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Abstract

The eccentricity e(u) of a vertex U is the maximum distance of U to any other vertex of G. A vertex V is an
eccentric vertex of vertex U if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a
graph (digraph) G is the digraph that has the same vertex as G and an arc from u to v exists in ED(G) if and
only if v is an eccentric vertex of U in G. In this paper, we have considered an open problem. Partly we have
characterized graphs with specified maximum degree such that ED(G) = G.
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1. Introduction

A directed graph or digraph G consists of a finite
nonempty set V (G) called vertex set with vertices and
edge set E(G) of ordered pairs of vertices called arcs;
that is E(G) represents a binary relation on V(G).
Throughout this paper, a graph is a symmetric digraph;
that is, a digraph G such that (u,v)e E(G) implies
(v,u)e E(G). If (u,v) is an arc, it is said that u is
adjacent to v and also that v is adjacent from u. The set of
vertices which are from (to) a given vertex Vv is denoted

by N*(u)[N"(u)] and its cardinality is the out-degree

of v [in-degree of v]. A walk of length k from a vertex u
to a vertex v in G is a sequence of vertices

U =u,,U;,U,, -+, U,_,,U, =V such that each pair

(uH,ui) is an arc of G. A digraph G is strongly
connected if there is a U to v walk for any pair of vertices
u and v of G. The distance d(u,v) from u to v is the length
of a shortest U to v walk. The eccentricity e(v) of v is the
distance to a farthest vertex from v. If
dist(u,v)=e(u)(v¢u) we say that v is an eccentric
vertex of u. We define dist(u,v)=o whenever there is
no path joining the vertices U and v. The radius rad(G)
and diameter diam(G) are minimum and maximum ec-
centricities, respectively. As in [2], the sequential join
G +G,+G; +---+G, of graphs G,,G,,---,G, is the
graph formed by taking one copy of each of the graphs

“Part of this paper [1] was presented at the International Conference on
Emerging Trends in Mathematics and Computer Applications, MEPCO
Schlenk Engineering College, Sivakasi, India (Dec. 2010) and had
appeared in the Proceedings of the same.
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G,.G,,---,G, and adding in additional edges from each
vertex of G; to each vertex in G, for 1<i<k-1.
Throughout this paper, 'G=H' means G and H are
isomorphic. The reader is referred to Buckley and Harary
[2] and Chartrand and Lesniak [3] for additional, un-
defined terms.

Buckley [4] defines the eccentric digraph ED(G) of
a graph G as having the same vertex set as G and there is
an arc from U to v if V is an eccentric vertex of U. The
paper [4] presents the eccentric digraphs of many classes
of graphs including complete graphs, complete bipartite
graphs, antipodal graphs and cycles and gives various
interesting general structural properties of eccentric
digraphs of graphs. The antipodal digraph of a digraph G
denoted by A(G), has the vertex set as G with an arc
from vertex v in A(G) if and only if v is an antipodal
vertex of U in G; that is dist(u,v)=diam(G). This
notion of antipodal digraph of a digraph was introduced
by Johns and Sleno [5] as an extension of the definition
of the antipodal graph of a graph given by Aravamudhan
and Rajendran [6]. It is clear that A(G) is a subgraph
of ED(G), and A(G)=ED(G) if and only if G is
self centered.

In [7] Akiyama et al. have defined eccentric graph of a
graph G, denoted by G,, has the same set of vertices as
G with two vertices U and Vv being adjacent in G, if and
only if either v is an eccentric vertex of U in G or U is an
eccentric vertex of vV in G, that is
dist, (u,v)=min{e; (u),e (v)} . Note that G, is the
underlying graph of ED(G).

In [8] Boland and Miller introduced the concept of the
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eccentric digraph of a digraph. In [9] Gimbert et al. have

proved thatG, = ED(G) if and only if G is self-centered.

