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Abstract 
 
The eccentricity e(u) of a vertex u is the maximum distance of u to any other vertex of G. A vertex v is an 
eccentric vertex of vertex u if the distance from u to v is equal to e(u). The eccentric digraph ED(G) of a 
graph (digraph) G is the digraph that has the same vertex as G and an arc from u to v exists in ED(G) if and 
only if v is an eccentric vertex of u in G. In this paper, we have considered an open problem. Partly we have 
characterized graphs with specified maximum degree such that ED(G) = G. 
 
Keywords: Eccentric Vertex, Eccentric Degree, Eccentric Digraph, Degree Sequence, Eccentric Degree  

Sequence 

1. Introduction 
 
A directed graph or digraph G consists of a finite 
nonempty set  called vertex set with vertices and 
edge set  of ordered pairs of vertices called arcs; 
that is  represents a binary relation on 

 V G
 


E G
E G  V G



. 
Throughout this paper, a graph is a symmetric digraph; 
that is, a digraph G such that  implies 

 If   is an arc, it is said that u is 
adjacent to v and also that v is adjacent from u. The set of 
vertices which are from (to) a given vertex v is denoted  

  ,u v E G
 v u  E G , . 





,u v

by  and its cardinality is the out-degree     N u N u 
of v [in-degree of v]. A walk of length k from a vertex u 
to a vertex v in G is a sequence of vertices  

0 1 2 1= , , , , , =  k ku u u u u u v
 ,u u

such that each pair  

1i i  is an arc of G. A digraph G is strongly 
connected if there is a u to v walk for any pair of vertices 
u and v of G. The distance d(u,v) from u to v is the length 
of a shortest u to v walk. The eccentricity e(v) of v is the 
distance to a farthest vertex from v. If  

   , =dist u v e u v u
di

G G G G   

 we say that v is an eccentric 
vertex of u. We define  whenever there is 
no path joining the vertices u and v. The radius rad(G) 
and diameter diam(G) are minimum and maximum ec- 
centricities, respectively. As in [2], the sequential join 

1 2 3 k  of graphs 1 2  is the 
graph formed by taking one copy of each of the graphs 

1 2  and adding in additional edges from each 
vertex of i  to each vertex in 1i , for 1 1

 , =st u v 

, , , kG G G

, , , kG G G
G G  i k   . 

Throughout this paper,  means G and H are  ='G H 
isomorphic. The reader is referred to Buckley and Harary 
[2] and Chartrand and Lesniak [3] for additional, un- 
defined terms. 

Buckley [4] defines the eccentric digraph  ED G  of 
a graph G as having the same vertex set as G and there is 
an arc from u to v if v is an eccentric vertex of u. The 
paper [4] presents the eccentric digraphs of many classes 
of graphs including complete graphs, complete bipartite 
graphs, antipodal graphs and cycles and gives various 
interesting general structural properties of eccentric 
digraphs of graphs. The antipodal digraph of a digraph G 
denoted by  A G , has the vertex set as G with an arc 
from vertex v in  A G  if and only if v is an antipodal 
vertex of u in G; that is    .m G, =u v



dist dia



 This 
notion of antipodal digraph of a digraph was introduced 
by Johns and Sleno [5] as an extension of the definition 
of the antipodal graph of a graph given by Aravamudhan 
and Rajendran [6]. It is clear that A G  is a subgraph 
of  ED G , and   =  A G ED G  if and only if G is 
self centered. 

In [7] Akiyama et al. have defined eccentric graph of a 
graph G, denoted by e , has the same set of vertices as 
G with two vertices u and v being adjacent in e  if and 
only if either v is an eccentric vertex of u in G or u is an 
eccentric vertex of v in G, that is  

G
G

      , = min ,G Gdist u v e e v*Part of this paper [1] was presented at the International Conference on 
Emerging Trends in Mathematics and Computer Applications, MEPCO 
Schlenk Engineering College, Sivakasi, India (Dec. 2010) and had 
appeared in the Proceedings of the same. 

Gu . Note that  is the 
underlying graph of 

eG
 GED . 

