
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 190, 1974
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ABSTRACT.   A continuous transformation  T of a compact metric space X
satisfies the specification property if one can approximate distinct pieces of
orbits by single periodic orbits with a certain uniformity.   There are many ex-
amples of such transformations which have recently been studied in ergodic the-
ory and statistical mechanics.   This paper investigates the relation between  l'-
invariant measures and the frequencies of  7-orbits.   In particular, it is shown
that every invariant measure (and even every closed connected subset of such
measures) has generic points, but that the set of all generic points is of first
category in X.   This generalizes number theoretic results concerning decimal
expansions and normal numbers.

1.  Introduction.  A number x e lO, 1) is said to be normal to the base s
(s positive integer) if in the s-adic expansion 0.x pV2 • • « of x every possible
¿-block occurs with frequency s~     (k =- 1, 2,..« ).   This is equivalent to the con-
dition that the sequence snx (mod 1) is uniformly distributed in  [0, 1), i.e. that
for every continuous real-valued function / with period 1, one has

N-l
lim   I   Z   /<*"*>- fî/*«

where m denotes Lebesgue measure.

Let Ts denote the map x I-» sx (mod 1)  from [O, 1) onto itself, and write
li(x, T: N) for the measure with mass   1//V   ar the points   x, sx, • • « ,
sr~lx (mod 1).  It is easy to see that the set V s(x) of accumulation points of
y.(x, Ts; N) is a nonempty closed connected subset of the space of Ts-invariant
measures on tO, 1) provided with the weak topology for measures.   If this subset
consists of t/z alone, then x is normal to the base s.   Almost all x are normal.
But it has been shown in a series of papers on nonnormal numbers that for every
closed connected set V ¿0 of T -invariant measures on [0, l) there is an x €
[O, 1) such that V  s(x)= V   (see [6]).   This corresponds to a statement about
the frequencies of ¿-blocks in the s-adic expansion of x, which is based on the
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286 KARL SIGMUND

fact that there is no obstacle to the construction of s-adic expansions by concat-
enating arbitrary sequences of ¿-blocks.   This means that one can specify the
T^-orbit of some x € [0, 1) such that one gets just the "right" frequencies, by
concatenating, so to speak, arbitrary sequences of pieces of T -orbits.

A specification property which allows one to construct in a similar way or-
bits for much larger classes of transformations has been first considered by Bowen
in [2], and was used later in [4], [5], [l6], [l8], [l9l and [20].   In this paper, we
prove for such transformations theorems concerning invariant measures and ge-
neric points.   They can be viewed as extensions of some results obtained for s-
adic expansions in fe], [23iand [6l.

2.  Definitions and elementary properties.   Let (X, T) denote the dynamical
system consisting of the compact metric space X and the continuous map T from
X onto itself.   Let d denote the distance in X.  We shall tacitly assume T to be

a homeomorphism whenever this is necessary—i.e. whenever negative powers of

T are considered.   By a string  A = [a, bi we mean a finite set of consecutive in-
tegers \a, a + 1,• • • , h\.   By a piece of orbit we mean a set JT'x: x e X, 7 e A\.

Definition.   (X, T) is said to have the specification property ((X, T) e SPEC)
if for every   f > 0 there is an integer M(e) such that for any choice of points x.,

x2   e X and strings Al = [al,bli, A2 = [«2, b2\ with a2 - èj > M(«), and any
integer p > b2 - flj + M(t), there exists a periodic point x e X with period p
such that

tÄT'x, T;Xj) < f    for 7 e A j,

e&T'x, T'x2) <t     for 7 e A2.