In the same paper, the authors have characterized eccen-
tric digraphs in terms of complement of the reduction of

G, denoted by G~ Given a digraph G of order n, a
reduction of G, denoted by G~ , is derived from G by
removing all its arcs incident from vertices with out-

degree n—1.Note that ED(G) is a subgraph of E

In [9], Gimbert et al. have studied on the behaviour of
sequences of iterated eccentric digraphs. Given a positive
integer k>2 , the k" iterated eccentric digraph of G
is written as ED*(G)= ED(EDk'l (G)) , where
ED’(G)=G and ED'(G)=ED(G). The iterated se-
quence of eccentric digraphs concerns with the smallest
integer numbers P>0 and t>0 such that

ED'(G)=ED""(G). We call p the period of G and t
the tail of G; these quantities are denoted p(G) and t(G)
respectively. In [8,10] Boland et al. have discussed many
interesting results about eccentric digraphs. Also they
have listed open problems about these graphs. One of
these open problems is being discussed mainly in this
paper. We have characterized graphs with specified
maximum degree such that ED(G)=G.

2. Basic Results

In this section we list some results which are quite
evident for eccentric digraphs of graphs.

Remark 1. Since every vertex in a graph has at least
one vertex at eccentric distance it follows that every
vertex in an eccentric digraph will have out degree at
least one.

Remark 2. There exists no directed cycle in an eccen-
tric digraph.

Let C be a directed cycle with edge uv being
directed from u— Vv as shown below in Figure 1.

The other edges can be bidirectional. If all the other
edges except U —V are bidirectional then a symmetric
edge vy, indicates the equality of eccentric values of v
and Y, . Likewise
ecc(y,)=ecc(y,)=---=ecc(y,)=ecc(x). Also edge
Xu is symmetric. Hence, ecc(u)=ecc(x). So also,
ecc(v) =ecc(y, ) =ecc(x)=ecc(u). This contradicts the
existence of the directed arc U—V as U being tail
has less eccentricity as compared to that of v.

The same argument can be extended to a directed
cycle with more than one directed arc, as the eccen-
tricities go on increasing in the same direction.

The above two conditions are not sufficient for a graph
to be an eccentric digraph.

For example consider a symmetric cycle having a
pendant vertex adjacent to one of the vertices on the
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cycle. The pendant vertex having in-degree zero and
out-degree one as in Figure 2.

Vertex X 1is at eccentric distance from u. Let v
be adjacent to U and lying on the eccentric path con-
necting U and X;. All the vertices in the graph except
X; are at distance atmost n—1 from u, where n is
the eccentricity of U . This implies v being adjacent to
u will have eccentricity n. But v lying on the
symmetric circle can have eccentricity >n+1. There-
fore the above graph cannot be an eccentric digraph.

Also we give a counter example for a problem given
in [2], as follows:

Problem 3, Ex. 2.2 (p. 41) [2]: If G is self-centered
with radius 2 , then G is self-centered with radius 2.

Counter Example: Consider C,, join the vertices at
distance 2 in C,. Let G be the resulting graph with
rad (G) =2 . Considering G, we observe that G=C,;

thatis G is self-centered of radius 3.

3. Graphs with Isomorphic Eccentric
Digraph

In case of undirected graphs, Buckley [4] proved that the

C
Figure 1. Directed cycle C.

u

Figure 2. Directed cycle with unidirectional edge u-x;.
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eccentric digraph of a graph G is equal to its com-
plement, ED(G)=G, if and only if G is either a
self-centered graph of radius two or G is the union of
k>2 complete graphs. In [9], Gimbert et al. have
proved that the eccentric digraph ED(G) is symmetric
if and only if G is self centered.

Here we are looking at graphs which have their
eccentric digraphs isomorphic to themselves. So by
Gimbert’s result these graphs are self-centered graphs. In
this section we consider self-centered, undirected graphs.
The following observations are easily justified.

Remark 3. Odd cycles is a class of graphs for which
ED(G)=G.

Remark 4. Odd cycles are graphs with minimum
number of edges and maximum eccentricity on given
number of vertices such that ED(G)=G.

Remark 5. For a self-centered graph G with radius >
3, the complement G is self-centered with radius equal
to two. Hence GG, and GG, and\ED(G) is
isomorphic to a subgraph of G. Further, by using
Buckley’s result [4], we can say that ED(G)=G=G.

Thatisif ED(G)=ED(G), then G =ED(G).

Remark 6. Complete graphs is another class of
graphs for which ED(G)=G.

