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In this paper we study linear passive electrical circuits mixed with ideal diodes and voltage/current sources
within the framework of linear complementarity systems. Linear complementarity systems form a subclass of
hybrid dynamical systems and as such questions about existence and uniqueness of solution trajectories are
non-trivial and will be investigated here. The nature of the behaviour is analyzed and characterizations of
the inconsistent states of the network are presented. Also explicit jump rules from these inconsistent states
are given in various forms. Finally, these results lead to a generalization of the notion of passivity to linear

complementarity systems.
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1 Introduction

The systems studied in this paper fall within the
class of linear complementarity systems (LCS) with
external inputs. Linear complementarity systems
consist of combinations of linear time-invariant dy-
namical systems and complementarity conditions
as appearing in the linear complementarity prob-
lem of mathematical programming [4]. These sys-
tems were introduced in [15] and further studied
in [3,9,10,12,16]. However, in all these papers
the situation with nonzero (discontinuous) exter-
nal inputs is not considered and as such will be
studied in this paper for the first time. In par-
ticular, we will focus on LCS that satisfy a pas-
sivity condition on the underlying state space de-
scription. In this way, the particular applications
at hand are linear electrical networks with ideal
diodes and current/voltage sources. In this con-
text complementarity modelling has been used be-
fore in e.g. [2,11] for the simulation and verification
of large-scale networks.

LCS are nonlinear discontinuous hybrid dynam-
ical systems. This can be illustrated by the be-
haviour of networks with ideal diodes. The “mode”
(also called “configuration” or “topology”) of the
circuit is determined by the “discrete state” of the
diodes (blocking or conducting), which changes in
time. To each mode a different set of differential
and algebraic equations is associated which gov-
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erns the actual evolution of the network’s vari-
ables. At a mode transition (a diode going from
conduction to blocking or vice versa) the set of
equations changes and a reset (jump) of system’s
variables may occur (think of the instantaneous
discharge of a capacitor directly connected to a
diode). The model leads to a description with vary-
ing continuous (mode) dynamics and discrete ac-
tions like mode transitions and re-initializations.
The mode transitions are triggered by certain in-
equalities expressing for instance that the current
through an ideal diode is always nonnegative. This
indicates that the issue of existence and uniqueness
of solution trajectories is non-trivial. Besides well-
posedness, we characterize the inconsistent states
(i.e., states from which discontinuities and Dirac
impulses occur) in several equivalent ways. Next
to these extensions of previous results in [3] to the
nonzero input case, the main results present ex-
plicit expressions for the jumps (re-initializations)
of the state vector, which have interesting physical
interpretations. Finally, we introduce a concept of
passivity for an LCS and state a sufficient condition
for this.

The proofs of the results stated in this paper can
be found in [8].

Throughout the paper, R denotes the real num-
bers, R} := [0,00) the nonnegative real numbers,
Lo(tg, t1) the square integrable functions on (¢o, 1),
and B the Bohl functions (i.e. functions having ra-
tional Laplace transforms) defined on (0,00). The

distribution 6,@ stands for the ¢-th distributional
derivative of the Dirac impulse supported at ¢.



The dual cone of a set @ C R™ is defined by
Q* ={z € R"z"y > 0for all y € Q}. For a pos-
itive integer k, the set k is defined as {1,2,...,k}.
For a matrix A the notation posA is used to indi-
cate all positive combinations of the columns of A,
ie., posd = {v | v =), A, for some a; > 0}
with A,; denoting the i-th column of A. The or-
thogonality u"y = 0 between two vectors u € R
and y € R* is denoted by u_Lly. As usual, we say
that a triple (A, B,C) with A € R™ " is mini-
mal, when the matrices [B AB ... A" !B] and
[CT ATCT...(AT)"~1CT] have full rank.

