagnetic response of the structures
is dependent on the porosity. Malikan et al. [40] investigated the temperature distribution in microresonators
in micromedia. In this study, the structures were considered with piezomagnetic and flexomagnetic properties.
It was found that piezomagnetic–flexomagnetic effects influence the thermal load distribution. Malikan and
Eremeyev [41] presented FM in a small-scale plate. They obtained that the FM value can be affected by
variations of the aspect ratio of the plate. Malikan and Eremeyev [42] reported a study to predict how surface
elasticity can influence FM. Their achievements proved that surface elasticity could directly and strongly
impress a nanomaterial’s FM response. Malikan and Eremeyev [43] included shear deformations into a flexible
nanoscale flexomagnetic beam to investigate the impact of shear deformations on the FM. Malikan et al. [44]
studied thermal buckling and addressed the FM effect in FG-piezomagnetic micro-/nano-beams.

According to the recent research mentioned in the literature review, no thermoelastic study was performed
on the piezomagnetic small particles containing flexomagnetic influence. Hereby, Lord–Shulman’s dynamic
thermoelastic model is evaluated in this study. For this purpose, the investigation of beam-shaped resonators
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with piezomagnetic and flexomagnetic properties is proposed. Additionally, according to a strain gradient
model, the size-dependency is examined. Besides linear elastic strains, Euler–Bernoulli’s thin beam theory
is applied for kinematic displacements. The ease of this beam model is due to obtaining one equilibrium
equation providing simpler, shorter, and possible mathematical modeling, particularly in micro-/nano-electro-
magneto-thermoelasticity structures. If one uses higher-order beam displacements, there are many problems
in order to describe governing equations of multi-physics problems. Thus, in terms of MEMS/NEMS, the
Euler–Bernoulli displacement field has been highly recommended. After extracting the equations using the
Hamilton principle, the resulting equations are discretized using the Navier method. What is more, the simply
supported beam is considered as the boundary condition. Several combinations of main factors are examined
to model the magnetic sensors adequately. Finally, the obtained analytically results are presented graphically
by several images.

2 Theoretical model

Let us consider small flexural displacements for the microbeam of thickness h (− h/2≤ z ≤ h/2), of width b
(− b/2≤ y ≤ b/2), of length L (0< x ≤ L), as presented in Fig. 1, for simply supported beam conditions. The
beam is subjected to a lateral magnetic field. A thermal source affects the beam vertically as well. Note that the
pictured figure is only a schematic presentation of cobalt iron oxide (CoFe2O4) crystal microstructures, and the
mathematical model is based on the continuum micro-mechanics. On the reason of assuming such a system,
one can refer to microsensors used for measuring the temperature of the environments with high precision.
Although the environment heat can be transferred into the sensor on the basis of various presumptions and
models, this study utilizes the Lord–Shulman hypothesis together with the sinusoidal distribution of heat.

As talked earlier, the classic beam model is employed [45, 46] to derive the thermoelastic model of
vibration for the beam. Thus, the equation of motion for a piezomagnetic–flexomagnetic macro-beam located
in the thermal and one-dimensional magnetic environments can be presented together as follows [33–49]. First,
the one-dimensional constitutive relation of the thermo-magneto-elastic stress component can be expressed
as:

σx � −z

(
C11 +

q231
a33

)
∂2w(x, t)

∂x2
− C11αT θ(x, z, t) (1)

where a33 represents the component of the second-order tensor of magnetic permeability,q31 is component
of the third-order piezomagnetic tensor, C11 is Young’s modulus, αT denotes the coefficient of linear thermal
expansion, t is time, and w is the deflection.

The cross-sectional bending moment is shown below:

Mx �
h/2∫

−h/2

zσxdz (2)

Upon implementing Eq. (1) into Eq. (2), we get

Mx � −D
∂2w(x, t)

∂x2
− C11αT MT (x, z, t) (3)

where D � Iz

(
C11 +

q231
a33

)
.