Remark 7. It is easy to see that for graphs upto order
7, the only graphs for which ED(G) =G, are
K,,K;, K, K, Cs, Ko, K, C,

Remark 8. Two isomorphic graphs have their eccen-
tric digraphs isomorphic, but the converse need not be
true always.

As an example, as shown inn Figure 3, we give a pair
of non-isomorphic, self-centered graphs with same
eccentricity having one eccentric digraph.

Lemma 9. Let G be a self-centered graph with ra-
dius 2, then ED(G)=G if and only if G is self-
complementary.

Proof. Given self-centered graph G be self-com-
plementary with radius 2. Then by Buckley’s cha-
racterization theorem [4], ED(G)=G =G . Conversley,
consider a self-centered graph of radius 2, with
ED(G)=G. Then, ED(G)=G, thatis
G =ED(G)=G. Hence the result. []

Lemma 10. All self-centered graphs G with eccen-
tricity greater than or equal to 3 with G having

period =1, tail =1, satisfies the condition ED(G)=G.

Proof. Let G be a self-centered graph with eccen-

tricity >3 .Then G is self-centered graph with eccen-
tricity equal to 2. Hence, ED(@) =G =G; thatis
ED’(G)=ED(G). If G has period =1 and tail =1,
thatis ED’(G)=ED(G) then ED’(G)=ED(G)=G.
But ED*(G)=ED(G) implies
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ED(G) = ED (H)

Figure 3. ED(G) = ED(H).

ED(G)=ED’(G)=ED(G)=G . Hence the result. []

For connected graph G to be isomorphic to ED (G)
the necessary condition is that the graph should not be
unique eccentric node graph as defined by Parthasarathy
and Nandakumar [11]. Also, for G =ED(G), the nece-
ssary condition is that the for every vertex of degree say
k , there must exist another vertex with k number of
eccentric vertices. This can be defined as eccentric
degree of a vertex.

Definition 11. For a vertex v of a graph G is
defined to be the number of vertices at eccentric distance
from v. Also the eccentric degree sequence of a graph is
defined as a listing of eccentric degrees of vertices
written in non-increasing order.

So for ED(G) =G, the eccentric degree sequence of
G should be equal to the degree sequence of G . But this
condition is not sufficient as seen in the example below,
depicted as Figure 4. Here both G and ED(G) have
their degree seqence and eccentric degree sequences as
(3'.2°) .but ED(G)%G.

Next, we consider self-centered graphs with given
maximum degree A(G). By [2], A(G)<p-2r+2,
for a self-centered graph G with radius r. Our next
result shows that there is no possibility of having a graph
with ED(G)=G,with A(G)=p-2r+2.

Proposition 12. There does not exist a graph G with
A(G)=p-2r+2,suchthat ED(G)=G.

Proof. Let G be a self-centered graph with
A(G)=p-2r+2 Let ueV(G) such that
deg u = p—2r+2. Partition the vertex set into sets lying
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Q

ED(G)

Figure 4. G and ED(G) having same eccentric degree se-
guence and degree sequence, but ED(G) # G.

at distance i from u and name themas A, 1<i<r.
Since degu=p-2r+2, |A|=p-2r+2. As G is
self-centered, it cannot contain a cut-vertex and hence
|A| >2, 2<i<r.Hence, 2r—2 vertices are needed to
satisfy the conditions of the graph under consideration,
but we have p—(p—2r+2)=2r-3 vertices. Hence,
it is not possible to construct a graph with ED(G)=G,
with A(G)=p-2r+2.

Theorem 13. A connected self-centered graph G with
A(G)=p-2r+1 isisomorphic to its eccentric digraph
if and onl;/ if its degree sequence is of the form
(p—2r+1)",27? with structure

Ky + Ky oy F K (K = H)+(K, - H)

p-2r+l1
+---+(K_2—H){r—times},

where F is the graph obtained by joining one vertex of
K, o to one vertex of K, and remaining p-2r

vertices to one vertex of K_z,and H isthe 1- factor

removed from successive K, +K, .

Proof. Let G be a self-centered graph with
A(G)=p-2r+1. Let u be a vertex of G with
degu=p-2r+1. As seen in the above Lemma, each
A should contain at least two vertices each, for G to
satisfy G=ED(G), with self-centeredness and not
being unique eccentric node graph. Since the remaining
2r -2 vertices are to be distributed into r—1 sets with
at least two in each set, it follows that each A has
exactly two vertices.