Finally, we define the linear complementarity
problem LCP(q, M) (see [4] for a survey) with data
q € RF and M € R*** by the problem of finding
zeRFsuchthat 0 < z L q+ Mz > 0. The solution
set of LCP(q, M) will be denoted by SOL(q, M).
Many numerical algorithms (appropriate in differ-
ent situations) are available for solving LCPs. For
an overview the reader is referred to [4,11].

2 Passivity for linear systems

We start by recalling the notion of passivity for a
linear time-invariant system.

Definition 2.1 [17] Consider a  system
(A, B,C, D) described by the equations
&(t) = Az(t) + Bul(t) (1a)
y(t) = Cx(t) + Du(t), (1b)

where z(t) € R™, u(t) € R¥, y(t) € R¥ and A, B, C,
and D are matrices of appropriate dimensions. The
quadruple (A, B, C, D) is called passive, or dissipa-
tive with respect to the supply rate u'y, if there
exists a nonnegative function V : R™ — R, called
a storage function, such that for all {5 < t; and all
time functions (u,z,y) € L5T"F(to,t1) satisfying
(1) the following inequality holds:

V(a(to)) + / Tyt > Vi),

This inequality is called the dissipation inequality.

Theorem 2.2 [17] Assume that (A, B, C) is min-
imal. Then (A, B,C, D) is passive if and only if the
matriz inequalities

ATK+KA KB-CT

_ T
K=K >0 1pTxk ¢ _(p+p7)|SY
(2)
have a solution. Moreover, V(z) = ta' Kz de-

fines a quadratic storage function if and only if K
satisfies (2).

3 Linear passive networks with ideal diodes

Linear electrical networks consisting of (linear) re-
sistors, inductors, capacitors, gyrators, transform-
ers (RLCGT), ideal diodes and current and/or volt-
age sources can be formulated by the complemen-
tarity formalism. Indeed, the RLCGT-network is
given by the state space description

#(t) = Ax(t)+ Bu(t) + Ew(t) (3a)
y(t) = Cxz(t) + Du(t) + Fw(t)  (3b)
z(t) = Gz(t)+ Hu(t) + Jw(t) (3c)

under suitable conditions (the network does not
contain loops with only capacitors and voltage gen-
erators or nodes with the only elements incident
being inductors and current generators). See chap-
ter 4 in [1] for more details. In (3) A, B, C,
D, E, F, G, H and J are real matrices of ap-
propriate dimensions. The variables z(t) € R",
(u(t),y(t)) € R¥* and (w(t), z(t)) € RPHP are
the state variable, the connection variables to the
diodes and the variables corresponding to the ex-
ternal ports (connected to the sources) on time ¢,
respectively. To be more specific, the pair (u;,y;)
denotes the voltage-current variables at the con-
nections to the diodes, i.e., fori=1,...  k

up ==V, yi=Loru =10,y ==V, (4

where V; and I; are the voltage across and current
through the i-th diode, respectively (adopting the
usual sign convention for ideal diodes). The ideal
diode characteristic is described by the relations

Vi<0, I; >0, {Vi=0or I, =0}, i =1,... .k

(5)

)

and is shown in Figure 1.

Figure 1: The ideal diode characteristic.

By combining (3) and (5) by eliminating V; and
I; by using (4) the following system description is
obtained:

#(t) = Axz(t)+ Bu(t) + Ew(t) (6a)
y(t) = Cux(t) + Du(t) + Fw(t) (6b)
z(t) = Gzx(t) + Hu(t) + Jw(t) (6¢)
0<yt) L wu(t)=0. (6d)

Since (6a)-(6¢c) is a model for a RLCGT-
multiport network consisting of resistors, capac-
itors, inductors, gyrators and transformers, the



quadruple
e gl g 5D ™)

is passive (or in the terms of [17], dissipative with
respect to the supply rate u'y +w' 2).

The following technical assumption will be used
often in this paper. Its latter part is standard in
the literature on dissipative dynamical systems, see
e.g. [17].

