# ON EFFECTIVE DIVISORS ON SMOOTH PROJECTIVE SURFACES 

Yoshiaki Fukuma


#### Abstract

Let $X$ be a smooth projective surface defined over the complex number field and let $D$ be an effective divisor on $X$. In this paper we will propose a special class of effective divisors which has some properties similar to that of the case where $D$ is ample and we will study this divisor.


## Introduction

Let $X$ be a smooth projective variety defined over the complex number field and let $L$ be a divisor on $X$. Then the pair $(X, L)$ is called a prepolarized manifold. If $L$ is ample, then $(X, L)$ is called a polarized manifold.

In this paper we consider the case where $\operatorname{dim} X=2$, and we study some special type of effective divisors.

In previous papers ([Fk1], [Fk2], [Fk3], [Fk5], [Fk6] and [Fk7]), we classified polarized surfaces $(X, L)$ by using the value of $g(L)$, where $g(L)$ is the sectional genus of $L$, that is, $g(L)=1+(1 / 2)\left(K_{X}+L\right) L$. (Here $K_{X}$ is the canonical divisor on $X$.) The details are as follows: If $h^{0}(L)>0$, then we can prove that $g(L) \geq q(X)$ (see Lemma 1.2 in [Fk2]), where $q(X)$ is the irregularity of $X$, and we classified $(X, L)$ with $h^{0}(L)>0$ and $0 \leq g(L)-q(X) \leq 1$ (see [Fk1], [Fk2], [Fk3] and [Fk5]). Furthermore in [Fk6] and [Fk7], we classified $(X, L)$ such that $(X, L)$ satisfies one of the following:
(a) $g(L)=q(X)+m$ and $h^{0}(L) \geq m+2$,
(b) $g(L)=q(X)+m, h^{0}(L)=m+1$, and $\operatorname{dim} \mathrm{Bs}|L| \leq 0$, where $m$ is a non-negative integer.

When we classify $(X, L)$ by the value of $g(L)-q(X)$, we need to study a lower bound for $K_{X} L$. So in [Fk4] we studied the intersection number $K_{X} L$. For example we obtained that $K_{X} L \geq 2 q(X)-4$ for any polarized surface $(X, L)$ with $\kappa(X) \geq 0$ and $h^{0}(L) \geq 2$. The above results are useful to study projective surfaces.

But the author feels that in order to study projective surfaces more deeply, it is necessary to study more general effective divisors than ample effective divisors.

[^0]Received March 1, 2002; revised August 26, 2002.

So the author wants to find a class $\mathscr{C}$ of effective divisors on $X$ which satisfies the following:
(1) Any effective divisor which is a member of the class $\mathscr{C}$ has properties similar to that of ample effective divisors.
(2) We can easily check whether an effective divisor $D$ is a member of the class $\mathscr{C}$ or not.
(3) Any ample effective divisor is a member of the class $\mathscr{C}$.

If we can find the class $\mathscr{C}$ which satisfies the above three conditions, then it seems to be very useful to study projective surfaces.

As the first attempt, in [Fk4] we proposed a special effective divisor, which is called a CNNS-divisor (see Definition 1.1 below). We note that any ample effective divisor is a CNNS-divisor. If $X$ is minimal and $L$ is a CNNS-divisor, then $L$ has properties similar to that of ample effective divisors. (For example, see [Fk4].) But when $X$ is not minimal and $L$ is a CNNS-divisor, $L$ does not always have properties similar to that of ample effective divisors. For example, assume that $\pi: X \rightarrow X^{\prime}$ is a birational morphism, where $X^{\prime}$ is a smooth projective surface. If $L$ is ample, then $\mu_{*}(L)$ is ample and $K_{X} L \geq K_{X^{\prime}}\left(\mu_{*}(L)\right)$ is always true. If $L$ is a CNNS-divisor, then so is $\mu_{*}(L)$, but $K_{X} L \geq K_{X^{\prime}}\left(\mu_{*}(L)\right)$ is not always true. So it needs to consider some special type of CNNS-divisors on $X$ and to study these.