Let the vertices in the set A be labelled X, and X,
for all k, 2<k<r. Since G has no cutvertex, X,
should be adjacent to at least one vertex of A, let us
say, to X' and similarly let x’, be adjacent to X’ .
Degree of X, is at least two, so it can be adjacent to any

of X7, X7, or both. Suppose, X is adjacent to X,
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then x! will have u as the only eccentric vertex, a
contradiction.

Similar contradiction is arrived if x! is adjacent to
both x> and x’, Same argument can be applied in
case of X’ . Therefore, x| and X’ are mutually

adjacent to have degree at least two. There are two paths
P and P’ where

_ i i oal ol oal oyl 1 14l 1
Pl =U, €, X565, X, 65, Xs, 1, 65 X5 8y X
1 el 1 el X1|,J=1

1 1
€t Xirro s Xr2s 6 XL, €0, XS

and
Pl =u.e,x,el,x2, e, xI, -,

elf—l’xlf—l’elf’le’ekzﬂ’xli—l’”"

RS -

X X252<i, j< p-2r+1,

i need not be equal to j.

Other cases are proved as follows:

Claim 1: The vertices X,,, are adjacent to either X,
or X;,butnotboth; forall k, 2<k<r-1.

Proof of the claim: Since G has no cut vertex each
vertex belonging to A, 2<k<r-1, is adjacent to at
least one vertex in A, _, and A,,. Without loss gene-
rality let each vertex X, be adjacent to X,, for all
k, 2<k<r-1. Let us consider A, with vertices X,
and x.. Let x,,, be adjacent to x; along with X, .
Then eccentricity of X, , can be at most r—1 as any
vertex lying on the path P, or PJ can be at most at a
distance r—1 from X, . And any vertex on the path
PJ)  can be at most at a distance of r—2 from x;.In
any case if X,,, isadjacenttoboth X and X, then G
ceases to be self-centered, a contradiction and hence the
proof of the claim.

Claim 2: Each A, 2<k<r-1, is independent, that
is, (A)=K,.

Proof of the claim: First we prove the result for A .
If the vertices X, and X', belonging to A_, are
adjacent then x|, will have u as the only eccentric

vertex, a contradiction proves that (AH) = K_2 .

For any other A, 2<k<r-2,if x and X are
adjacent then, eccentricity of X, and x; will be at
most I — 2 as vertices on P, or P)) will be at distance
at most r — 2 from X, or X, and hence for all K,
2<k<r-1, (A)=K,.

Claim3: x and x; do not have common neighbors
in A.

Proof of the claim: As in case of the vertices of A _,,
the vertices X, and X, of A, will have their
eccentricity equal to r—1 if they have a common
neighbor in A, , hence the claim.

Claim 4: x} isadjacentto X and X; is adjacent to
all other p-2r vertices of A .

Proof of the claim: If x} is adjacent to
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k=i . .
{Xlk} , 1<i<p-2r, then two vertices x’ and X,
k=1

have eccentric degree k + 1, but only one vertex X, has
degree equal to k+1, a contradiction.

If x; and X; have degree k each ,that is if
2k=p-2r+1, then x , X, x, and X , have
eccentric degree equal to k + 1, but only two vertices X}
and X; have degree k + 1.

Hence, X, isadjacentto X, and X, notadjacent to
x, I<i<p-2r.

Finding the eccentric degree of all vertices of G we
see that, ecc. deg(xli)= 2,1<k<r-1 and ecc.deg

(yﬂ( ) =2, except for x|, where y, €N (Xll( )
Similarly, ecc. deg(xf) =2,1<k<r-1 and ecc.deg

(yf)= 2, where y; e N (Xf . Hence, the eccentric de-
gree sequence of G is (p—2r +1)2 ,2P7%, which is same
as that of degree sequence of G.

Claims: (A)=K

p-2r+1 *
Proof of the claim: We show that for any two vertices
x; and X° where t#s, 1<t,s<p-2r+1, are not
adjacent. Here we need to consider two possibilities:

Case 1): XIEN<XE) and xng(Xi)
Case 2): XIIEN(XZZ) and XEEN(Xg)

In case 1), X, will have only one eccentric vertex, a
contradiction.