(This definition does not depend on the choice of the metric d.)
The motivation for this definition comes from the wish to approximate simul-

taneously, up to f, two finite pieces of orbit {T'x^: j € Aji and \T'x2: j e A2\

by one periodic orbit.   Obviously A.  and A2 have to be disjoint:  one would

like the gap between A. and A2, which corresponds to the time for "switching

over" from one piece of orbit to the other, to be as small as possible.   Also, one

would like the length of the periodic orbit to be as small as possible:  this means

that the time for "switching back" from the second piece of orbit to the first one
should also be small.   If (X, T) satisfies the specification property, such a si-
multaneous approximation is possible, provided that the times for switching from
one piece of orbit to the other are larger than M(e).   This number depends neither
on the approximated orbits, i.e. on the choice of Xj and x2, nor on the cardi-
nality of A, and A2, i.e. on the length of time that the periodic orbit is specified

up to f. «
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This seems a very strong condition, but there are many examples of dynami-

cal systems satisfying it:
(A) Let M be a compact metric space, and  X = n*^M the product space

with product topology.   An element x of X is a bilateral sequence (x )   z of

elements of M.   Let T be the shift (Tx)n = x    p   n e Z.   Obviously (X, 7) has
the specification property.

(B) If M is a finite discrete space, one obtains by (A) the shift on a finite

alphabet;  this transformation can also be "represented" as transformation on the
unit interval / = [O, 1) by x r-* sx (mod 1) for s= card M.   This is an example of

an expanding differentiable map (see [17]).  Such maps have the specification
property, because they can be displayed as factors of the shift on a finite alpha-
bet (see [l 1 ] and Proposition 1(b)).

(C) It is an easy exercise to characterize the class of subshifts of the

shift on a finite alphabet which have the specification property.   In particular,

subshifts of finite type and sofic subshifts (see [l] and [25]) belong to this class,
provided they satisfy some mild mixing condition.

(D) In [2] Bowen proves that if T is the restriction of an Axiom A diffeo-

morphism to its nonwandering set ft, then ft decomposes into finitely many dis-

joint pieces ft. invariant under some power T    and such that T   |ft. has the
specification property.

(E) In particular, if X is the 72-dimensional torus and T an automorphism

of X induced by a matrix from  5L(t2, Z) whose eigenvalues are off the unit

circle, then (X, T) has the specification property.  It would be interesting to see
whether this is still true when one only assumes that the eigenvalues are not

roots of unity, i.e. that  T is ergodic with respect to Haar measure.

(F) It is easy to define the analogue of the specification property for one-

parameter flows  {T : X —» Xl     „.   In [A, Theorem 3.8] Bowen shows that  C-

dense Axiom A flows have this property.   In particular, geodesic flows on mani-

folds of negative curvature belong to this class.  It is easy to see that Theorems
1, 2, 3 and 5 below, as well as simple modifications of Theorems 4 and 6, are

valid for flows with the specification property.

(G) In [16] Ruelle defines and studies specification for Zv-actions.

Actually the specification properties given by Bowen and Ruelle are slightly

different from the one given here.
Bowen's definition in [2] is:  For every f > 0 there is a M(f) such that if

x, ,• • • , x,  are points in X and A. = [a., ¿?.]  (i = 1, 2,- • • , k) ate strings with

a. - £>¿_ j > MU) fot i » 2, 3». • • » k and if p > bk- flj + M((), then there exists
a periodic x 6 X with period p such that

aXT'x, T'x) <(    for / e A ., i m 1, ..., *.
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Thus the periodic orbit here approximates simultaneously k pieces of orbit, and
the length of the gaps between the A;'s does not depend on k.

In [16] Ruelle calls this the strong specification property. He also has a
weak specification: it is the same as Bowen's, except that x is not required to
be periodic (hence no condition on p).  The definition used here is in between
strong and weak specification.

The class SPEC of systems with the specification property is natural in the
sense that it is closed under factors and products.  Recall that a ¡actor (or homo-
morphic image) of (X, T) is a system (Y, S) such that there exists a continuous
map <f> from X onto  y with S ° <f> = <f> ° T.   The product of two systems (X, T)
and (Y, S) is the system defined on the space X x Y by the map T x X: (x, y) H»
(Tx, Sy).

Proposition 1.  (a)   (X, T) e SPEC iff (X, Tk) e SPEC for some  k¿0;
(b) the factor of a system in SPEC is in SPEC;
(c) the product of two systems in SPEC is in SPEC.