Hence in this paper we propose a new class of effective divisors and we study effective divisors of this class. We define a new class of effective divisors as follows:
(\#) Let $D$ be effective divisors on $X$ such that $D=B+T_{1}+\cdots+T_{n-1}$, where $B$ is an effective divisor on $X$, and $T_{0}, T_{1}, \ldots, T_{n-1}$ is a sequence of reduced effective divisors on $X$ such that $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ is a generalized composite series with respect to $B$ (see Definition 2.1).
Let $D$ be an effective divisor on $X$ such that $D$ has the property (\#) and $B$ is a reduced CNNS-divisor. Then this effective divisor has properties similar to that of ample effective divisors. (For example, the sectional genus $g(D)$, the intersection number $K_{X} D$, and the vanishing of $h^{i}(-D)$.) We will study these in Section 2.

In Section 3, we prove that if $D$ is a nef and big effective $\boldsymbol{Q}$-divisor on $X$, then $\lceil D\rceil$ has the property (\#) such that $B$ is a reduced CNNS-divisor. (See Theorem 3.1.) We also prove that if $D$ is an $s$-connected effective divisor on $X$, then $D$ has the property (\#). (See Proposition 3.2.)

Theorem 3.1 determines a kind of a structure theorem of the Zariski decomposition for nef and big effective $Q$-divisors on $X$, and is very useful to study nef and big effective $\boldsymbol{Q}$-divisors. For example, as an application of Theorem 3.1, we get that $g(\lceil D\rceil) \geq q(X)$ by Theorem 2.4 and Theorem 3.1, where $D$ is a nef and big effective $Q$-divisors. Furthermore we can classify $(X, D)$ with $g(\lceil D\rceil)=0$ (see Proposition 4.1). Here we note that Proposition 4.1 is a new result.

Here we note the following: when we study polarized surfaces $(X, L)$, it is difficult to study $(X, L)$ with $h^{0}(L)=0$. But since any ample divisor is a nef and
big effective $\boldsymbol{Q}$-divisor, we can expect that some results of this paper give one direction for studying polarized surfaces $(X, L)$ with $h^{0}(L)=0$, and we hope that some results in this paper become useful to study an ample divisor $L$ with $h^{0}(L)=0$.

We will study $(X, D)$ with $g(\lceil D\rceil)=q(X)$ in a future paper.
We use the customary notation in algebraic geometry. In this paper we mainly study smooth projective surfaces defined over the complex number field.

The author would like to thank the referee for giving some useful comments and suggestions.

## 1. Preliminaries

Definition 1.1 (see Definition 4.3 in [Fk4]). Let $X$ be a smooth projective surface and let $D$ be an effective divisor on $X$. Then $D$ is called a $C N N S$-divisor if the following conditions hold:
(1) $D$ is connected.
(2) the intersection matrix $\left\|\left(C_{i}, C_{j}\right)\right\|_{i, j}$ of $D=\sum_{i} r_{i} C_{i}$ is not negative semidefinite.

Theorem 1.2. Let $X$ be a minimal smooth projective surface and let $D$ be an effective CNNS-divisor on $X$ such that one of the following conditions hold;
(1) $\kappa(X)=0,1$,
(2) $\kappa(X)=2$ and $h^{0}(D) \geq 2$.

Then $K_{X} D \geq 2 q(X)-4$.
Proof. (I) The case in which $\kappa(X)=0$.
Then $q(X) \leq 2$. Since $K_{X}$ is nef, we get that $K_{X} D \geq 0$. Hence $K_{X} D \geq$ $0 \geq 2 q(X)-4$.
(II) The case in which $\kappa(X)=1$.