The thermal moment can be defined by:

MT (x, z, t) �
h/2∫

−h/2

θ(x, z, t)zdz (4)

The transverse motion equation of the smart beam can be given as [33–44]:

(D + g31h)
∂4w(x, t)

∂x4
+ C11αT

∂2MT (x, z, t)

∂x2
− NMag ∂2w(x, t)

∂x2
+ I0

∂2w(x, t)

∂t2
− I2

∂4w(x, t)

∂x2∂t2
� 0 (5)
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Fig. 1 A square piezomagnetic–flexomagnetic microbeam lies in fully pivot ends

and NMag � ψq31, Iz � ∫
A z

2d A, (I0, I2) �
h/2∫

−h/2
ρ(z)

(
1, z2

)
dz. in which Iz is the moment of inertia, h

is a thickness, g31 shows the corresponding component of the sixth-order gradient elasticity tensor, A is the
cross-sectional area, and ρ is the mass density. It is necessary to note that the density is distributed constant
along with the thickness. Thus, the first mass moment of inertia (I1) disappeared.

The magnetic field engaged in the modeling is as follows:

 � − q31
2a33

(
z2 − h2

4

)
d2w

dx2
+

ψ

h

(
z +

h

2

)
(6)

which is available at [33–44] and was formulated on the basis of the converse FM effect and close circuit.
The Lord–Shulman (L-S) model presents thermoelasticity with one relaxation time. L-S model gives heat

conduction relation as [50–55]:

∂

∂x

(
�(θ)

∂θ(x, z, t)

∂x

)
+

∂

∂z

(
�(θ)

∂θ(x, z, t)

∂z

)
�

(
1 + τ0

∂

∂t

)(
ρCv(θ)

∂θ(x, z, t)

∂t
+ βT0

∂ekk
∂t

)
(7)

in which �(θ) displays a thermal conductivity, Cv(θ) is a specific heat at constant volume, T0 exhibits the
environmental temperature in a nondeformed state, τ0 is the thermal relaxation time, ekk � ∂u1(x,z,t)

∂x + ∂u2(x,z,t)
∂y +

∂u3(x,z,t)
∂z is the volumetric strain. In addition, β � C11αT

1−2ν in which ν is Poisson’s ratio. Moreover, θ(x, z, t) �
T − T0 is a linear increment of the dynamical temperature of the sensor.
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The derivative ∂θ
/
∂z will be equal to zero when the heat flow does not exist on the beam’s upper and

lower surfaces (z � ±h
/
2) [51].

Let us assume the increments of the temperature arise sinusoidally along the z-axis; hence,

θ(x, z, t) � θ1(x, t) sin
(π

h
z
)

(8)

Equation (8) is consistent with the assumption that heat flux vanishes at the beam faces, i.e., for z � ±h
/
2.

Using Eq. (8), one can obtain from Eq. (7)

∂2θ1

∂x2
sin

(π

h
z
)

−
(π

h

)2
θ1 sin

(π

h
z
)

�
(

∂

∂t
+ τ0

∂2

∂t2

)(
ρCv

�
θ1 sin

(π

h
z
)

− βT0
�

z
∂2w

∂x2

)
(9)

Let us multiply both sides by z and then integrate on thickness direction, and a few simplifications give,

∂2θ1

∂x2
−

(π

h

)2
θ1 �

(
∂

∂t
+ τ0

∂2

∂t2

)(
εθ1 − A2

∂2w

∂x2

)
(10)

where
ε � ρCv

�
,

A2 � βT0π2h
24� .

