
On Economic Heavy Hitters:
Shapley value analysis of 95th-percentile pricing

Rade Stanojevic
Telefonica Research

Nikolaos Laoutaris
Telefonica Research

Pablo Rodriguez
Telefonica Research

ABSTRACT

Cost control for the Internet access providers (AP) influ-
ences not only the nominal speeds offered to the customers,
but also other, more controversial, policies related to traf-
fic shaping and discrimination. Given that the cost for the
AP is determined by the peak-hour traffic (e.g. through the
95th-percentile), the individual user contribution towards
the aggregate cost is not a linear function of its byte usage.
In this paper we propose a metric for evaluating the contri-
bution each individual user has on the peak demand, that is
based on Shapley value, a well known game-theoretic con-
cept. Given the computational complexity of calculating the
Shapley value, we use a Monte Carlo method for approxi-
mating it with reasonable accuracy. We employ our method-
ology to study a dataset that logs per-subscriber temporal
usage patterns over one month period for 10K broadband
subscribers of a European AP and report observed results.

Categories and Subject Descriptors

C.2.3 [Computer-Communications networks]: Network
Operations; Network monitoring; C.4 [Performance of sys-
tems]: Measurement techniques

General Terms

Measurement, Economics

Keywords

Heavy-hitters, Network economics, Net-neutrality, Shapley
value, Monte-Carlo method

1. INTRODUCTION
A large number of Internet Access Provider (AP) adopted

flat-rate pricing as a de-facto standard for charging of broad-
band services as such pricing appears to be preferred by the
customers [18]. This creates many difficulties for the APs as
it does not allow APs to transparently control the uplink-
ing (transit + infrastructure) costs and forced many APs
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to create nontransparent rules for traffic shaping and vio-
late net-neutrality as a means for control of their costs [9].
Using the terminology of [22], uplinking costs are the sin-
gle most expensive component of the costs for broadband
connectivity for a majority of currently used technologies,
including DSL, cable and WiFi (mash and access point).
An important property of the uplinking costs (influenced
by the transit costs and the cost of infrastructure) is that
they are determined by the peak demand (e.g. through the
95th-percentile) rather than average demand, which makes
it hard to assess per-customer contribution towards these
costs.

Flight ticket prices typically depend on the time of travel
and hotel rooms in tourist resorts are less expensive dur-
ing off-season. Similarly, a byte downloaded in peak-hour
costs more (for the provider) than a byte of traffic in off-
peak hours. In this paper we study per-user contribution
in the AP peak hour demand. More precisely, we measure
per-customer contribution towards the 95th-percentile of the
aggregate demand series1. For the purpose of quantifying
per-user contribution to the 95th-percentile, we use Shap-
ley value, an intuitive concept from coalitional game theory
that characterizes fair cost sharing among involved players
(customers). Shapley value framework allows us to: (1) ac-
curately quantify the contribution of each customer towards
the peak-hour traffic, (2) analyze the relationship between
the aggregate usage (in bytes) and the peak-hour contribu-
tion and (3) formally measure how cost of bandwidth is re-
lated to the demand pattern. We validate our methodology
over a dataset that logs temporal usage of 10K broadband
customers of a European AP.

Note that we talk about costs customers generate for the
AP rather than the price they pay; retail prices are often
strongly impacted by other market, competition and social
factors [22]. For various mechanisms for pricing the commu-
nication services in the context of revenue (or social welfare)
maximization, see [6].

1.1 Toy example
For measuring the peak demand we use the 95th-percentile

of the aggregate demand, the most standard measure for
billing of the transit traffic and an indicator of the network
utilization, used for the dimensioning of the infrastructure;
see Appendix A for a brief description. To understand the
concept of Shapley value and how it applies to the 95th-

1We stress, however, that the framework is general enough
to accommodate any other metric that measures the peak
demand.
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percentile billing let us consider a synthetic example of an
AP ISP providing service to only two users that have de-
mand patterns that are depicted in Figure 1. The user 1
generates a demand of 1Mbps during the whole day except
for the four-hour period [15-19h]. The user 2 is idle for 22
hours and generates 3Mbps traffic during two hours: [16-
18h]. The 95-th percentile of the aggregate user demand is
the peak-hour traffic v95th = 3Mbps and the price the ISP
would need to pay to its transit provider is v95th ·A0 (where
A0 is the price in USD per Mbps). The following question
arises: What is the fair cost sharing among the two involved
users? The Shapley value concept gives an answer to this
question and the intuition behind it is described bellow.