Assumption 3.1 B has full column rank and
(A, B,C) is a minimal representation.

4 Solution concept

To define a solution concept, it is natural to employ
the distributional theory, since the abrupt changes
in the trajectories can be adequately modelled by
impulses. To do so, we need to recall the definition
of a Bohl distribution and an initial solution [10].

Definition 4.1 We call u a Bohl distribution, if

U = Uimp +Upeg With uimp = 22:0 uiiééi) foru=? €

R and u,¢q € B. We call u;y,,, the impulsive part of
u and u,.4 the regular part of u. The space of all
Bohl distributions is denoted by Bip,p.

It seems natural to call a (smooth) Bohl func-
tion u initially nonnegative if there exists an € > 0
such that w(t) > 0 for all ¢t € [0,¢). Note that
a Bohl function u is initially nonnegative if and
only if there exists a g9 € R such that its Laplace
transform @(o) > 0 for all o > o0¢. Hence, there
is a connection between small time values for time
functions and large values for the indeterminate s
in the Laplace transform. This fact is closely re-
lated to the well-known initial value theorem (see
e.g. [5]). The definition of initial nonnegativity for
Bohl distributions will be based on this observation
(see also [9,10]).

Definition 4.2 We call a Bohl distribution u ini-
tially nonnegative, if its Laplace transform G(s) sat-
isfies (o) > 0 for all sufficiently large real o.

Remark 4.3 To relate the definition to the time
domain, note that a scalar-valued Bohl distribu-
tion u without derivatives of the Dirac impulse (i.e.
Wimp = u’6 for some u® € R) is initially nonnega-
tive if and only if

1. u® >0, or

2. u9 = 0 and there exists an ¢ > 0 such that
Upeg(t) 2> 0 for all t € [0, ¢).

With these notions we can recall the concept of
an initial solution [10], which is used as a “build-
ing block” for the global solution concept. Loosely

speaking, an initial solution is only valid temporar-
ily as it will satisfy the system’s equations only un-
til the next switch of one of the diodes. At this
point we only allow Bohl functions (combinations
of sines, cosines, exponentials and polynomials) as
inputs. This is not a severe restriction as we con-
sider initial solutions in this section. In the global
solution concept we will allow the inputs to be con-
catenations of Bohl functions, which may conse-
quently even be discontinuous.

Definition 4.4 The distribution (u,x,y) €
Bfnt;”k is said to be an initial solution to (6a),
(6b) and (6d) with initial state z¢ and input w € B
if

1. x = Ax+Bu+FEw+x¢dp and y = Cx+Du+Fw
as equalities of distributions.

2. u and y are initially nonnegative.

3. for all i € k, either u; = 0 or y; = 0 as equali-
ties of distributions.

A justification for restricting the set of initial so-
lutions to the space of Bohl distributions is given
in [3, Lemma 3.9] and [7, Lemma 3.3]. It is shown
there that the mode dynamics given by a set of lin-
ear DAEs (1 and 3 in the definition above) has a
unique solution, which is necessarily a Bohl distri-
bution.

5 Well-posedness

The statements in the sections 5 and 6 are exten-
sions of the corresponding results in [3, 7], which
deal with the input free case only. Consider (6) in
which the additional variable z is omitted for the
moment (as it does not play a role in existence and
uniqueness of solution trajectories), i.e. look at

#(t) = Axz(t)+ Bu(t) + Ew(t) (8a)
y(t) = Cx(t)+ Du(t) + Fw(t) (8b)
0<y(t) L wu(t)=0. (8c)

Proposition 5.1 Consider an LCS with external
inputs given by (8) such that (A, B,C, D) is pas-
siwe and Assumption 3.1 is satisfied. Define Q :=
SOL(0,D) = {v € R¥ |0 < vLlDv >0} and let Q*
be the dual cone of Q.

1. For arbitrary initial state x9 € R" and
any input w € B, there exists exactly one
initial solution, which will be denoted by

T, W LXo,W xo,w)
(o xTow y .