In what follows, let us consider Eq. (4) with the help of Eq. (8) as

MT � θ1(x, t)

h/2∫
−h/2

z sin
(π

h
z
)
dz (11)

Here, Eq. (5) can be updated according to Eq. (11) as the following

(D + g31h)
∂4w

∂x4
− NMag ∂2w

∂x2
+ I0

∂2w

∂t2
− I2

∂4w

∂x2∂t2
+ C11αT

∂2θ1

∂x2

h/2∫
−h/2

z sin
(π

h
z
)
dz � 0 (12)

Integrating from Eq. (12) simplifies it as follows:

(D + g31h)
∂4w

∂x4
− NMag ∂2w

∂x2
+ I0

∂2w

∂t2
− I2

∂4w

∂x2∂t2
+ A1

∂2θ1

∂x2
� 0 (13)

in which A1 � C11αT
2h2

π2 .
Lastly, coupled thermoelastic governing equations can be justified upon Eqs. (10) and (13) as

(D + g31h)
∂4w

∂x4
− NMag ∂2w

∂x2
+ I0

∂2w

∂t2
− I2

∂4w

∂x2∂t2
+ A1

∂2θ1

∂x2
� 0 (14)

∂2θ1

∂x2
−

(π

h

)2
θ1 �

(
∂

∂t
+ τ0

∂2

∂t2

)(
εθ1 − A2

∂2w

∂x2

)
(15)

To conveniently implement the scale effect for a micro-sized material, one can address the strain gradient
elasticity [56–64] incorporating one length-scale parameter by expressing the following standard relationship,

σi j � Cijkl

(
1 − l2

∂2

∂x2

)
εkl (16)

where l is an extra microscale parameter.
Hereby and as a result of microstructural property, one can write the finalized governing equations as

below:

(D + g31h)

(
∂4w

∂x4
− l2

∂6w

∂x6

)
+ A1

(
∂2θ1

∂x2
− l2

∂4θ1

∂x4

)
− NMag ∂2w

∂x2
+ I0

∂2w

∂t2
− I2

∂4w

∂x2∂t2
� 0 (17)



On dynamic modeling of piezomagnetic/flexomagnetic microstructures 187

∂2θ1

∂x2
−

(π

h

)2
θ1 �

(
∂

∂t
+ τ0

∂2

∂t2

)(
εθ1 − A2

∂2w

∂x2

)
(18)

As evident, Eq. (18) is identical to Eq. (15), which approved that themicrostructural property is not included
in the heat conduction equation.

Using the micro-dimensional constitutive equations is strenuous in light of the coupling problem among
magnetic-thermal-elastic relations. To this, we introduce the following dimensionless quantities to skip toward
nondimensional constitutive equations,

W � w

L
, l∗ � l

L
, X � x

L
, I ∗

0 � I0
ρL

, I ∗
2 � I2

ρL3 , N∗ � NMag

C11L
, � � tξ

L
, f � LξC11αT

�
,

� � ωL

ξ
, λ � π S, D∗ � D

C11L3 , ξ �
√
C11

ρ
, g∗ � g31h

C11L3 , � � θ1

T0
, τ ∗ � τ0ξ

L
, ϒ � 2αT T0

λ2
,

C∗ � Cv

ξ2αT
, S� L

h
, δ � π3

24(1 − 2ν)

Hence,

(
D∗ + g∗)(∂4W

∂X4 − l∗2 ∂6W

∂X6

)
+ ϒ

(
∂2�

∂X2 − l∗2 ∂4�

∂X4

)
− N∗ ∂2W

∂X2 + I ∗
0

∂2W

∂�2 − I ∗
2

∂4W

∂X2∂�2 � 0 (19)

∂2�

∂X2 − λ2� − f

(
∂

∂�
+ τ ∗ ∂2

∂�2

)(
C∗� − δ

λ

∂2W

∂X2

)
� 0 (20)

As Eqs. (19) and (20) are of six order, there should also be six boundary conditions. One can see the
assumed boundary conditions as follows,

U = W��|L0 � 0, Nx

∣∣L
0 � NMag, Mx

∣∣L
0 �� 0, Txxz |L0 � 0 (21)

The boundary conditions Nx and Txxz are here additional in the case of a multi-physics problem. The
magnetic force resulting from the magnetic field acted on both ends as axial compressive loads and generated
force boundary conditions. In addition, the hyper stress resultant is an internal effect of the magnetic field
and can be supposed zero on both ends of the domain as we are investigating rigid restraints. Moreover, Mx
denotes another force boundary condition.