If there was only user 1 or only user 2 in the system, the
95th percentile would have been:

v95th({1}) = 1Mbps and v95th({2}) = 3Mbps

respectively. As we already observed, the 95th percentile of
the union of these two users is

v95th({1, 2}) = 3Mbps.

The Shapley value of user i, φi is now the average marginal
contribution that user i imposes to the coalition cost. In
other words:

φi =
1

2

(

v95th({i}) + (v95th({i, i′}) − v95th({i′}))
)

,

where {i′} = {1, 2} \ {i}. In our example the per user Shap-
ley values are:

φ1 = 0.5Mbps and φ2 = 2.5Mbps.

Thus by entering the coalition, the fair cost sharing of the
95th-percentile v95th({1, 2}) = 3Mbps would be the one in
which the user 1 is accounted for φ1 = 0.5Mbps and the
user 2 for φ2 = 2.5Mbps. The nature of the 95th-percentile
pricing is such that even though the user 1 generates in
total 3.3 times more traffic than user 2, its contribution to
the 95th-percentile is 5 times lower.

Comment 1. We can learn two lessons from the above
example: firstly, the user that sends/receives more data does
not necessarily have higher impact on the 95th-percentile;
and secondly, even if a user does not generate any traffic in
the peak hours that does not imply that its impact towards
the 95th-percentile is zero. Shapley value balances between
these two extremes (aggregate usage and peak-only usage)
by evaluating the average marginal contribution of each user
(eq. 1).

1.2 Summary of contributions
Briefly, the main contributions of this paper are the fol-

lowing:

• We develop a new methodology for studying heavy
users in an operational ISP. We use the standard con-
cept from cooperational game theory, known as Shap-
ley value, to quantify per-user cost contribution in the
context of 95th-percentile pricing.

• Using the Shapley value methodology, we study a month-
long dataset that tracks temporal usage patterns from
10K broadband users of a European ISP. We quantify
several relevant metrics over this dataset. In particular
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Figure 1: Toy example. Two users with different
demand pattern.

we find that for approximately 10% of users, the rela-
tive cost contribution (Shapley value) is less than half
of the relative byte usage (off-peak users), and that for
additional 10% of users the relative cost contribution
is more than twice of their relative byte usage (peak
users). Finally, we use the Shapley value framework
to formalize the intuitive wisdom “a byte in the peak-
hour has a higher value/cost than an off-peak byte” by
quantifying the hourly per-byte bandwidth prices that
approximate best the measured Shapley value.

2. APPROXIMATING SHAPLEY VALUE
In this section we will briefly introduce the Shapley value

concept for general cooperative games, relate it to our frame-
work in which the cost of a user coalition is determined by
the 95th-percentile of the traffic they generate and propose
a randomized method for efficiently computing SV for large
number of players.

2.1 Shapley value: definition
Consider a set N of N players2. For each subset (coali-

tion) S ⊂ N let v(S) be the cost of coalition S. In other
words if S is a coalition of players which agree to cooperate,
then v(S) determines the total cost from this cooperation.

For given cost function v, the Shapley value is a (uniquely
determined) vector (φ1(v), . . . , φN (v)) defined bellow that
is “fair” in that it satisfies four intuitive properties (see [20,
23]) for sharing the cost v(N ) that exhibits the coalition of
all players. It can be shown that Shapley value of player i
is determined by

φi(v) =
1

N !

∑

π∈SN

(v(S(π, i)) − v(S(π, i) \ i)) (1)

where π is a permutation or arrival order of set N and S(π, i)
is the set of players arrived in the system not later than
i. In other words, player i is responsible for its marginal
contribution v(S(π, i))−v(S(π, i)\ i) averaged across all N !
arrival orders π. Note that the Shapley value defined by (1)
satisfies (so called efficiency) property:

∑

i∈N
φi(v) = v(N ).