We leave the proof as an easy exercise.

Proposition 2.   // (X, T) satisfies the specification property, then
(a) the periodic points are dense;
(b) (X, T) is topologically mixing.

This is also easy to check.   (Recall that (X, T) is topologically mixing if
for all open U, V C X, there is an N > 0 such that T~nU n V 4 0 for all 72 > N.)
It follows that the powers of  T are topologically transitive, i.e. that for every
k 4 0 there is an x such that W x\. is dense in X.  In particular, (X, T) is an
î-flow and therefore disjoint from all minimal flows (see tlO]).  Remark also that
if (X, T) eSPEC and   X has less than c points, then X reduces to one point.

The following lemma is a technicality useful for the study of averaging be-
haviour of orbits of (X, T).

Orbit specification lemma.   Let (X, T) be a system with the specification
property.   Let e    (72 6 Ai or n e Z) be a given sequence of positive numbers.
Then there exists a sequence Mk (k € N) of positive integers such that for any
increasing sequence of disjoint strings A   = \a , b J with the property that ß„+1
- bn > Mil, and for any sequence %n € X, there exists a z € X such that

(1) aXT'z, T'x )<(     for j eA , all n.n   —   n     '       ' n

Proof.  We consider the case of bilateral sequences, 72 = 0, + 1, + 2,. • • .

For k > 0 write r¡k = mini  1^ and set Mfe = AKnfe+1/2fe+3). Let An, »eZ.be
a sequence of disjoint strings such that a    .—a   > M, for  1721 = k.
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Define a sequence of strings Bn as follows: BQ = A; Bk = [«_(*._ j« bk]

and B_fc - \a_k, ¿fe] for £ > 0. Define a sequence zn £ X by induction: zQ =
x0;  and, if zn has been defined for |«| < k, let zfc be such that

a\T'zk, r'..(4-ip < V2fe+2    for , «».(*.„,

4ryZ/fe, TyxA) < 77^/2 fe+2   for / e Afc

and z_k such that

^T7z.*' T'zk)< V2**2   for /' e B*>

*rf>_à, T'x_fe) < 77fe/2*+2   for jeA_k.

Such «i   (resp. z_k) exist by the specification property, since a, - bk_ j > Mfc_j
(resp. «/¿„j)— ¿_¿ > íVl^, > M¿_i).  One can see by induction that if n, m £ Z,\n\>
17771, then

(2) d(Tjzm, T'xn) < ij2n*X   for / e A^.

Let z be the limit of the Cauchy sequence zk, k > 0.  We claim that (1) holds.
Indeed, choose k so large that k > 1721 and such that

(3) aXT'z, Pzk) < tj2   for ; e Bn.

Then for / € An one has by (2) and (3)

aXT'z, Tjxn) < en/2 + f„/2"+1 < ffj.   □

This lemma allows one to build orbits almost at will.  Remark that the length of
the strings A    along which z is specified can be arbitrarily large.  In a situation

like (1) we say that z is specified along the string A    by the orbit of xn up
to V

In a similar way one can show that for any f > 0 and any integer k > 1, there
is a positive integer Mf fe such that for any x. e X, and any set of strings A. =
[a., ¿.], with ai  . — bi > M( k, for i = 1 ,• • • , k and any integer p > bk - flj +
Me ■, there is a periodic point z 6 X with period p such that d(T'z, T'x.) < e
fot j £ A., i = 1,- ••, k.  From this follows

Proposition 3.  // (X, T) is a nontrivial system with the specification prop-
erty, then the topological entropy of (X, T) is larger than 0.

This proposition has been proved, for one parameter flows, in  [4, Theorem

4.12L   The proof is just the same in the discrete case.  For a definition of topo-
logical entropy, see [3l

3.   Generic points and the space of invariant measures.   Let T be a contin-
uous map from X onto itself.   Let M denote the set of all normalized Borel
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290 KARL SIGMUND

measures on  X, with the weak topology for measures (see tl5l).   Then p.   —» // iff

for all / e C(X).   M is a compact metrizable space  [15, p. 40].   Let M(T) be the

subset of M consisting of the  T-invariant measures:   n € M(T) iff

¡(f °T)dli= Jfdp    for all / 6 C(X).