In case 2), deg(xf),deg(xf)23 then only the ver-

tices x, or x* of A and x, or X, of A
can have vertices of A, as eccentric vertices, along the
paths P or P, since x, and X} do not share a
common neighbor in A , as claimedin 3.

By Claim 4, we see that x) is adjacent to X/ and
x; is adjacent to all other p — 2r vertices of A, implies
that when degrees of x| and X’ are changed by mak-
ing them adjacent, the eccentric degree of any other
vertex of does not change, hence we will not be able to
get ED(G)=G, a contradiction proves the claim.

Referring all the claims we conclude that G is of the
form defined in the statement of the theorem.

Converse is easy to observe that if G is as given in the
statement of the theorem, then ED(G)=G. [

In the next result we consider a particular case of
graphs with ED(G)=G, that is, odd cycles.

Remark 14. In a labelled C,, ,,n>1, two vertices
v;,v; are at eccentric distance in ED(C,,,,), if and
only if dj (vi,vj):g or nT+1

Remark 15. For unlabelled odd cycles, iterations of
ED(C,,,;) can be packed into K, since there are

noe
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nT—l_ = nT_3 ED(G) s, whereas, rad(C,,,,)=n.
In case of labelled odd cycles the sequence of ED(G)'s
can be packed into K | if the permutation on p number of

vertices defined by
f (1):1, f(2i): r+2—-i,i=1,2,3,---,r;
f(2i+1)=2r+2-i,i=1,2,3,---,r

is a product of three cyclic permutations of length 1,r,r,
respectively.

Proposition 16. There exists a self-centered graph G,
such that ED(G) =G, containing an odd cycle.

Proof. Let be C, be a cycle, whose vertices are
labeled as 1,2,3,---,p.Let S={1,2,3,---, p}. Define a
function on the set of vertices of C, as

f(1)=1,f(2i)=((p-2i+3)/2),1<i<((p-1)/2),
f(2i+1)=p+1-i,1<i<((p-1)/2).

Now, we partition of set of vertices of C into
{S.,S,,S;,-+,S,} where,

S, =(1).8, ={2, 1(2), £2(2).-. f"(2)}.2 ¢S,

where n is the least positive integer such that
f"'(2)=2 whereas f"(2) is obtained by applying
f on2, n times. Similarly,

Sy =11 £ (1), £2(1). £ (1)},

l¢S uS,uS,U---US, |,

where m is the least positive integer such that

f™ (1)=1. It is clear that S US, US;U---US =8§
and §;NS; =4¢,1< i,j<m,i= j. Now, for each vertex
of §; we define sets of vertices notin C by

S :{fij (1), fijz(l),---,fi;1i (I)} for each i,and

'j

j=1,2,3,--- whose adjacencies are to the vertices of
C, defined by: If f°(I), when 1<I<p is adjacent
to f"(l), then, fi? () is adjacent to N(fg(l)),
fi?(l) and fi?(l) is adjacent to N(fh(l)),fiiJ (1);

otherwise, f,?(l)is adjacent to N ( fo (I)) and f"(I)
. . i h j

is adjacent to N ( f (I )) . So we get a self-centered
graph with radius (p—1)/2, satisfying ED(G)=G, as
vertices | on C_ and respective fi;“ (1), 1<I<p,
have same distance from other vertices in the graph. By
Remark 15, we get ED(G)=G. [

Following is an example of a self-centered graph with
radius 4, as shown in Figure 5, satisfying ED(G)=G,
with C,,asbase. So S={1,2,---,9} and
v (cp): {S,,5,,S;,5,,S;} , where

S, ={1}’Sz ={2’5’8}’Ss ={4}’S4 ={7}’55 ={3’6’9}'
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Figure 5. ED(G) = G.

For §,, 1<i<4, wehave

Sy,
S,
S5,

:{11}’ S12 :{12}9513 :{13};521 ={21,51,81},
=1{2,,5,,8,}, S5, ={25,5,,8, 135 ={4.},
:{42},833 :{43};841 :{71},842 :{72},843 ={7,}.
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