3 Solution method

Let us assume vibrational modes as time-harmonic displacements. The boundary conditions are developed
analytically to calculate the thermoelastic vibration behavior of the magnetic microscale beam. The frequency
analysis based on the harmonic solution generally involves two sections: real and imaginary parts.

In a case, we investigate both ends of the beam with one rotational degree of freedom in the form of simply
supported conditions. In the other case, however, both ends are supposed to be fully fixed in terms of clamped
boundary conditions. The following equations demonstrate the mentioned procedure respecting the Navier
method [65, 66],

W (X, �) �
∞∑

m�1

WmXm(X) exp(i��) (22)

�(X, �) �
∞∑

m�1

�mXm(X) exp(i��) (23)

in which we took into account the real part only. In the observed equations, Xm indicated in Eqs. (22) and (23)
is required to be expressed,

Xm(X) � sin(mπX) (24)
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Exerting Eqs. (22) and (23) on Eqs. (19) and (20) leads to generalized eigenvalue equations written in the
matrix form as: (∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ − �2
∣∣∣∣ B11 B12
B21 B22

∣∣∣∣
){

Wm
�m

}
�

{
0
0

}
(25)

Then by further simplifying, one can get∣∣∣∣ K11 K12
K21 K22

∣∣∣∣
{
Wm
�m

}
� 0 (26)

where

K11 � (
D∗ + g∗)( ∞∑

m�1

∂4Xm

∂X4 exp(i��) − l∗2
∞∑

m�1

∂6Xm

∂X6 exp(i��)

)

−(
N∗ − �2 I ∗

2

) ∞∑
m�1

∂2Xm

∂X2 exp(i��) − �2 I ∗
0

∞∑
m�1

Xm exp(i��)

K12 �
∞∑

m�1

ϒ

(
∂2Xm

∂X2 − l∗2 ∂4Xm

∂X4

)
exp(i��)

K21 � f δ

λ

∞∑
m�1

∂2Xm

∂X2

(
i� − τ ∗�2) exp(i��)

K22 �
∞∑

m�1

∂2Xm

∂X2 exp(i��) − f

(
i�C∗ − C∗τ ∗�2 +

λ2

f

) ∞∑
m�1

Xm exp(i��)

As seen, the results will be time-dependent vibration with a thermal relaxation time. Notice that the
numerical results are computed concerning the first mode of frequency. Equation (26) can be simplified and
extracted via the below mathematical efforts for the first mode number (m � 1),

det

[(
D∗ + g∗)(π4 + l∗2π6

)
+

(
N∗ − �2 I ∗

2

)
π2 − �2 I ∗

0 −ϒ
(
π2 + l∗2π4

)
−π2 f δ

λ

(
i� − τ ∗�2

) −π2 − f
(
i�C∗ − C∗τ ∗�2 + λ2

f

)]
� 0 (27)

The outcome of the above determinant will be a polynomial complex algebraic relation to which some
mathematical efforts are applied. Indeed, this determinant leads to a fourth-order polynomial algebraic equation
based on �.

λ1�
4 + λ2�

3 + λ3�
2 + λ4� + λ5 � 0 (28)

where

λ1 � f C∗τ ∗(I ∗
0 − I ∗

2 π2)
λ2 � i f C∗(I ∗

2 π2 + I ∗
0

)
λ3 � π2 I ∗

0 + I ∗
0 λ2 + �2 I ∗

2 λ2π2 + ϒτ ∗(π2 + l∗2π4)π2 f δ

λ

+ f C∗τ ∗[(D∗ + g∗)(π4 + l∗2π6) + N∗π2] + I ∗
2 π4

λ4 �
[
−iϒ

(
π2 + l∗2π4)π2 f δ

λ

]
− i f C∗[(D∗ + g∗)(π4 + l∗2π6) + N∗�π2]

λ5 � −[(
D∗ + g∗)(π6 + l∗2π8) + N∗π4] + λ2

[(
D∗ + g∗)(π4 + l∗2π6) + N∗π2]