In [8] Boland and Miller introduced the concept of the 
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if a
eccentric digraph of a digraph. In [9] Gimbert et al. have 
proved that =eG nd only if G is self-centered. 
In the same paper, the authors have characterized eccen- 
tric digraphs in terms of complement of the reduction of  

G, denoted by 

 ED G  

G  Given a digraph G of order n, a  
reduction of G, d oted by G , is derived from G by en
removing all its arcs incident from vertices with out-  

degree 1n . Note that )(GED  is a subgraph of .G  

In [9] , G mbert et al. died on the behavi ofi have stu our  
se

. The iterated se- 

 G and t 

. Basic Results 

 this section we list some results which are quite 

ph has at least 
on

2. There exists no directed cycle in an eccen- 
tr

a directed cycle with edge  being 
di

dges c ther 
ed

quences of iterated eccentric digraphs. Given a positive 
integer 2k   , the thk  iterated eccentric digraph of G 
is writte     1k kD G ED ED G , where  

 0 =ED G G
entric with the smallest 

integer numbers 0>p  and 0t   such that  
  =t pED G ED   We ca the period of

antities are denoted p(G) and t(G) 
respectively. In [8,10] Boland et al. have discussed many 
interesting results about eccentric digraphs. Also they 
have listed open problems about these graphs. One of 
these open problems is being discussed mainly in this 
paper. We have characterized graphs with specified 
maximum degree such that   =ED G G . 
 

n as E

 of ecc

il of G; t

 =
1ED

digra

t G .
qu

 and    =G ED G
phs concerns 

 ll p 
hese 

quence

the ta

2
 
In
evident for eccentric digraphs of graphs. 

Remark 1. Since every vertex in a gra
e vertex at eccentric distance it follows that every 

vertex in an eccentric digraph will have out degree at 
least one.  

Remark 
ic digraph.  
Let C  be uv

e 1rected om u v  as shown below in Figur . 
The other e an be bidirectional. If all the o

 fr

ges except u v  are bidirectional then a symmetric 
edge 1vy  indicates the equality of eccentric values of v  
and ikewise  

   
1y . L

   = =necc y ecc x1 2= =ecc ecc yy . Also  edge
xu symm Hence,   =ecc u ecc x

 ecc ecc u . This co
arc u 

 to tha

 is 

existence of 

etric. 

1

the directed 

 . So also, 
     = = =v ecc y ecc x tradicts the 

v  as u  being tail 
has less eccentricity as compared t of . 

The same argument can be extended to a directed

n

v
 

cy

r a graph 
to

 symmetric cycle having a 
pe

cle with more than one directed arc, as the eccen- 
tricities go on increasing in the same direction. 

The above two conditions are not sufficient fo
 be an eccentric digraph. 
For example consider a
ndant vertex adjacent to one of the vertices on the 

cycle. The pendant vertex having in-degree zero and 
out-degree one as in Figure 2. 

Vertex ix  is at eccentric distance from . Let 
be

 u
p

v  
 adjacen o u  and lying on the eccentric ath con- 

necting u  and i

t t
x . All the vertices in the graph except 

 ix are a distanc  atmost 1n  from u , where n  is 
eccentricity of u . This implies v  b ng adjace t to 

u  will have eccentricity n . Bu v  lying on the 
metric circle can have eccentricity 1n  . There- 

fore the above graph cannot be an eccentri aph. 
Also we give a counter example for a problem gi

t e
the 

sym

ei n
t 

c digr
ven 

in
2.2 (p. 41) [2]: If G is self-centered 

w

 [2] , as follows: 
Problem 3, Ex. 

ith radius 2 , then G  is self-centered with radius 2 . 
Counter Example onsider 7C , join the vertice  a: C s t 

distance 2  in .7C  Let G be t resulting graph with he 
  = 2rad G . Considering G , we observe that 7G C ; 

that is G  is self-centered of radius 3 . 
 

. Gra hs with Isomorphic Eccen3 p tric  

 
 case of undirected graphs, Buckley [4] proved that the  

Digraph 

In
 

 

Figure 1. Directed cycle C. 
 

 

Figure 2. Directed cycle with unidirectional edge u-xi. 
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ecc - entric digraph of a graph G  is equal to its com
plement, ( ) = ,ED G G if and ly if G is either a 
self-cente radius two or G is the union of 

2k  complete graphs. In [9], Gimbert et al. have 
 that the eccentric digraph  ED G  is symmetric 

if and only if G is self centered. 
Here we are looking at gr

on
red graph of 

aphs which have their 
ec

or which 

Odd cycles are graphs with minimum 
nu

 radius 
3,

proved

centric digraphs isomorphic to themselves. So by 
Gimbert’s result these graphs are self-centered graphs. In 
this section we consider self-centered, undirected graphs. 
The following observations are easily justified. 