2.2 The 95th-percentile cost
The 95th-percentile billing is a method of measuring band-

width usage based on peak utilization, defined in Appendix

2We interchangeably use terms player, user, customer and
subscriber.
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A. Informally it measures close-to-peak demand but it also
allows usage to exceed a specified threshold for brief periods
of time without the financial penalty.

The setup over which we apply the Shapley value frame-
work is the following. We have the set N of N users that
generate traffic over a charging period, say one month. The
charging period is split into T sampling intervals, and at
time t ∈ [1, T ], user i generates the traffic Zi(t) (measured
in bytes). For a time series D = (D(1), . . . , D(T )), the 95th-
percentile P95th(D) is defined as the ⌈ T

20
⌉-th largest number

of the time series. For a coalition S of users the cost they
generate is determined by the 95th-percentile of the aggre-
gate demand pattern they generate:

v(S) = P95th(
∑

i∈S

Zi(1), . . . ,
∑

i∈S

Zi(T )).

Given the cost function v(·), the contribution of each user to
the 95th-percentile of the aggregate traffic v(N ) is defined
by the Shapley value defined by (1). From the definition,
one can notice that the 95th-percentile does not decrease by
adding new users to the coalition, therefore implying that
the cost function v is monotone:

(∀S ⊂ N )(∀i ∈ N ) v(S ∪ i) ≥ v(S).

The monotonicity of the cost function v implies that the
Shapley value of each user is indeed nonnegative.

2.3 Approximating Shapley value
Brute force application of formula (1) is computationally

unfeasible once N becomes greater than 100. For APs with
thousands (or millions) of subscribers such exact compu-
tation is not possible. In this Section we describe a simple
randomized method for approximating the Shapley, that can
scale with datasets of tens of thousands (if not millions) of
subscribers.

The idea of the method is simple. The Shapley value of
user i defined by (1) can be seen as the marginal cost in-
crease by user i, averaged over all N ! arrival orders. In the
example from Section 1.1, N = 2 and there are 2 arrival
orders: π1 = (1, 2) and π2 = (2, 1) and the user 1 and user
2 Shapley values are

φ1 =
1

2
((v({1}) − v(∅)) + (v({1, 2}) − v({2}))) =

=
1

2
((1 − 0) + (3 − 3))) = 0.5.

φ2 =
1

2
((v({1, 2}) − v({1})) + (v({2}) − v(∅))) =

=
1

2
((3 − 1) + (3 − 0))) = 2.5.

While computing the exact Shapley value through the for-
mula (1) is straightforward for small N , it becomes unfeasi-
ble for N > 50, as the number of different permutation or-
ders grows with N !. However, the computational complex-
ity can be significantly reduced by using the Monte Carlo
method.

Instead of calculating the exact Shapley value as the av-
erage cost contribution across all N ! arrival orders, we es-
timate the Shapley value as the average cost contribution

over a set Πk of k randomly sampled arrival orders (permu-
tations).

φ̂i(v) =
1

k

∑

π∈Πk

(v(S(π, i)) − v(S(π, i) \ i)) (2)

The parameter k determines the error between the real Shap-
ley value and its estimate: the higher k the lower the error.
So basically, one can control the accuracy of the estimators
by increasing the number of sample permutation orders (see
Section 3.2).

Proposition 1. The estimator φ̂i(v) is an unbiased es-
timator of the real Shapley value φi(v).

Proof. See [21].

Thus the Shapley value estimator (2) is unbiased. How-
ever the variance of the estimator is hard to model and in
Section 3.2 we present empirical evidence that for reason-
ably small sample size (say, k = 1000) the estimator exhibits
small variance, especially for the top users.

Proposition 2. The estimated Shapley values satisfy the
efficiency property:

∑

i∈N
φ̂i(v) = v(N ).

Proof. See [21].