The solution of this equation gives real and imaginary parts of natural frequency. In fact, as the system
includes damping due to temperature, the roots of this algebraic equation should be complex in most cases,
leading to attenuating the waves. It can be written as follows:

� � Re(�) + Im(�) (29)
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Table 1 Providing comparison for nondimensional natural frequencies of a macro-square beam � � ωn L2
√

ρA
/
C11 Iz , E �

1TPa, υ � 0.3, h � 1 nm

L/h Euler–Bernoulli theory [67] Present

5 9.7112 9.7112
10 9.8293 9.8293
20 9.8595 9.8595

Table 2 Giving nondimensional natural frequencies for a small-scale square beam � � ωn L2
√

ρA
/
C11 Iz , E � 30×106, υ �

0.3, h � 1, L/h � 10, ρ � 1

l
L [68] [Present]

SDM SGT SGT

0 9.82927 9.82927 9.82927
0.01 9.83402 9.83392 9.83412
0.02 9.84787 9.8471 9.84865
0.03 9.87022 9.86761 9.87282
0.04 9.90042 9.89427 9.90657
0.05 9.93783 9.9259 9.94979
0.06 9.98183 9.9614 10.0024
0.07 10.0318 9.9997 10.0641
0.08 10.0871 10.0398 10.1349
0.09 10.1472 10.081 10.2146
0.1 10.2115 10.1223 10.3029

The real section (decay rate) establishes phase shifting and gives an index of the system’s damping and
stability. Moreover, the imaginary part (oscillatory rate) measures the rate of the oscillations and predicts
natural frequencies.

4 Solution validation

The presented theory’s accuracy has been validated considering different conditions before performing the
natural frequencies computations. The comparison of results obtained from different notable theories and the
present work is presented in Tables 1 and 2. According to the previous research findings [67], the presented
study results are high compliance. Furthermore, especially for thinner beams, the results coincide with the
presented beam theory results, as shown in Table 1.

A more comparison is associated here by means of Table 2. The analyzed specimen is a size-dependent
square beam with a lack of magnetic properties. The dedicated reference for validation is [68], where two
size-dependent models are under evaluation. These models are, respectively, strain gradient approach (SGT)
and stress-driven integral model (SDM) [68–70]. Obviously, one can observe a bit of difference between the
present paper results and those of the literature. However, while the parameter λ tends to be increased, the
discrepancy is further. Nonetheless, there is an acceptable agreement among the results.

5 Practical examples

This section focuses on severe impacts on the microsensor’s flexomagnetic response coming from the thermo-
dynamic coupling consideration.Consequently, let us here discuss the determinative factors of themathematical
model. The time relaxation of heat, the initial temperature of the environment, mode numbers, length scale
parameter, magnetic potential, thermal conductivity, and slenderness coefficient will be probed in depth. At
the beginning, it is worth bearing in mind that the cobalt iron oxide as a piezomagnetic material is assigned to
the microsensor. The physical and thermal properties of the microsensor are mentioned in Table 3 [71–76].

Studying the thermoelastic behavior of micro-materials and fine dimensions resulting from the coupling
of an elastic problem with heat transfer gives more accurate results. Because the fundamental purpose of this
research is to learn more about the thermoelastic behavioral differences between piezomagnetic micro-size
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Table 3 Physical quantities for the analysis

CoFe2O4
C11 � 286GPa, ν � 0.32
f31 � 10–9 N/A
q31 � 580.3 N/Am
a33 � 157×10–6 N/A2
αT � 11.80×10–6 1/K (room temperature)
ρ � 4890 kg/m3 [76], T0 � 293 K

Fig. 2 TRT versus dimensionless frequency for PM and PFM microstructures (ψ � 1 A, l* � 0.1, S � 20, m � 1)

beams in two cases, the first case is when the magnetic material has flexomagnetic properties (PFM) and the
second case is a pure magnetic material without having a higher order of magnetic properties (PM). Note that
the value of g* has been assumed as 4×10–4 for all computations.