Remark 3. Odd cycles is a class of graphs f
  = .G G   

. 
ED

Remark 4
mber of edges and maximum eccentricity on given 

number of vertices such that   = .ED G G   
Remark 5. For a self-cente withred graph G   
 the complement G  is self-centered with radius equ  

to two. Hence 
al

G G , and  G G , and\  ED G  is 
isomorphic to a raph o subg f G . F

th
urther, ing 

Buckley’s result [4], we can say at 
 by us

  = =ED G G G .  

That is if    = ,ED G ED G  then G  = ED G .  

k 6. Complete graphs is another class of 
gr

Remar
aphs for which   =ED G G .  
Remark 7. It is easy to see that for graphs upto order 

7, the only graphs for which   =ED G G , are  

2 3 4 5 5 6 7 7, , , , , , ,K K K K C K K C
ic g
.  

h raphs havRemark 8. Two isomorp e their eccen- 
tr

hown inn Figure 3, we give a pair 
of

raph with ra- 
di

ic digraphs isomorphic, but the converse need not be 
true always.  

As an example, as s
 non-isomorphic, self-centered graphs with same 

eccentricity having one eccentric digraph. 
Lemma 9. Let G  be a self-centered g
us 2 , then   =ED G  if and only if G  is self- 

complementary.
Proof. Given self-cente

G
 

red graph  be self-com- 
pl

G
ementary with radius 2 . Then by Buckley’s cha- 

racterization theorem [4],   = =D G G G . Conversley, 
consider a self-centered gra  with  

  =ED G G . Then,  

E
ph of radius 2,

= ,ED G G that is  
 = =G ED G

Lemma 10. 
G . He t.   nce t resul

 with eccen- 
tr

he 
All self-centered graphs G

icity greater than or equal to 3  with G having  
= 1,  = 1,period tail  satisfies th  condition 

 
e   =ED G

a self-centered graph 
G. 

with eccen- Proof. Let G be 
tricity  3 .Then G  is self-centered graph with eccen-  

tricity al to 2. nce, equ He   = = ;ED G G G  that is  

   2ED G ED G . If G and tail has ,  

that is 

= 1period  1=

   ED  then 2ED G G    2ED G G G ED .  

But    2ED G ED G

 

Figure 3. ED(G) = ED(H). 
 

     2 =ED G ED G ED G G  . Hence the result. 

For connected graph to be isomorphic to 

  

G   ED G
ld not be 

rathy 
ce

mber of

 
the necessary c  shou
nique eccentric node as defined by Parthasa

and Nandakumar [11] , for 
ssary condition is that th for ev

v of a gr

fr  o

asing order.  

ondition is that the graph
u graph 

. Also
e 
th

 G ED G , the ne - 
egree say ery vertex of d

k , there must exist ano er vertex with k  nu  
eccentric vertices. This can be defined as eccentric 
degree of a vertex. 

Definition 11. For a vertex aph G  is 
defined to be the number of vertices at eccentric distance 

om v. Also the eccentric degree sequence f a graph is 
defined as a listing of eccentric degrees of vertices 
written in non-incre

So for   =ED G G, the eccentric degree sequen  of 
G should be equal to the degree sequence of G . But this 
condition is not sufficient as seen in the example below, 
depicted as Figure 4. Here both G  and 

ce

 ED G  have 
their degree seqence and eccentric degree sequences as 
 4 93 , 2  , but  ED G G . 

Next, we consider self-centered graphs with given 
maximum degree  G . By [2],   2 2,G p r     
for a self-centered graph G  with radius r . Our next 
result shows that there is no possibility of having a graph 
with   =GED G , with   = 2 2p rG   . 