2. No initial solution contains derivatives of the

Dirac distribution. Moreover, w7 = u%d,

To, W __ To,w __ 0 0
Ximp = 0 and y;007 = Du’dg for some u” €
Rk



8. For all xro € R™ and w € B it holds that
Cxzo + Fw(0) + CBu® € Q*, where u°3y is
the impulsive part of u®o-*,

4. The initial solution (u™" x0:W yTow) g
smooth (i.e., has a zero impulsive part) if and
only if Czo + Fw(0) € Q*.

The proposition gives explicit conditions for ex-
istence and uniqueness of solutions to a class of
hybrid dynamical systems of the complementarity
type. Similar statements for general hybrid sys-
tems are hard to come by (cf. [13] for partial re-
sults). Note that the first statement of the propo-
sition by itself does not immediately guarantee the
existence of a solution on a time interval with pos-
itive length. The reason is that an initial solution
with a non-zero impulsive part may only be valid
at the time instant on which the Dirac distribu-
tion is active. If the impulsive part of the (unique)
initial solution is equal to u%dy, the state after re-
initialization is equal to zg + Bu® [6,10]. The oc-
currence of infinitely many jumps at t = 0 with-
out any smooth continuation on a positive length
time interval is in principle not excluded. However,
the third and fourth claim in the proposition ex-
clude this particular instance of Zeno behaviour!:
if smooth continuation is not directly possible from
Zo, it is possible after one re-initialization (jump).
Indeed, since Czg + Fw(0) + CBu® € Q*, it fol-
lows from the fourth claim that the initial solution
corresponding to xo + Bu® and input w is smooth.
This initial solution satisfies the equations (8) on an
interval of the form (0,¢) with € > 0 by definition
and hence, we proved a local existence and unique-
ness result. This result will be extended to obtain
global existence of solutions. Before we can formu-
late such a theorem, we need to define the allowable
input functions and a global solution concept.

Definition 5.2 A function w : [0,00) — R is
called piecewise Bohl, if w is right-continuous? and
there exists a countable collection T'y, = {7} C
(0,00) and an a > 0 such that

e Ty 2> T;+a,and

e for every ¢ there exists a v € B with

w |(Ti,Ti+1): v |(7—i17—i+1)'

The set of piecewise Bohl functions is denoted by
PB.

We call the collection Ty, = {7;} the set of tran-
sition points associated with w. The subset of {7;}

1Zeno behaviour in a hybrid system means that there
is an infinite number of discrete events (mode transitions
and/or re-initializations) in a finite time interval.

2This means that for all 7 € [0,00) the limit
limy |~ w(t) = w(r).

at which w is not continuous is called the collec-
tion of discontinuity points of w and is denoted by
I'Y = {60;}. Note that the right-continuity is just a
normalization, which will simplify the notation in
the sequel. The separation of the transition points
of a piecewise Bohl function by a positive constant
« is required to prevent the system from showing
Zeno behaviour due to Zeno input trajectories. To
present the global existence result, we define the
following distribution space.

Definition 5.3 The distribution space L2 5[0,7")
is defined as the set of all u = Ujmp + Upeg, Where
Uimp = Zeer u?6y for u? € R with T a finite subset
of [0,T), and ey € L2[0,T)

Theorem 5.4 Consider the LCS given by (8) such
that (A, B,C, D) is passive and Assumption 3.1 is
satisfied. Moreover, let the initial state xoq, T > 0
and w € PB be specified and let TS, = {6}
be the set of discontinuity points associated with
Fw. Then (8) has a unique solution (u,x,y) €
LEETR[0,T) on [0,T) with initial state xo and in-
pui‘ w in the following sense.