3. EMPIRICAL RESULTS
In this section we present the empirical results obtained

by analyzing the dataset of around 10K broadband users
of a major European ISP. In Section 3.1 we describe the
dataset, then in Section 3.2 we analyze the accuracy of the
randomized method for calculating Shapley value. We pro-
ceed by analyzing the correlation between per-user aggregate
usage and its Shapley value in Section 3.3 and then in Sec-
tion 3.4 we quantify the relative cost of bandwidth in time
that would best approximate the Shapley value. Additional
empirical results, related to the consistency of the Shapley
value over time, as well as additional discussion on the rela-
tive cost of bandwidth, can be found in the Technical report
[21].

3.1 Dataset description
The dataset consists of around 10K ADSL users of a ma-

jor access provider in one European country. For each cus-
tomer, its downstream and upstream consumption (in bytes)
is captured during each hour for 30 days (thus spanning 720
hours). These users represent a random sample of ADSL
users of the ISP and have diverse uplink/downlink capacities
in the ranges of 256Kbps–10Mbps, and 1Mbps–20Mbps, re-
spectively. The downstream traffic dominates the upstream
traffic in the ratio 4 : 1, which is consistent with the re-
cent findings from another European access provider ISP
[15]. Virtually all ADSL users from the dataset pay flat-
fee, without incentives to shift their traffic to the off-peak
hours[11]. We stress that the empirical results derived from
this dataset are mainly qualitative, used for the purpose of
validating the Shapley value methodology and basic proper-
ties of Shapley value, and results derived here should not be
generalized for other types of environments such as campus,
backbone or enterprize networks.
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Figure 2: Relative standard errors of the Shapley
value estimator (2). Top: all users (top); bottom:
users with estimated Shapley value higher than the
mean (approx top 15%).
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Figure 3: Standard error as a function of number of
sample permutations (parameter k).

For the computation of 95th-percentile we use 1-hour bins,
as this is the granularity of our dataset. Given that we
consider large traffic volumes and large number of users,
using different bin sizes (e.g. 5 minutes) would have minor
effects on the 95th-percentile [8].

As we said, the downstream traffic dominates the up-
stream and in the following analysis we will therefore focus
on the downstream traffic, as it is the direction that deter-
mines the 95th-percentile (see Appendix A). The dataset
does not distinguish the per-user share of transit/nontransit
traffic, so for the evaluation purposes we assume that all the
traffic contributes to the 95th-percentile.

3.2 Accuracy of the Shapley value estimator
Our first step is the evaluation of the accuracy of the Shap-

ley value estimator (2). Given that we do not have the
ground truth measurement, to evaluate the error that the
estimator exhibits, we use the standard statistical method
as follows. Recall that the Shapley value estimator (2) of
user i is a mean of k samples of marginal cost contribu-
tions v(S(π, i)) − v(S(π, i) \ i). If we denote by σ̂i the esti-
mated standard deviation of the same k marginal cost sam-
ples. Then the relative standard error of the estimator (2)

is σ̂i√
kφ̂i(v)

. In Figure 2 we plot the histograms of these stan-
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Figure 4: Normalized byte-counters vs. normalized
Shapley value.

dard errors when the sample size is k = 1000 permutations3

for all users as well as the users with Shapley value estimate
higher than the mean Shapley value 1/N ·v(N ). One can ob-
serve that the relative standard errors are moderately small
across all users and are consistently under 10% for top users.
In Figure 3 we vary the number of sample permutation or-
ders (parameter k) and evaluate the relative standard errors
averaged across all the users and also the top 15% users.

3.3 Aggregate usage vs. Shapley value
Now, that we established the accuracy of Shapley value

estimates, we will compare it with the time-oblivious us-
age measure: bytes downloaded over the whole 30-day pe-
riod (byte-counters). In Figure 4 we plot the normalized4

Shapley value (x-axis) against the normalized byte-counters
(y-axis) for each user from our dataset. Users with rela-
tively high off-peak usage correspond to datapoints that are
far above x − y = 0 line. Conversely, users with modest
off-peak usage and heavy “peak-hour” usage correspond to
datapoints close to x-axis. Finally, the more similar the us-
age activity of a user is to the aggregate usage pattern, the
closer its datapoint is to the x − y = 0 line. To measure
how different the user’s Shapley value and byte-count are
we introduce the following metric that basically measures
the discrepancy between the user’s relative aggregate usage
and its relative contribution to the 95th-percentile:

ρi =
normalized Shapley value of user i

normalized byte-count of user i
, i ∈ N .