Proposition 12. There does not exist a graph G  with 
  = 2 2G p r   , hat such t  = G . ED G
Proof. Let G  be a self-centered graph with  
  = 2 2G p r    Let  u V G  such that  

deg u implies  = 2p r 2  . Partit ntoion the vertex set i  sets lying  

Copyright © 2011 SciRes.                                                                                  AM 
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then 1
rx  will have u as the o y eccentric ve ex, a 

ntradiction. 
imilar contradiction is arrived if 1

r

nl rt
co

S x  is adjacent to 
both 2

rx  and 2
1rx   Same argum  can be applied n 

case of 

 

ent  i

Figure 4. G and ED(G) having same eccentric degree se-
quence and degree sequence, but ED(G) ≇ G. 
 
at distance  from and name them as i  u  ,  1iA i r  . 
Since 2 ,  = 2deg pu r  2.  As G  is 2=1  rpA
self-centered, it cannot contain a cut-vertex and hence 

2,  2iA i r   . Hence, 2 2r   vertices are needed to 
onsideration,
tices. Hence

satisfy h under c  

with 

 the c nditions f t

t possible to constr

o  o he grap

t a grap
but we have  2 2 = 2 3p p r r     ver , 
it is no uc h   =ED G G , 
with   = 2 2G p r   . 

 connecte centered graph G with 
  = 2 1G p r    is isomorphic to its eccentric digraph 

if and only i  is of the form 
 2 22 1 , 2 pp r    with structure  

Theorem 13. A d self-

f its degree sequence

   
  

1 2 1 2 2 2

2

 

,

p rK K F K K H K H

K H r times

       

   
 

where F  is the g joining one vertex of raph obtained by 

2 1  to p rK   one vertex of 2K  and remaining 2p r   

vertices to one vertex of 2K , and H  is the 1 factor   

removed from successive 2 2K K . 
Proo Let G  be a self-centered graph with  
  = 2 1G p r   . Let u  be a vertex of G  with 

2 1p r  . As seen in the above Lemma  

f. 

 each =deg u ,

iA  should contain at least two vertices each,  for G  to
satisfy  =G ED G , wi centh

s

 self- teredn not 
ining 

ess and
ma

 
be
2 2r   verti r
at least two i e

ing unique entric node graph. Since the re
e to be di tributed into 1r   sets with 
ach set, it follows that each i

ecc
ces a

n A  has 
 vertices. 

Let th the set k

exactly two
e vertices in A  be labelled 1

kx  and 2
kx  

for all k , 2 k r  . Since G  has no cutvertex, 1
1rx   

 be adjacent to at least one vertex rshould  of A , let us 
say, to 1

rx  and similarly let 2
1rx   be adjacent to 2

rx . 
Degree of 1

rx  is at le
2 2

ast tw  be adj  to
of 

o, so it can acent  any 

1,  r rx x   or both. 

2
rx . Therefore, 1

rx  and 2
rx  are mutually 

adja have degree at least two. There are two p s 

1 P  an 2
ijP  where  

i i

c ath

t be equal to j. 
r cases are proved as follows: 

Cla 1: The vertices 

ent t
d 

  

      

     

o
Othe

im 

o 

1 1 1 1 1j x1 1
1 1 1 2 2 3 3 1 1

1 1 1 1 1 1 1
1 1 2 1 1

= , , , , , , , , , , , ,

    , , , , , , , ; , = 1

k k k k

k k r r r r r

P u e x e x e x e e x

e x x e x e x i j

 

    




 

and  
2 2 2

2 1 1 2 , , , , ij i i jP u e x e 2 3 3

2 2 2 2 2 2
1 1 1 1

2 2 2 2 2
2 1 1

= , , , , 

  , , , , , , ,

  , , , , ;2 , 2 1, 

k k k k k k

r r r r r

x e x

e x e x e x

x e x e x i j p r

   

      



  

i need n

1
1kx   are adjacent to either 1

kx  
2
kx

Suppose, 1
rx  is adjacent to 2

1rx  , 

or , bu
Proof o

x bel

t not both; for .  
f the claim vertex eac

verte onging to

 all 
: Since 

,  2 1k k r  
G has no cut h 

 kA , 2 1k r   , is adjacent to at 
least one vertex in 1kA   and 1kA  . Without loss gene- 
rality let each vertex 1

1kx   be adjacent to 1
kx , for all 

,  2 1k rk    . Let us c der konsi A , with vertices 1
kx  

and 2
k x . Let 1

1kx   be adjacent to 2
kx  alo ithng w  1

kx . 
Then eccentricity of 1

1kx   can be at most 1r   as any 
vertex lying on the p  1 an be at most at a 
distance 1r

ath P  or 2
ijP  c

  from 1k
1x  . And any vertex on the path 

ijP2  can be at most at a distance of 2r   fr  2
kom x . In 

any case if 1
1kx   is adjacent to both 2

k x  and 1
kx  then  

ceases to be se entered, a contradiction and hence  
proof of the claim. 