1. x = Ax+Bu+Fw+x¢dy andy = Cx+Du+Fw
hold as equalities of distributions

2. For any interval (a,b) such that (a,b)NT'%,, =
& the restriction x |(a,b) 18 continuous.

3. For each 6 € {0} UTY%, the corresponding
impulse (u’0q,2%3¢,y%89) is equal to the im-
pulsive part of the unique initial solution® to
(8) with initial state Xyeq(0—) = limy1 Xreq (t)
(taken equal to xo for 8 = 0) and input t —
w(t —0).

4.0 < Upeg(t) L yreg(t) = 0 for almost all t €
0,7).

An important observation of the theorem above
is that jumps can only occur at the initial time
instant (¢ = 0) and on discontinuity points of Fw.
Hence, if Fw is continuous, jumps of the state can
only occur at the initial time instant.

6 (In)consistent initial states

Definition 6.1 We call an initial state zg con-
sistent with respect to the input w for the sys-
tem (8), if the corresponding initial solution
(u®ow xTow yTo.w) jg gsmooth. A state xg is called
inconsistent with respect to w, if it is not consistent
for w.

3Note that we shift time over 6 to be able to use the
definition of an initial solution, which is only given for an
initial condition at ¢ = 0.



Corollary 6.2 Consider an LCS given by (8) such
that (A, B,C, D) is passive and Assumption 3.1 is
satisfied. Define Q := SOL(0,D) and let Q* be
the dual cone of Q. The following statements are
equivalent.

1. g is consistent with respect to w € B for (8).
2. Czo + Fw(0) € O*.

3. LCP(Cxzy 4+ Fw(0), D) has a solution.

4. Cxo + Fw(0) € pos(I,—D), where I is the
identity matriz.

The above corollary gives several tests for de-
termining whether an initial state is consistent or
inconsistent. In particular, the network is impulse-
free, if SOL(0, D) = {0} (or, in terms of [4], 1f D
is an R,-matrix). Note that in this case Q* =
In case the matrix [C' F] has full row rank, thls
condition is also necessary.

7 Characterizations of jumps

In this section we will study the jump phenomena
more extensively as we are interested in a general-
ized notion for passivity for the network including
the diodes.

Theorem 7.1 Let an LCS be given by (8) such
that (A, B,C, D) is passive and Assumption 3.1
is satisfied. Define Q := SOL(0,D) and let Q*
be the dual cone of Q. Consider the initial so-
lution (w0, xT0W y*0W) corresponding to initial
state xg € R™ and input w € B. Moreover, denote
the impulsive part of wj)” by u%8y. The following
equivalent characterizations can be given for ul.

(i) The jump multiplier u° is uniquely determined

by the generalized LCP (see [4] page 31 on
complementarity problems over cones)

Q3u’ L Cxp+ Fw(0) +CBu’ € Q* (9)

(ii) The re-initialized state x**"(04+)  :=

limy o x50, (t) is the wunique minimizer of

Minimize 3[p — zo] " K[p — x0) (10a)
subject to Cp + Fw(0) € Q7, (10b)

where K is any solution to (2) and thus
V(z) = 3x' Kz is a storage function for
(A, B,C, D). The multiplier u® is uniquely de-
termined from x0*(0+) = xg + BuP.

(iii) The cone Q is equal to {Nv | v > 0} and
Q* ={v | NTv >0} for some real matriz N.

The re-initialized state x*°"(04) is the unique
solution of the following ordinary LCP.

NTCK~'CTNA
(11a)
0<vLA>0 (11b)

v=N"Czxy+ NTFw(0)+

and u® follows similarly as in (ii).
(iv) The jump multiplier u°
mizer of

is the unique mini-

Minimize 3(zo + Bv) " K(zo + Bv) + v Fw(0)
(12a)

Subject to v € Q (12b)