It is well known that M(T) is a nonempty convex subset of M.   The extremal
points of M(T) are just the ergodic measures on X, i.e. those ii e M(T) which do

not assign positive measure to two disjoint T-invariant Borel sets in X.
For x e X and N > 0 let p(x, T; N) denote the measure given by the map

/•-i  Zf./Cï*'*),    /eC(X).
;'=0

Let Vr(x) denote the set of limit points of the sequence fi(x, T; N). Since M is
compact, V (x) ;¿ 0.   It is easy to see that  V  (x) is a closed connected subset

of M(T).   If V  (x) consists of just one point p e M(T), then one says that   x
is a generic point for ti with respect to T, and writes ¡i = ¿i(x, T).  We shall

show in Theorem 4 that if (X, T) has the specification property, then every non-
empty closed connected subset of M(T) is such a  V   (x).   This need not be true
if the specification property does not hold.   It can happen that there are   ti e

M(T) such that there exists no generic point for   p (see [24]).   If tx is ergodic,

however, then  V   (x) = |/i|  for zi-almost all   x 6  X  (this follows from Birkhoff's

ergodic theorem).

If x is periodic with minimal period p, then x is generic for the measure
¡J-(x, T)= n(x, T; p).  Such measures are called CO-measures (because  x has a

closed orbit).   Obviously a CO-measure is ergodic.

Theorem 1.   Let (X, T) be a dynamical system with the specification prop-

erty.   Then the set of CO-measures is dense in M(T).   More precisely for any
two open sets U C MÎT),   V C X and any N > 0, there exists a periodic point x e

V with period p> N such that ii(x, T) 6 U.

The proof is very similar to the proof of Lemma 1 in [18] or of the correspond-

ing statement for Zv-actions in [16].   (It was proved there for the "strong spec-
ification property", but one does not need this extra strength.)   One can con-

struct subshifts showing that the "converse" is not true:  there exist dynamical

systems which are topologically mixing, have periodic points dense in  X and CO-

measures dense in  Af(T), but which do not satisfy the specification property.
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As an immediate corollary of Theorem 1 and the fact that the set of extremal
points of a convex set is a  G g, one obtains that the set of ergodic measures is
the complement of a set of first category in  M(T).

Actually, one can show slightly more.   Let E; denote the set of those p. e
M(T)C M(Tl) which are ergodic with respect to Tl  (/ = 1, 2,--. ).  If /t e
M^ljEpthen ¡1 is said to be totally ergodic.   If x has prime period p > /»then
u(x, T) e E¡.  As a consequence of Theorem 1 one obtains therefore

Theorem 2.   // (X, T) is a system with the specification property, then the
set of totally ergodic measures is the complement of a set of first category in

M(T).

Just as in [18], one obtains furthermore

Theorem 3.   // (X, T) has the specification property, then the set of non-
atomic measures, the set of measures positive on all open sets, and the set of

measures vanishing on all proper closed invariant subsets of X are complements

of sets of first category in M(T).   The set of strongly mixing measures is a set

of first category in M(T).

Recall that a u e M(T) is said to be strongly mixing if p(UnT~nV)—'
n(U)p(v) for all Borel sets  U, V C X.   A measure it e M(T) is said to be weakly
mixing if for all such  U, V,

N-l
lim I   Z   l^Ur> T-'V)-11(t/V(V)|=0.

Conjecture.   If (X, T) e SPEC, then the set of weakly mixing measures and
the set of measures with zero entropy are complements of sets of first category.

The first part of the conjecture has been verified in special cases in [14]
and [20]. The second part has been proved under the further assumption of ex-
pansiveness by Ruelle in [l6l

Theorem 4. Let (X, T) be a system with the specification property, and
V C M(T) a nonempty closed connected set. Then there exists an x 6 X with

VT/(x)= V for /=1,2,... .