Claim 2: Each ,  2i

 G
thelf-c

1A k r    is independent, that 
is, 

,

2=iA K
P he re

. 
roof of the claim: First we prove t sult for 1rA  . 

If the verti 1
1rces x   and 2

1rx   belo ing to 1rng  A   are 
adjacent then 1

1rx   will have u as the only eccentric 

vertex, a contradicti

 

pro at on ves th 1 2rA = K

For any other 

. 

kA , 2 k r 2   , if 1
kx  and 2

kx  are 
adjacent then, eccentricity of 1

kx  and 2
kx  will t 

most r − 2 as vertices on P  or ijP2  will be at distance 
at most r − 2 m 1

k

be a

1

fro x  or 2
kx  and hence for all k, 

2i

Claim 3: 1
2 1,  =k r A K   . 

2x  and 2
2x  do not ha neve com on ors 

in
m ighb

 1A . 
Proof of the claim: As in case of the ve ces of 1rrti A  , 

the vertices 1
2x  and 2

2x  of 2A  will have their 
eccentricity equal to 1r   if hey have a common  t
neighbor in 1A , h

1
ence . th  claime

Claim 4: 2x  is adjacent to 1
1x  and 2

2x  is adjacent to 
all er p-oth tices of 

Proof of t aim: If 
2r ver
he cl

A .1  
1
2x  is adjacent to  

Copyright © 2011 SciRes.                                                                                  AM 



M. I. HUILGOL  ET  AL. 709 
 

  =

1 =1
,  1 < < 2

k ik

k
x i p r , then two vertices 2

rx  and 1r
2x    

have eccentric degree k + 1, but only one vertex 1
2x  has 

de l  dicgree equa  1k , a contra tion. 
If 1

2

 to
x  and 2

2x  have deg e k each ,that is if 
2k 1

re
= 2 1p r  , then rx , r

2x , 1r
1x   and 2

1rx   have 
  eccentric degree equal to + 1, but only two k vertices 1

2x  
and 2

2x  ha
Hence,

ve de
 1

gree k + 1. 

2x  is adjacent to 1x1 not a and 1x2

1 ,  1 < < 2i
 djacent to 

x i p r . 
Finding the e tric degree of all ccen rtices of G we 

see that, ecc. deg

ve

 1 = 2,  1 1kx k r    and ecc.deg  

 1 = 2ky , except for 1
1rx  , where  1 1

k ky N x . 

Si larly, ecc. deg  2 =mi 2,k  1 1x k r  and ecc.deg  

 2y 2
gr

  
2 = 2k , where . Hence, the eccentric de-   k ky N x

ence of G
ee sequence of G is  2 22 1 , 2 pp r   , which is same 

as that of degree sequ

Claim 5: 

. 

1 2 1= p r  .  

Proof We t for any tw vertices 

A K

of the claim:  show tha o 

1
tx  and 1

sx  where 1,t s   are not ,  1 ,  2t s p r   
eed to consadjacent n. Here we ider two possibilities: 

Case 1):  1
1 2
tx N x  and 2 2

1
sx N x  

Case 2):  2
1 2
tx N x  and 1

s  2
2x N x  

In case 1), 1
tx  will have only one eccentric vertex, a 

contradiction. 

In case 2), deg  1
tx ,deg 1 3 then only the ver-  

tic 1

 sx   

es rx  or 2
rx  of rA  and 1

1rx   or 2
1rx   of 1rA   

the ca rt of along 
pa r , si

n have ve  as ecices 

2
ijP

A 1

nc
centric vertices, 

ths 1P  o e 1
2x  and 2

2x  t sh
co

do no are a 
mmon neigh r in 1bo A  , as claimed in 3 . 
By Claim 4 at 1, we see th 2x  is adjacent to 1

1x  and 
2x  2 th   vertis adjacent to all o er p ices of 1− 2r A , implies 
t when degrees ttha of 1x  and 1

sx  
c 

a
em ce degree o ther 

i ve
h e 

fo f 
C giv

m

emark 1 tices 
 

re changed by mak- 
ing th  adja nt, th ccentri ny o
vertex of does not change, hence we will not be able to 
get  =E G  a contrad ion pro s the claim. 