Observe that (i) is a generalized LCP, which uses
a cone Q instead of the usual positive cone Ri [4, p.
31]. Indeed, in case Q = Rff_ and thus Q* = R
(9) reduces to an ordinary LCP. Statement (ii)
expresses the fact that among the admissible re-
initialized states p (admissible in the sense that
smooth continuation is possible after the reset, i.e.
Cp+ Fw(0) € Q*) the nearest one is chosen in the
sense of the metric defined by any arbitrary stor-
age function corresponding to (A, B, C, D). A sim-
ilar situation is encountered in mechanical systems
with inelastic impacts [14, p. 75], where it has been
called “a principle of economy.” Finally, (iv) states
that in case Fw(0) = 0, the jump multiplier sat-
isfies the complementarity conditions (i.e., v € Q)
and minimizes the internal energy (expressed by
the storage function 32" Kx) after the jump. Note
that xg+ Bv is the re-initialized state when the im-
pulsive part is equal to vdy. Under the assumption
of x¥%(0+) — xg € imB, it can be shown that the
two optimization problems are actually each other’s
dual (see e.g. page 117 in [4]).

8 Passivity of a complementarity system

In this section, we consider (6) with F = 0. The
assumption ' = 0 is made to prevent the situation
that the input w may cause impulsive motions and
state jumps for times t > 0.

Definition 8.1 The LCS given by

z(t) = Az(t)+ Bu(t)+ Fw(t) (13a)
y(t) = Cux(t) + Du(t) (13b)
z(t) = Gx(t)+ Hu(t) +Jw(t) (13c)

0 < u@®)lyt) > (13d)

is called dissipative with respect to the supply
rate w' z, if there exists a nonnegative function
V :R"™ — Ry, called a storage function, such that
for all 0 < ty < t; and all solution trajectories
(0,%,y,2,w) € Ly 5" P(to,11) x PBP to (13) in



the sense of Theorem 5.4 the following inequality
holds:

ty

V(z(to)) +/ w' (t)z(t)dt > V(z(tr)). (14)
to

Moreover, for the initial time ¢ = 0 it should hold

that

Vi(zo) =2 V(x(0+)).

From Theorem 7.1 (iv) and the dissipation in-
equality for the underlying linear system, the fol-
lowing result can be derived.

Theorem 8.2 Consider the LCS given by (13)
such that Assumption 3.1 holds and the quadru-
ple giwven in (7) (with F = 0) is passive as a lin-
ear system. Then the LCS is passive in the sense
of Definition 8.1. Moreover, any quadratic storage
function of the underlying state space description
given by the quadruple (7) is a storage function for
the LCS.

9 Conclusions

In this paper we studied linear complementarity
systems with external inputs under an assumption
of passivity (in particular, we have been considering
linear passive electrical networks with ideal diodes).
We have proven the existence and uniqueness of so-
lutions for piecewise Bohl inputs. It has appeared
that derivatives of Delta distributions do not show
up in the solution trajectories and continuous in-
puts result in re-initializations of the state vector
only at the initial time. Moreover, the inconsis-
tent states have exactly been described by several
equivalent conditions in terms of cones and LCPs.
Knowing the inconsistent states, we have been able
to compute the jump multiplier (and consequently
the re-initialization) by solving either a general-
ized LCP, an ordinary LCP or one of the (dual)
minimization problems. The minimization prob-
lems lead also to nice physical interpretations: the
re-initialized state is the unique admissible state
vector that minimizes the distance to the initial
state in the metric defined by the storage function.
Moreover, the re-initialization minimizes the inter-
nal energy stored in the network after the reset. Fi-
nally, we defined a concept of passivity for a LCS
and showed that passivity (in ordinary sense) of
the underlying linear system implies the passivity
of the LCS. The latter two results have been ob-
tained under the assumption that F' = 0.

The generalization of this result to nonzero F-
matrices deserves further attention. The problem is
that the system may have “instantaneous supply”
by the external inputs (sources) (i.e. the input w
may generate discontinuous changes in the energy
stored in the network). However, this means that

we have to interpret integrals of the form fttol w' zdt
with w discontinuous and z containing Dirac dis-
tributions. This requires further study.
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