Let $f: X \rightarrow C$ be an elliptic fibration over a smooth curve $C$. If $g(C) \leq 1$, then $q(X) \leq 2$. Hence $K_{X} D \geq 0 \geq 2 q(X)-4$. Therefore we assume $g(C) \geq 2$. By the canonical bundle formula of elliptic fibrations, we get that

$$
K_{X} D \geq\left(2 g(C)-2+\chi\left(\mathcal{O}_{X}\right)\right) D F
$$

for a general fiber $F$ of $f$. Since $D$ is a CNNS-divisor on $X$, there exists a curve $B$ such that $B$ is not contained in a fiber of $f$. Thus we get that $D F \geq 1$. Hence

$$
\begin{aligned}
K_{X} D & \geq\left(2 g(C)-2+\chi\left(\mathcal{O}_{X}\right)\right) D F \\
& \geq 2 g(C)-2+\chi\left(\mathcal{O}_{X}\right) \\
& \geq 2 g(C)-2 \\
& =2 g(C)+2-4 \\
& \geq 2 q(X)-4
\end{aligned}
$$

(III) The case in which $\kappa(X)=2$ and $h^{0}(D) \geq 2$.

Let $M$ be the movable part of $|D|$ and let $Z$ be the fixed part of $|D|$. Then $M$ is nef. If $M^{2}>0$, then $M$ is nef and big. So we get that $K_{X} D \geq$ $K_{X} M \geq 2 q(X)-2$ by Theorem 3.1 in [Fk4].

If $M^{2}=0$, then $M$ is nef but not big. Moreover we get $\mathrm{Bs}|M|=\emptyset . \quad$ So we get a fiber space $f: X \rightarrow B$ defined by $|M|$, where $B$ is a smooth projective curve. We remark that $M$ is numerically equivalent to $a F$ for a natural number $a$, where $F$ is a general fiber of $f$.

If $g(B)=0$, then

$$
\begin{aligned}
K_{X} D \geq K_{X} M & \geq K_{X} F \\
& =2 g(F)-2 \\
& \geq 2 q(X)-2
\end{aligned}
$$

If $g(B) \geq 1$, then

$$
\begin{aligned}
K_{X / B} D & \geq K_{X / B} M \\
& \geq 2 g(F)-2
\end{aligned}
$$

because $K_{X / B}$ is nef by Arakelov's theorem (see [Be]). Therefore

$$
K_{X} D \geq(2 g(B)-2) D F+2 g(F)-2
$$

Since $D$ is a CNNS-divisor, there exists a curve $C$ such that $C$ is not contained in a fiber of $f$ but contained in $D$. So we obtain that $D F \geq 1$. Hence

$$
\begin{aligned}
K_{X} D & \geq 2 g(B)-2+2 g(F)-2 \\
& \geq 2 q(X)-4 .
\end{aligned}
$$

Theorem 1.3. Let $X$ be a minimal smooth surface of general type and let $D$ be a CNNS-divisor with $h^{0}(D)=1$ on $X$. If $D$ is not of the following type $(\star)$, then $K_{X} D \geq 2 q(X)-4$;
(*) $D=C_{1}+\sum_{j \geq 2} r_{j} C_{j} ; C_{1}^{2}>0$ and the intersection matrix $\left\|\left(C_{j}, C_{k}\right)\right\|_{j \geq 2, k \geq 2}$ of $\sum_{j \geq 2} r_{j} C_{j}$ is negative semidefinite.
Proof. See Theorem 4.5, Theorem 4.6 and Theorem 4.11 in [Fk4].
Definition 1.4 (see Definition 3.1 in [Mi]). Let $X$ be a smooth projective surface and let $D$ be an effective divisor on $X$. Then $D$ is called s-connected (in the sense of $[\mathrm{Mi}])$ if there exists a decomposition of $D, D=C_{0}+C_{1}+\cdots+C_{r}$ such that $\left(C_{0}+\cdots+C_{i-1}\right) C_{i}>0$ for $i=1, \ldots, r$, where $C_{i}$ is an irreducible curve for any $i$.

## Remark 1.4.1.

(1) The notion of $s$-connectedness in Definition 1.4 is different from the notion of $m$-connectedness in [BPV] (see p. 69 Definition in [BPV]), where $m$ is a positive integer.
(2) If $D$ is a 1 -connected effective divisor, then $D$ is $s$-connected. In particular if $D$ is a nef and big effective divisor, then $D$ is $s$-connected.

Proposition 1.5. Let $X$ be a smooth projective surface. An effective divisor $D$ is not s-connected if and only if there exists a nontrivial decomposition $D=D_{1}+D_{2}$ into effective divisors such that $D_{1} C \leq 0$ for any irreducible component $C$ of $D_{2}$.