Proof.   By Ù5, Theorem 6.6] there is a countable set F « J/, •/«#• •• ! C

C(X) such that /x   —» ft  iff  §fkdun —» ff^dfi for k = 1, 2,- • • .  We may assume
11/, ll = L

Write Pk fot the set 1/p- • • , fk\.  For u € M(T) denote by  Uk(p.) the neigh-
borhood

íveM(T):\¡fdu-ffdv ■k<2"*, feP.
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For fixed k there are finitely many CO-measures fi*»«" , /rv  such that
\JT^Uk(p.) covers  V.  Since  V is connected, we may assume that the pq sue

enumerated in such a way that  U/Al1; ) H U/fa, +j) O V 4 0, /' ■ 1 »• • • » 77zfc - 1, and
^k^rlmi?nl}k+l^ll*1' nv ¿ 0> ft* is generated by some periodic point x*.  For
simplicity write  Un = f/¿(/*y )» xn = xk and pn = fj£ with » = 7721 + 7722 + • •. +
722.  , + k, 0< k<m..  Thus a   e {/   and ÜO (/ A, OV/ 0. We may assume2—1 — y ■ « 71 fl 72+1 '

that xn has prime period pn.
Now choose a sequence of disjoint strings of integers A   = la  > b ]  (72 = 1,

2, • • « ) such that
(a) the gaps are long enough to allow specification up to 2~n along the

string An;
(b) the length of A    is much larger than the length of what came before :

more precisely, ajbn [ 0;
(c ) the length of A    is much larger than the length of the gap between An

and An+l- More precisely, (an . - bn)/(bn - an) 10;
(d) (?„-, +P„)/^_i-«B.i)io.
By (a) and the orbit specification lemma, there is an x e X such that

(1) d(T'x. Tjx )< 2~",     for j e A. n = 1, 2,- • • .

Claim 1.   V C VT'(x) for / = 1, 2,-
Proof.  Fix / and consider some ¡j. 6 V.  Choose a sequence 72. T 00 such

that p e 1/     for k = l,2,--. .  Let Mfc and hk be integers such that 0 < hk < I
and Mk • / = ¿     + i¿.  We shall show that p(x, T ; M¿) —» /1 for £—♦«>.   Fix /
£ F.   If & is large, the expression

(2)

differs very little from

(3)

«VI

k   Zo f{TÍx)k     ;=0

i Zo' liT'x)
k    2=0

where the dash indicates that one takes the sum only over those i with i =
0 (mod /).  This in turn is by (b) very nearly

W r-1—   £' flT'x).

One has by (1 ) that

VS'«\

-—    Z'i/(î"x)-/(r'x )}
VS ie\

<co(f;2    k)
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where o)(f; e) is the oscillation of /.  Using (d),

i "* n*  «k )

fot k —» ».  Since the period pn, of x     is prime, one has

jfMx^T1)- jfM*„k,T)

and this last term tends to ffdp.  It follows that the expressions in (4), (3) and

(2) have ffdp as a limit for k —♦ », hence u £ VT (x).
Claim2.   VT/(x)C y for /=1, 2,-.. .
Proof.  Let p. e V    (x) be given.  There is a sequence Mfc T ~ such that

(5) ¡i(x, Tl; Mk) — /t   for k -. ~.

We will construct a sequence pk £ V such that pk—> pu  Let Afc be such that

(6) ^i-' = a„   +*j,    with 0 <*,<«.-a   .
* — * nk

One has /xnfe_1 e U^,,  ^^ £ fJnjfe and there is a ftfe £ Ur¡k_l n I/^n V.   By
(5) it is enough to show that for all / £ F,

(7) Um
* I     Z    /(T"x)-//^[ = 0.m*    y»o "        )

Remark first that we may assume that M^l belongs to An .   Indeed, otherwise Mfe
would be, by (6), in the gap between A      and A      ,.   In this case we could re-
place  Mk by M'k, the largest integer M such that Ml is still in A    , since by
(b) and (c)

lim
*—00

( Mk-l «i-» )
Í5-     Z    /(^)-¿7   ^    /(T''x)U0.
(M*   /-0 M*   ;-o )