Referring all the claims we conclude t at 

e e f a

G
D G , ct

 is of th
rm defined in the statement o the theorem. 

onverse is easy to observe that if G is as en in the 
statement of the theore , then   =G G .   

In the next result we consider a particular case of 
graphs with   =ED G G , that is, odd cycles. 

R  a labelled 2 1, 1nC n  , two ver

ED

4. In
,i jv  are at eccentric distance in  2 1nED C  , if and 

on

v

ly if  , =
2G i jd v v  or 
n 1n

2


.  

Remark 15. For unlabelled  it ti odd cycles, era ons of 
can be packed into 2 1nED C    nK ,

 1 3
1 =

2 2

n
s

 
, 

n
ED G  , whereas,  2rad C n1 =n . 

In case of labelled odd cycles nce of ED(G)'s 
e packed into K ,p if the permutat umber of 

 the seque
can b ion on p n

 defined by vertices  

   
 
1 = 1,  2 = 2 , = 1,2,3, , ;

1 = 2 2 , = 1,2, ,

f f i r i i r

f i r i i r

 

  




 

2 3,

 since there are 

is a product of three cyclic ns of length 
respectively. 

 permutatio ,r1, r , 

Proposition 16. There exists a self-centered graph G , 
such that   =ED G G , containing an odd cycle. 

Proof. Let be pC  be a cycle, whose vertices are
labeled as . Let . Define a 
function on ices 

 
1, 2,3,
 the set vert

, p
 of 

 = 1, 2,3, ,S p
of pC  as  

         
    2 1 = 1 , 1 1 2 .f i p i i p     

1 = 1, 2 = 2 3 2 ,1 1 2 ,f f i p i i p    
 

Now, we partition of set of vertices of pC  into  
 1 2 3 , , mS, , S S S ere,   wh

        1 2 1=  2 , , 2 , S S f S  

where n  is the least posit teg

21 , = 2,  2 , , 2nf f

ive in er such that 
 2 =1 2nf   whereas  2nf  is obtained by applyi  ng

f  on n2,  times. Similarly,  

     2= , , , , , m
mS l f l f l f l

S S 




 

1

1 2 3 1 ,ml S S



  

where is the least positive integer such that  m  
  =1mf l l . It is clear that 1 2 3 =mS S S S S     

and = , 1 ,i j j, i j miS S     . Now, for each vertex 

iS  we fine sets of vertices not in of de pC  by  

      2= ,  , , i
i i i ij j j j

S f l f l f l n  for each , and  

whose adjacencies are to the ertices of 

i

= 1, 2,3,j   v

pC  defined by: If  gf l , when  is adjacent 1 l p 
to  hf l , then,  g

i j
f l  is adjacent to   g lN f ,  

 h
i j

f l  and  h
i j

f l  is adjac  to      ,h g
il f lent
j

;  

othe se, 

N f

 g
i j

f l is adjacent to   gN f l  and  hrwi i j
f l  

is a cent to dja   hN f l . So we get  a self-ce
graph with

ntered 
 radius  1 2p  , isfying   =ED G G sa

vertices 
t , as 

l  on pC  and respective   ,  1i j

mf l l p  , 
e same distance from ther vertices in the graph. By 

Remark 15, we get 
hav

 
o

  G .   
F ng is an e e of a self-cente  

ED G
ollow

radius own i ing 
i xampl

4, as sh n Figure 5, satisfy
red graph with

 ED G G , 
with 9C , as So  base.  = 1, 2,S   ,9   and 
   4 5, ,S S1 2= , ,pV C S S , where  3S

         1 2= 1 , = 2,5 4 , = 7 .S S S  3 4 5,8 , = , = 3,6,9S S
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Figure 5. ED(G) ≅ G. 
 

For  we have  ,  1 4,iS i 

       
     
         

1 1 1 2 1 3 2 1 1 11 2 3 1

2 2 2 2 2 3 3 3 3 12 3 1

3 2 3 3 4 1 4 2 42 3 1 2 3

= 1 ,   = 1 , = 1 ; = 2 ,5 ,8 , 

= 2 ,5 ,8 ,  = 2 ,5 ,8 ; = 4 , 

= 4 , = 4 ; = 7 , = 7 , = 7 .

S S S S

S S S

S S S S S
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