Proof. See Proposition 3.3 in [Mi].
Definition 1.6 (see p. 69 Definition in [BPV]). Let $X$ be a smooth projective surface. Then an effective divisor $D$ on $X$ is said to be 1 -connected if $D_{1} D_{2}>0$ for any nonzero effective divisors $D_{1}$ and $D_{2}$ with $D=D_{1}+D_{2}$.

Remark 1.6.1. If $D$ is a reduced and connected effective divisor on $X$, then $D$ is 1-connected.

Proposition 1.7. Let $X$ be a smooth projective surface and let $D$ be an effective 1-connected divisor. Let $\pi: X \rightarrow X_{1}$ be the blowing down of a ( -1 )-curve $E$ and we put $D_{1}:=\pi_{*}(D)$ in the sense of cycle theory. Then $D_{1}$ is effective and 1 -connected. Furthermore if $D^{2}>0$, then $D_{1}^{2}>0$.

Proof. We put $D=\pi^{*}\left(D_{1}\right)+a E$ for $a \in \boldsymbol{Z}$. Let $D_{1}=D_{1,1}+D_{1,2}$ be a decomposition of effective divisors with $D_{1,1} \neq 0$ and $D_{1,2} \neq 0$. Then there exist integers $a_{1}$ and $a_{2}$ such that $\pi^{*}\left(D_{1,1}\right)+a_{1} E$ and $\pi^{*}\left(D_{1,2}\right)+a_{2} E$ are effective and

$$
D=\left(\pi^{*}\left(D_{1,1}\right)+a_{1} E\right)+\left(\pi^{*}\left(D_{1,2}\right)+a_{2} E\right)
$$

If $a_{1} a_{2} \geq 0$, then by assumption we get that

$$
\begin{aligned}
0 & <\left(\pi^{*}\left(D_{1,1}\right)+a_{1} E\right)\left(\pi^{*}\left(D_{1,2}\right)+a_{2} E\right) \\
& =D_{1,1} D_{1,2}-a_{1} a_{2} \\
& \leq D_{1,1} D_{1,2} .
\end{aligned}
$$

If $a_{1} a_{2}<0$, then we may assume that $a_{1}>0$ and $a_{2}<0$. Then we consider a decomposition

$$
D=\left(\pi^{*}\left(D_{1,1}\right)\right)+\left(\pi^{*}\left(D_{1,2}\right)+\left(a_{1}+a_{2}\right) E\right)
$$

Since $\pi^{*}\left(D_{1,2}\right)+a_{2} E$ is effective, so is $\pi^{*}\left(D_{1,2}\right)+\left(a_{1}+a_{2}\right) E$. Then

$$
\begin{aligned}
0 & <\left(\pi^{*}\left(D_{1,1}\right)\right)\left(\pi^{*}\left(D_{1,2}\right)+\left(a_{1}+a_{2}\right) E\right) \\
& =D_{1,1} D_{1,2}
\end{aligned}
$$

Therefore $D_{1}$ is 1-connected. On the other hand, $0<D^{2}=D_{1}^{2}-a^{2} \leq D_{1}^{2}$.

Definition 1.8 (see Definition 1.9 in [Fk2]).
(1) Let $X$ be a smooth projective surface and let $D$ be a divisor on $X$. Then $(X, D)$ is said to be $D$-minimal if $D E \neq 0$ for any $(-1)$-curve $E$ on $X$.
(2) For any prepolarized surface $(X, D)$, there exist a smooth projective surface $X_{0}$, a divisor $D_{0}$, and a birational morphism $\rho: X \rightarrow X_{0}$ such that $D=\rho^{*}\left(D_{0}\right)$ and $\left(X_{0}, D_{0}\right)$ is $D_{0}$-minimal. Then we call $\left(X_{0}, D_{0}\right)$ a $D$-minimalization of $(X, D)$.