Now

M*_1

4-    Z    /(T'7x)""*    j'=0
(8)
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Since Mkl > a    , the first term on the right-hand side tends to zero by (b), and the
third term tends to zero by (c).   The remaining sum differs from

¿iLr /(rV')+ A £'«,/(rvi
\       "*_1 "l * "

(9)
"*

by less than cü(/; 2 ) + tu(/; 2       ), which tends to zero.  Define integers  q

and q' by

#{z€A       ,: z' = 0 (mod l)\ = qp       , + q ,       0 < q < p       ,.

Thus  T'xn     j runs, for z £ A       . and z = 0 (mod 0» 9 times through the entire

orbit of *n,_p plus  q' more steps.  Similarly  T'x      runs, for z £ A    ,   i < M.l,
and  t ■ 0 (mod /),   r times through the entire orbit of x    , plus some r   more steps

(0 < r' < pnk).  Clearly

(10)

and

01)

H-v/rv,)~,v'J'*<v',rtl£ ^

tjM^v/(rV-'f.J'*(-.^',¡^

The right-hand  sides of   (10) and   (11) together are smaller than

^ni-1 + t*B. V/Mfc,and tend therefore to 0 by (d).
Denoting by 5fe the sum in (9), and remarking that /¿(xn _j, T )= Mxnl_i»'r)

= ^-1 and V&nk> T'^^tone obtains

(12) 1
*i ¡'»-¡¿-('V' /'+v+ *•» i'*"4"°-

Let a=(q • p       ,)/(<? • p„,    , + r • ö  ,). By simple estimates using (b) and (c),
71*— 1 "fe"" ' *

one obtains

(13) £™{5* - f/^v1 + (1 "a) /'*■ *)}= °-

Now / is in some  Ffe.  Since pk 6 U    _ j n 17, one has
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and hence by (13)

(i4) liz{sk-ffdh}-0'

By tracing back through equations (14), (9), and (8), one obtains (7), and hence
p e V.  a

For X = [0, 1 ) and  T = Ts: x —* xs (mod 1 ) one obtains a theorem of Cole-
brook [6].

Corollary.   Let (X, T) èc u system with the specification property and p €

M(T).   Then there exists an x e X which is a generic point for p with respect to
T,T2,tK--- etc.

4.   Quas ¡regular points.   A point  q € X is said to be quas ire guiar with re-

spect to the continuous map T from X onto itself if q is generic for some T-

invariant measure on X, i.e. if V   (q) consists of exactly one point in M(T). Let

Q(T) denote the set of quasiregular points.   It is well known that (i(Q(T))= 1 for
all ¡i € M(T)  (see [12]).   Thus  Q(T) is large, measure theoretically.  From the

topological point of view, however, it is often small.   This happens, in particular,
if (X, T) e SPEC.

Theorem 5.   // (X, T) is a nontrivial system with the specification property,
then Q(T) is a dense set of first category in X, containing  c points.

Proof.  That Q(T) is dense follows trivially from Theorem 1.   That Q(T)
has c points follows from Theorem 4 and the fact that M(T) has c points. There

clearly exist points in X whose orbits are dense and which do not belong to
Q(T).  (Take for example an x with  VT(x) = M(TÏ) It follows from [7,Theorem 3]
that Q(T) is of first category in X.    □

As a special case of this theorem one has that the set of normal points is of

first category in  [0, 1).   This is known at least since [131  In [9] Furstenberg

proved that Q(T) 4 X ii T is an ergodic automorphism of the two-torus X.   Theo-
rem 5 sharpens this result.  In [22] it is shown that if 5 and Tare distinct ergodic
group automorphisms of the two-torus, then Q(T)4 Q(S).  In the proof one uses
the following:

Theorem 6.   Let (X, T) be a system with the specification property.   Then
Q(Tk)4Q(Tl) if k4l

Proof,   (i)  If k = 0 and I 4 0 the theorem follows from Theorem 5 and Prop-
osition 1(a): Q(Tl)4X.
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(ii)  In order to show that Q(Tk) 4 Q(Tl) for k, I > 0, i//,we prove the
following statement:   Let (X, T) £ SPEC, and let 5: X —» X be a continuous map
such that  Tk = Sl for some k, I > 0, but  T ¿ S.   Then  (¿(T) 4 Q(S).