First, as shown in Fig. 2, we, in summary, review the effect of heat source relaxation time (TRT). It should
be noted that the retention time of temperature is minimal. As it turns out, increasing the kept time of the heat
source in the vicinity of the beam slightly reduces the difference between the results of PM and PFM structures.
In a point of fact, it can be said that thermal shocks make the flexomagnetic effect more. Furthermore, it can
be practically concluded that if we apply thermal shock to the micro-material, a larger and more significant
flexomagnetic effect can be extracted. On the other hand, as can be seen from the diagram, when the keeping
time of the heat source increases, the natural frequencies of the system decrease. It could be discussed that the
higher the holding time of the heat around the beam, the less stiffness the beam. It may be because the heat
weakens the matter’s molecular and atomic bonds after a time. Therefore, to have higher natural frequencies
and to prevent resonance at lower excitation frequencies, the heat source should be kept around the magnetic
microbeam for not a considerable time.

Figure 2 is examined while the initial ambient temperature was 293 K, which is a normal environment
without cooling or heating effects on machine parts. But here, as shown in Fig. 3, we desire to change the initial
temperature of the environment. Then, it is interesting to know what impact a warmer initial environment will
have on the microbeam’s thermoelastic behavior. For this purpose, we draw Fig. 3 for two different initial
temperatures, 293 K and 333 K. With a simple look, it can be seen from the figure that when the earliest
temperature of the environment becomes warmer, the natural frequencies would be more in a lower TRT. This
outcome can be obtained from a distance between initial temperatures of 293 K and 333 K. On that account, it
is logical to state that the initial temperature is a determining factor in microstructures’ thermoelastic behavior.
Thus, it should not be simply disregarded. However, in the case of large values of TRT, the commencing
temperature’s influence can be ignorable.

As shown in Fig. 4, we want to briefly study the effect of different frequency modes on the sensor’s thermo-
dynamic behavior. However, a wave propagation analysis of magnetic microstructures with the flexomagnetic
effect requires a separate study. According to the results computed for this figure, it is evident that for the
lower modes, the flexomagnetic effect remarkably affects the frequency results. For example, in the third fre-
quency mode, the difference between the results of PM and PFM reaches less, which means that the magnetic
microsensor with the flexomagnetic effect will have a lower normal frequency. Suppose we increase the TRT
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Fig. 3 TRT versus dimensionless frequency for PM and PFM microstructures in different initial temperatures (ψ � 1 A, l* �
0.1, S � 20, m � 1)

Fig. 4 TRT versus dimensionless frequency for PM and PFM microstructures in different mode numbers (ψ � 1 A, l* � 0.1, S
� 20)

and get out of the range of thermal shocks; in that case, the amounts of frequency in all modes will go down.
Another deduced point of this figure is that the effect of heat retention on higher modes is of further impact.
This result was obtained from the lower and smoother slope of reducing results in the first mode compared to
the rest.

Since this paper inspects the thermo-mechanical behavior of microstructures in the form of beams, the
crucial point is having different values of the parameter determining the microstructure behavior. The utilized
parameter is the strain gradient length scale (SGLS) parameter. This parameter has no particular values for each
specific structure [77]. For this purpose, we considered different values. In the first case, the problem is turned
into a classical problem without considering the microscale effects, which in this form is l* � 0. All research
records have shown that increasing the numerical values of this parameter will positively affect the stiffness
of the material and structure, and this theorem is also found in Fig. 5. However, the main conclusion that can
be reported by plotting this figure is that the effect of heat retention on the material’s stiffness is observable.
Suppose the values of the SGLS parameter are lower ones for a microstructure; in that case, a shorter heat
retention time further affects the behavior of that microscale structure.