Theorem 1.9. Let $X$ be a smooth projective surface and let $D$ be an effective 1-connected divisor on $X$. Then there exist a smooth projective surface $S$, an effective 1-connected divisor $D_{S}$ on $S$, a birational morphism $\pi: X \rightarrow S$, and $D=\pi^{-1} D_{S}+\sum_{i} a_{i} C_{i}$ for nonnegative integers $a_{i}$ and smooth rational curves $C_{i}$ with $C_{i}^{2} \leq-1$ such that $g(D)=g\left(D_{S}\right)$ and one of the following holds:
(1) $\left(S, D_{S}\right) \cong\left(\boldsymbol{P}^{2}, \mathcal{O}(1)\right)$,
(2) $\left(S, D_{S}\right) \cong\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right)$,
(3) $\left(S, D_{S}\right)$ is a scroll over a smooth curve,
(4) $K_{S}+D_{S}$ is nef,
(5) $D_{S}$ is a smooth rational curve with $D_{S}^{2} \leq-2$, where $\pi^{-1} D_{S}$ denotes the strict transform of $D_{S}$ via $\pi$.

Proof. We put $X_{0}:=X$, and $D_{0}(0):=D$. First we take a $D_{0}(0)-$ minimalization of $\left(X_{0}, D_{0}(0)\right) ; \pi_{0}: X_{0} \rightarrow X_{1}$, where $X_{1}$ is a smooth projective surface and $\pi_{0}$ is a birational morphism. Let $D_{1}:=\left(\pi_{0}\right)_{*}\left(D_{0}(0)\right)$. For $\left(X_{1}, D_{1}\right)$, if $K_{X_{1}}+D_{1}$ is nef, then we are done. So we assume that $K_{X_{1}}+D_{1}$ is not nef. Then there exists an irreducible curve $C_{1}$ such that $\left(K_{X_{1}}+D_{1}\right) C_{1}<0$.

If $K_{X_{1}} C_{1}<0$, then $X_{1}$ is isomorphic to $\boldsymbol{P}^{2}, \boldsymbol{P}^{1}$-bundle over a smooth curve, or $X_{1}$ has a $(-1)$-curve $E_{1}$.

If $X_{1}$ is the first two cases, then we are done.
If $X_{1}$ is the last case, then $K_{X_{1}} E_{1}=-1$ and $D_{1} E_{1}=0$. But this is impossible because $\left(X_{1}, D_{1}\right)$ is $D_{1}$-minimal.

If $K_{X_{1}} C_{1} \geq 0$, then

$$
\begin{aligned}
0 & >\left(K_{X_{1}}+C_{1}+\left(D_{1}-C_{1}\right)\right) C_{1} \\
& =2 g\left(C_{1}\right)-2+\left(D_{1}-C_{1}\right) C_{1} .
\end{aligned}
$$

Since $D_{1}$ is 1 -connected by Proposition 1.7, $\left(D_{1}-C_{1}\right) C_{1}>0$. Hence $g\left(C_{1}\right)=0$ and $\left(D_{1}-C_{1}\right) C_{1}=1$. Furthermore $C_{1}^{2} \leq-2$ because $g\left(C_{1}\right)=0$ and $K_{X_{1}} C_{1} \geq 0$. We put $D_{1}(1):=D_{1}-C_{1}$. Then $D_{1}(1)$ is effective since $D_{1} C_{1}=C_{1}^{2}+1 \leq-1$ and so $\operatorname{Supp} D_{1} \supset C_{1}$.

Claim 1.9.1. $\quad D_{1}(1)$ is an effective 1-connected divisor.
Proof. Let $D_{1}(1)=B_{1}+B_{2}$ be a decomposition of $D_{1}(1)$ with $B_{1} \neq 0$ and $B_{2} \neq 0$, where $B_{1}$ and $B_{2}$ are effective divisors. Then $D_{1}=D_{1}(1)+C_{1}=B_{1}+$ $B_{2}+C_{1}$. Since $1=\left(D_{1}-C_{1}\right) C_{1}=\left(B_{1}+B_{2}\right) C_{1}$, we may assume that $B_{2} C_{1} \leq 0$. Then by 1 -connectedness of $D_{1}$, we get that $0<\left(B_{1}+C_{1}\right) B_{2} \leq B_{1} B_{2}$. This completes the proof of Claim 1.9.1.
(Here we note that Claim 1.9.1 can be proved also by Appendix (A.4) Lemma in [CFL].)