As we said above, the users with high off-peak usage (com-
pared to their peak-usage) have low ρi and vice versa. In
Figure 5 we plot the histogram of ρi for all users i with Shap-
ley value greater than the mean (approx 15% of the users)
as we have a high confidence in the measured Shapley value
for those users (see Figure 2). We see that there are ap-

3The computation took under 5 minutes on a PC running
Intel Core 2 Duo CPU, 2.33GHz and 2GB of RAM.
4Scaled down proportionally to have the sum equal to 1.
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Figure 5: Normalized byte-counters vs. normalized
Shapley value.

proximately 10% of users whose relative cost contribution is
more than twice the relative byte counters (ρi > 2) and an-
other 10% of users with relative cost contribution less than
half of its relative byte count (ρi < 0.5). The proportion of
users with very large or very small ρi is even higher for low-
Shapley-value users (the remaining 85% of the dataset), but
we avoid reporting these numbers because of the accuracy
issues for the low-Shapley-value users (see Section 3.2).

Another interesting statistics is that around 30% of top-
1% (and around 25% of top-10%) Shapley value users are
not in the corresponding top-1% (top-10%) byte-count list.

3.4 Relative cost of bandwidth
As we already mentioned in the Introduction, the conse-

quence of the 95th-percentile pricing of the transit traffic is
that the bandwidth is “more expensive” in the peak hours
than in the off-peak hours. Here we use the Shapley value
framework to quantify how the value of bandwidth changes
in time. Namely we seek to find the hourly per-byte prices
c1, . . . , c24, such that if a user i is charged ch monetary units
for each byte downloaded during hour h, then the monthly
bill is (approximately) equal to its Shapley value. More for-
mally, if Zi(t) is the usage of user i at time t = 1, ..., 720, we
seek for c1, . . . , c24 ≥ 0 such that

24
∑

h=1

ch

30
∑

d=1

Zi(h + 24(d − 1)) ≈ φi, ∀i ∈ N .

Given that the above system of equations is overdeter-
mined (it has 24 variables and 10K equations), we need to
seek a fit that matches some optimization criteria. A well
know method for approximating solution of the overdeter-
mined linear systems is the nonnegative least square (nnls)
method that seeks to minimize

N
∑

i=1

(

24
∑

h=1

ch

30
∑

d=1

Zi(h + 24(d − 1)) − φi

)2

.

Very efficient solutions for nnls problem have been pro-
posed recently and we use [10] to solve our problem. Run-
ning nnls over our dataset, we derive time series c1, . . . , c24

depicted in Figure 6. One can observe that (for the dataset
analyzed here) in the 95th-percentile setup, the bandwidth
is “free” (has virtually zero impact on the 95th-percentile)
for some 18 hours per day and has strictly positive cost dur-
ing 6 hours per day. Note that even though the monthly
95th-percentile is crossed during only one or two hours per
day, the cost of bandwidth is still non-zero for 6 (near-peak)
hours.
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Figure 6: Top: hourly per-byte cost (nonnegative
least squares). Bottom: average hourly utilization.

4. RELATED WORK
Per user analysis of broadband internet traffic was a sub-

ject of several recent studies. Cho et al. analyzes broadband
traffic from several Japanese ISPs in [4, 5]. They analyze the
per-user traffic usage and they show that it is highly skewed5

(can be modeled with a log-normal distribution). With the
duration of the dataset they analyzed, they were able to
track upload/download traffic trends over multiple years and
quantify the effects different applications have on the traf-
fic aggregates. In [15] Maier et al. perform a measurement
study of residential broadband users in one European ISP
and analyze several relevant metrics: per-application usage,
DSL session duration, and observable round trip-times. Here
we take a different look at the broadband traffic by analyz-
ing per-user temporal usage patterns and how they impact
the costs for the access provider.