Different amounts of magnetic potential have their unique effects. Research background has shown that
increasing the magnetic potential’s positive values leads to an increase in the elastic stiffness of the material.
Moreover, negative values of this parameter lead to a decrease in the stiffness of the material and a weakening.
According to Fig. 6, we assess the effects of changes in the amount of magnetic potential on the modeled
microbeam’s thermodynamic behavior. The results’ report shows that the TRT directly determines the impact
of externalmagnetic potential on themicrosensor. Short TRTbrings about further noticeablemagnetic potential.
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Fig. 5 TRT versus dimensionless frequency for PM and PFM microstructures in different SGLS parameter’s values (ψ � 1 A, S
� 20, m � 1)

Fig. 6 TRT versus dimensionless frequency for PM and PFM microstructures within different magnetic amperes (l* � 0.1, S �
20, m � 1)

Furthermore, it is observed that the results for PM and PFM microsensors are closer to each other at larger
values of magnetic potential. With this figure’s help, it can be concluded that in the thermodynamic analysis
of microstructures, the increase of positive magnetic potential leads to less importance of the flexomagnetic
property.

In this section, utilizing Fig. 7, we explore the effect of cobalt iron oxide’s thermal conductivity. In fact,
we are looking to see if the flexomagnetic behavior of matter is affected by this coefficient and how different
the FM effect will be at different values of matter’s thermal conductivity. In keeping with the results, it is
conspicuous that if the thermal conductivity of the structure is increased, the flexomagnetic effect will be more
crucial. However, this conclusion will be less significant in heat shocks. Therefore, if a microsensor made by
cobalt iron oxide requires a more significant flexomagnetic effect, the material’s thermal conductivity should
be increased. This increase in heat conduction capacity can be achieved depending on the type of material how
it is fabricated. Further, extra material can be added to the magnetic matrix, which is beyond the scope of this
study.

Using Fig. 8, we will analyze the effects of parameter S on the microsensor’s thermodynamic results. The
dimensionless parameter S determines the slenderness coefficient of the beam. For this reason, we considered
its values from the zone of the relatively thick beam to the thin beam. The most crucial point extracted from
this figure can be that increasing the value of parameter S leads to an increase in the flexomagnetic effect.
Therefore, in longer beams under thermodynamic loads, thematerial’s flexomagnetic property severely impacts
magnetic beam results. On the other, it is discernible that while the S has higher values, the effectiveness of
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Fig. 7 Thermal conductivity versus dimensionless frequency for PM and PFM microstructures within different TRT (ψ � 1 A,
l* � 0.1, S � 20, m � 1)

Fig. 8 Slenderness ratio versus dimensionless frequency for PM and PFM microstructures within different TRTs (ψ � 1 A, l* �
0.1, m � 1)

the heat release time increases. This result means that increasing the values of the beam slenderness ratio is
determinative.

6 Conclusions

We have discussed the coupled dynamics of a beam-shaped specimen made of thermo-flexomagnetic material
such as cobalt iron oxide. In order to take into account a size-effect and a finite speed of heat propagation, the
Lord–Shulman model was applied, whereas, for the mechanical part, the linear Euler–Bernoulli kinematics
was assumed. For brevity, we consider here simply supported beams. The coupled thermoelastic equations
of motions are formulated concerning the following variables: magnetic induction function, thermoelastic
functions, displacements, and linear stresses. Complex coupling behavior is originated from the influence of
the second strain gradient on the thermoelastic equations of motion. The relevant relations corresponding to
dimensionless phase and thermal relaxation time coefficients were determined. Considering coupling and the
influence of heat conduction, we formulate the following conclusions, which could be helpful in the design
and modeling of NEMS and MEMS:

• The less relaxation time will lead to a sizeable flexomagnetic effect.
• The initial temperature will be a decisive parameter for thermodynamic coupling analysis.
• The lower frequency mode numbers will bring the momentous flexomagnetic influence.



194 M. Malikan and V. A. Eremeyev

• The higher capacity of the heat conductivity will make a further noticeable flexomagnetic effect.
• The larger the length, the more remarkable the flexomagnetic effect in a thermodynamic analysis.

The presented results significantly extended the previous pure elastic analyses. It was earlier shown that
the increase or decrease in magnetic potential does not influence the flexomagnetic effect. Indeed, here we
take into account the thermoelastic coupling, which essentially changes the behavior.
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