Claim 1.9.2. $g\left(D_{0}(0)\right)=g\left(D_{1}(1)\right)$.
Proof.

$$
\begin{aligned}
g\left(D_{0}(0)\right) & =1+\frac{1}{2}\left(K_{X}+D_{0}(0)\right) D_{0}(0) \\
& =1+\frac{1}{2}\left(K_{X_{1}}+D_{1}\right) D_{1} \\
& =1+\frac{1}{2}\left(K_{X_{1}}+D_{1}-C_{1}\right)\left(D_{1}-C_{1}\right)+\frac{1}{2}\left(K_{X_{1}} C_{1}\right)+\frac{1}{2}\left(-C_{1}^{2}+2 D_{1} C_{1}\right) \\
& =g\left(D_{1}(1)\right)+\frac{1}{2}\left(K_{X}+2 D_{1}-C_{1}\right) C_{1} .
\end{aligned}
$$

On the other hand, we get that

$$
\begin{aligned}
\left(K_{X}+2 D_{1}-C_{1}\right) C_{1} & =\left(K_{X}+D_{1}+D_{1}-C_{1}\right) C_{1} \\
& =\left(K_{X}+C_{1}+2\left(D_{1}-C_{1}\right)\right) C_{1} \\
& =-2+2 \\
& =0 .
\end{aligned}
$$

This completes the proof.
Next we consider a pair $\left(X_{i}, D_{i}(i)\right)$ for an effective 1-connected divisor $D_{i}(i)$ on $X_{i}$.

First we take a $D_{i}(i)$-minimalization of $\left(X_{i}, D_{i}(i)\right) ; \pi_{i}: X_{i} \rightarrow X_{i+1}$, where $X_{i+1}$ is a smooth projective surface and $\pi_{i}$ is a birational morphism. We put $D_{i+1}:=\left(\pi_{i}\right)_{*}\left(D_{i}(i)\right)$.

If $K_{X_{i+1}}+D_{i+1}$ is nef, then this is stopped.
If $K_{X_{i+1}}+D_{i+1}$ is not nef, then there exists an irreducible curve $C_{i+1}$ such that $\left(K_{X_{i+1}}+D_{i+1}\right) C_{i+1}<0$.

If $K_{X_{i+1}} C_{i+1}<0$, then $X_{i+1}$ is isomorphic to $\boldsymbol{P}^{2}, \boldsymbol{P}^{1}$-bundle over a smooth curve, or $X_{i+1}$ has a (-1)-curve $E_{i+1}$.

If the first two cases occur, then this is stopped. If $X_{i+1}$ has a $(-1)$-curve $E_{i+1}$, then $K_{X_{i+1}} E_{i+1}=-1$ and $D_{i+1} E_{i+1}=0$. But this is impossible because $\left(X_{i+1}, D_{i+1}\right)$ is $D_{i+1}$-minimal.

If $K_{X_{i+1}} C_{i+1} \geq 0$, then

$$
\begin{aligned}
0 & >\left(K_{X_{i+1}}+C_{i+1}+\left(D_{i+1}-C_{i+1}\right)\right) C_{i+1} \\
& =2 g\left(C_{i+1}\right)-2+\left(D_{i+1}-C_{i+1}\right) C_{i+1} .
\end{aligned}
$$

Since $D_{i+1}$ is 1 -connected by Proposition 1.7, $\left(D_{i+1}-C_{i+1}\right) C_{i+1}>0$. Hence
$g\left(C_{i+1}\right)=0 \quad$ and $\quad\left(D_{i+1}-C_{i+1}\right) C_{i+1}=1$. Furthermore $\quad C_{i+1}^{2} \leq-2$ because $g\left(C_{i+1}\right)=0$ and $K_{X_{i+1}} C_{i+1} \geq 0$. We put $D_{i+1}(i+1):=D_{i+1}-C_{i+1}$. Then $D_{i+1}(i+1)$ is effective since $D_{i+1} C_{i+1}=C_{i+1}^{2}+1 \leq-1$ and so Supp $D_{i+1} \supset C_{i+1}$. Then by the same argument as in the claim above, we can prove that $D_{i+1}(i+1)$ is 1-connected and $g\left(D_{i}(i)\right)=g\left(D_{i+1}(i+1)\right)$.