Remark first that by Proposition 1 (a), (X, S) € SPEC.  Since 5 and T are
different, there exists an x such that either the  5-orbit of x is distinct from the
5-orbit of Tx, or the  T-orbit of x is distinct from the  7-orbit of Sx.   Let us as-
sume the first case.   By the specification property we may assume that x is a
periodic point of 5.

With help of the orbit specification lemma, applied to 5, one can choose a

sequence of disjoint strings of integers  An = [a , b J,  72 > 0, such that conditions
(a), (b) and (c) in the proof of Theorem 4 are satisfied.

Now define x   e X by x   = x if 72 is even, x   = Tx if 72 is odd (recall thatn J      n '     n
Tx 4 x).   Let z e X be specified such that, for 7 e A  , d(S'z,S'x )<2~n.

Such a z exists by (a). Thus S-z runs along the 5-orbit of x for / £ A^; it

runs along the 5-orbit of Tx for j € A2; again along the 5-orbit of x for j 6 A,;

etc.
Claim 1.   z i Q(S).   Indeed, since the 5-orbits of x and  Tx are two distinct

finite sets, there exists an / e C(X) such that

m 1  N~- 1   N_1(1) Um   ±  Z   ßS'x) 4   Um  l    Z   f&Tx).
N-.oc N   £5 n^«, N    f-¿

Now by (b)

bn-\ bn-\

(2) lim —   Z   /(5'z) =  lim  -i-   £   /(5'*)
"~°° *„   y=o «— ¿„ - ß„   ;=<*

and this last expression is

1   N-1lim   Ti   51   /(S'x)    for x even,

N-l
lim   \,   Z   /(S'Tx)  for x odd.

(It is easy to see that the limits in (2) exist.)
Thus lim^^N"^-1/^'*) does not exist, z i Q(S).
Claim 2.  z e Q(T\  Indeed, for N > 0 let 72 be such that b   < N < b ^,.m n — 7.+1

Then for / e C(X) and N large, one has
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(3) J Z /(rM-li Z /(r'zW      Z    /-(tMJ.
,=o " (y6An r*»Ä+1;/<N J

Indeed, one can forget about the terms /(T'z) with ; < a   by (b), and about those
with /' in the gap between An and ^n+p by (c).   The right-hand side of (3) is
almost equal to

(4) if 5/«*.>♦      L     /^„+i)i
\XeAn xeA„+V*<" )

which in turn is equal to

(5) U?     f(TÍx) + Z        /(r'TxÄ    for / even,

(5'> Ul   /Cr'r*) + Z        f&*\    for / odd.
('**» ieA«+v><N )

Now x is a periodic point for S and thus, since S = T , it is periodic for

T, with period p, say.   If Af is large enough, card (An) is much larger than p.   It
is easy to check that for N —» «, the expressions (5) and (5*) tend to

I Z /(r'x).
*    7=0

Hence

N-l
Jim \ Z /(r'z)

exists, z € Q(T).
(iii) If T is a homeomorphism and k, / > 0, then it is easy to construct a

z £ Q(Tk) with z i Q(T~l).  Indeed, choose x £ Q(Tfe) and y € x\Q(T~1).  Let
A , 72 £ Z, be a sequence of increasing disjoint strings of integers, with gaps large enough
such that, by the orbit specification lemma, there exists a z with

d(T'x, r'z) < 2""    fot i £ A , n > 0,'        n '

a\T'y, T'z) < 2~n   fot j £ A , n < 0.
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One can choose the strings so long and the gaps so short that  (J    „A

(resp. Un<0^„) is of density 1 in Z+ (resp. -Z+).  Then z e Q(Tk) and
z i Q(T-'l   a
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