One of the key reasons that influence traffic shaping (also
known as traffic discrimination) of Internet traffic is the fact
that by throttling some traffic, ISPs control (reduce) their
costs [16]. Dhamdhere and Dovrolis [7] and Biczok et al [1]
analyze several broadband pricing models that aim to offer
a solution that obey the net neutrality rules by discriminat-
ing the price of the heavy-hitters (based on the total bytes
downloaded/uploaded). In this work we empirically show
that the heavy-hitters are not necessarily expensive for the
ISP and that temporal usage effects should be taken into
account when designing pricing models in the context of net
neutrality.

Briscoe [2, 3] argues that fairness mechanisms in computer
networks should be judged on “how they share out the ‘cost’
of each user’s action on others” and he offers several heuris-
tics (e.g. he suggests that the number of dropped packets
over a billing circle is a good indicator of a customer’s cost
contribution) for evaluating the ‘cost’. The Shapley value
framework we introduced here can be seen as a formal way
to measure user’s cost contribution.

Pricing of communication networks has been extensively
studied in the past; see [6] and references therein. These
efforts mainly focus on how to use pricing to achieve some
form of social welfare (or revenue) maximization. We stress
that we do not aim to propose a new pricing scheme in
this paper, but rather set to measure the diversity of the
broadband usage behavior patterns and their effect on the
peak hour consumption.

5The fact that we also observe in our dataset.
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Recently, several research efforts suggested using Shapley
value as a means for providing incentives for optimal re-
source control. Ma et al. promote use of Shapley value for
ISP settlement by proposing revenue sharing among ISPs
based on the importance each ISP has on the Internet ecosys-
tem [13, 14]. In the context of peer-to-peer systems, Misra
et al. [17] propose using Shapley value to incentivize coop-
eration in p2p systems.

The 95th-percentile pricing has been analyzed recently by
Dimitropoulos et al. [8]. They quantify the dependence
between the size of measurement slot and the observed 95th-
percentile and show that this dependence becomes weak for
large volumes of traffic. Laoutaris et al. [12] use the 95th-
percentile pricing to propose ISP-friendly bulk transfers that
explicitly avoid to use bandwidth that could increase the
95th-percentile.

5. SUMMARY
Days in which the technological reasons were impacting

the performance of the residential Internet users are coming
to an end and in the near future, the performance offered
to the end users will be predominantly shaped by the eco-
nomic factors rather than physical bottlenecks. In such en-
vironments it is crucial to determine the cost contribution of
each individual user to the operation of ISP, as it would be
a key metric for evaluating the consumption and accounting
in such an ecosystem. Our study is a step towards the fairer
usage of the Internet in which economic aspects dominate
the per-user performance as it formally quantifies the indi-
vidual per-user cost contributions in the specific context of
burstable (95th-percentile) billing.

In the future we plan to investigate the effects the traffic
shaping (e.g. p2p throttling [9]) has on the customers’ Shap-
ley value, as well as the relationship between the operational
parameters (oversubscription rate, nominal capacities, etc.)
and the Shapley value. Finally, in light of the fact that the
Shapley value is an off-line (and somewhat complex) metric,
it would be useful to find a simpler online metric that ac-
curately approximates the Shapley value (one possible way
would be along the lines discussed in Section 3.4).
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APPENDIX

A. THE 95TH-PERCENTILE PRICING
The 95th-percentile pricing is the most prevalent method

that transit ISPs use for charging their customers. A billing
cycle, typically one month, is split in constant-size inter-
vals (e.g. 5-min or 1-hour) and number of bytes transferred
in each interval is recorded, and the 95th-percentile of the
distribution of recorded samples is used for billing. Thus,
in a billing cycle of 30 days, 36 hours (5% of time) of the
heaviest traffic is filtered out, and then the maximal traf-
fic of the remaining 684 hours is used for billing. Usually,
the downstream and upstream 95th-percentile are computed
independently, and the lower value is neglected.

The 95th-percentile is also a good measure of how utilized
the network is, and is often used as an indicator for dimen-

sioning of infrastructure, whose cost is determined by the
peak hour demand.
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