Assume that $D_{t}(t)=0$ for some $t$. Then $D_{t}$ is a smooth rational curve. Since $\left(X_{t}, D_{t}\right)$ is $D_{t}$-minimal, we get that $\left(X_{t}, D_{t}\right)$ satisfies one of the above conditions in Theorem 1.9. This completes the proof of Theorem 1.9.

Remark 1.9.3. We remark that $D_{i}^{2}=\left(D_{i-1}(i-1)\right)^{2}$ and

$$
\begin{aligned}
D_{i}(i)^{2}=\left(D_{i}-C_{i}\right)^{2} & =D_{i}^{2}-2 D_{i} C_{i}+C_{i}^{2} \\
& =D_{i}^{2}-2\left(D_{i}-C_{i}\right) C_{i}-C_{i}^{2} \\
& \geq D_{i}^{2}-2+2 \\
& =D_{i}^{2}
\end{aligned}
$$

for $i=1, \ldots, t$. Hence we obtain that if $D^{2}>0$, then $D_{S}^{2}>0$ and the type (5) in Theorem 1.9 is excluded.

Theorem 1.10. Let $X$ be a smooth projective surface and let $D$ be a nef and big $\boldsymbol{Q}$-divisor on $X$. Then $H^{p}\left(X, K_{X}+\lceil D\rceil\right)=0$ for $p=1,2$.

Proof. See Theorem 5.1 in [Sa]. (See also [Ka] and [V].)
Lemma 1.11. Let $X$ be a smooth projective surface and let $D$ be an effective divisor on $X$ such that $D$ is numerically 1-connected. If $H^{1}\left(\mathcal{O}_{X}\right) \rightarrow H^{1}\left(\mathcal{O}_{D}\right)$ is injective, then $h^{1}(-D)=0$.

Proof. We consider the following exact sequence:

$$
\begin{aligned}
0 & \rightarrow H^{0}(-D) \rightarrow H^{0}\left(\mathcal{O}_{X}\right) \rightarrow H^{0}\left(\mathcal{O}_{D}\right) \\
& \rightarrow H^{1}(-D) \rightarrow H^{1}\left(\mathcal{O}_{X}\right) \rightarrow H^{1}\left(\mathcal{O}_{D}\right)
\end{aligned}
$$

Here we note that $h^{0}(-D)=0$ and $h^{0}\left(\mathcal{O}_{X}\right)=1$. By the assumption and p. 69 (12.3) Corollary in $[\mathrm{BPV}]$, we get that $h^{0}\left(\mathcal{O}_{D}\right)=1$. Since $H^{1}\left(\mathcal{O}_{X}\right) \rightarrow H^{1}\left(\mathcal{O}_{D}\right)$ is injective, we get that $h^{1}(-D)=0$.

## 2. Some properties of special effective divisors

Here we define the following notion which is a generalization of effective nef and big divisor.

Definition 2.1. Let $X$ be a smooth projective surface defined over the
complex number field. Let $B$ be an effective divisor on $X$, and let $T_{0}, T_{1}, \ldots, T_{n-1}$ be a sequence of reduced effective divisors on $X$. We put $B_{0}:=B$ and $B_{i}:=B_{i-1}+T_{i-1}$ for $i=1, \ldots, n$. Then $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ is called $a$ generalized composite series with respect to $B$ if $g\left(T_{i}\right)+B_{i} T_{i}-1 \geq 0$ for any $i=0, \ldots, n-1$.

Next we study some properties of this.
Proposition 2.2. Let $X$ be a smooth projective surface defined over the complex number field. Let $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ be a generalized composite series with respect to $B$. We put $D:=B+T_{0}+\cdots+T_{n-1}$. Then $g(D) \geq g(B)$.

Proof. First we get that

$$
\begin{aligned}
g\left(B_{1}\right) & =g\left(B_{0}+T_{0}\right) \\
& =g\left(B_{0}\right)+g\left(T_{0}\right)+B_{0} T_{0}-1 \\
& \geq g\left(B_{0}\right) .
\end{aligned}
$$

In general, we can prove that

$$
\begin{aligned}
g\left(B_{i+1}\right) & =g\left(B_{i}+T_{i}\right) \\
& =g\left(B_{i}\right)+g\left(T_{i}\right)+B_{i} T_{i}-1 \\
& \geq g\left(B_{i}\right) .
\end{aligned}
$$

Therefore $g(D) \geq g\left(B_{n-1}\right) \geq \cdots \geq g\left(B_{0}\right)=g(B)$. This completes the proof of Proposition 2.2.

Remark 2.3. We put $m_{i}=g\left(T_{i}\right)+B_{i} T_{i}-1$. Then

$$
g(D)=g(B)+\sum_{i=0}^{n-1} m_{i}
$$

By Proposition 2.2, we can prove the following theorem.
Theorem 2.4. Let $X$ be a smooth projective surface defined over the complex number field. Let $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ be a generalized composite series with respect to $B$. Assume that $B$ is a reduced CNNS-divisor. Then $g(D) \geq q(X)$ for $D=B+T_{0}+\cdots+T_{n-1}$.

Proof. By Proposition 2.2 we can prove that $g(D) \geq g(B)$. Since $B$ is a reduced and connected effective divisor, we get that $g(B) \geq 0$. So if $q(X)=0$, then $g(D) \geq g(B) \geq 0=q(X)$. So we may assume that $q(X) \geq 1$. Then let

$$
\alpha(B)=\operatorname{dim} \operatorname{Ker}\left(H^{1}\left(\mathcal{O}_{X}\right) \rightarrow H^{1}\left(\mathcal{O}_{B}\right)\right)
$$

If $\alpha(B)>0$, then by Lemma 1.3 in [Fk1] there exists a morphism $\beta: X \rightarrow A$ such that $\beta(B)$ is a point on $A$, where $A$ is an abelian variety. But since $B$ is a CNNS-divisor, this is impossible. Therefore $\alpha(B)=0$, that is, $q(X) \leq h^{1}\left(\mathcal{O}_{B}\right)$. Since $B$ is a reduced connected effective divisor, we get that $g(B)=h^{1}\left(\mathcal{O}_{B}\right)$. Hence $g(B)=h^{1}\left(\mathcal{O}_{B}\right) \geq q(X)$ and we get that $g(D) \geq g(B) \geq q(X)$. This completes the proof.

Lemma 2.5. Let $X$ be a minimal smooth projective surface with $\kappa(X) \geq 0$ and let $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ be a generalized composite series with respect to $B$. We put $D:=B+T_{0}+\cdots+T_{n-1}$. Then $K_{X} D \geq K_{X} B$.

Proof. Since $\kappa(X) \geq 0$ and $X$ is minimal, we get that $K_{X}$ is nef. So this lemma can be easily proved.

Proposition 2.6. Let $X$ be a minimal smooth projective surface with $\kappa(X) \geq 0$. Let $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ be a generalized composite series with respect to B. We put $D:=B+T_{0}+\cdots+T_{n-1}$. Assume that $B$ is a reduced $C N N S$-divisor such that $B$ does not satisfy the following condition ( $\star \star$ ):
$(\star \star) h^{0}(B)=1$ and there exists only one irreducible component $B_{1}$ of $B$ such that $B_{1}^{2}>0$ and $B-B_{1}$ is negative semidefinite.
Then $K_{X} D \geq 2 q(X)-4$.
Proof. By Lemma $2.5 K_{X} D \geq K_{X} B$. Hence it is sufficient to prove $K_{X} B \geq 2 q(X)-4$. But this is true by Theorem 1.2 and Theorem 1.3.

Next we study the case where $X$ is not minimal.
Proposition 2.7. Let $X$ and $S$ be smooth projective surfaces. Let $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ be a generalized composite series with respect to $B$ on $X$. Let $\mu: X \rightarrow S$ be a blowing down of $E$ on $X$. Assume that $B$ is a reduced connected divisor with $\mu_{*}(B) \neq 0$ and $T_{i}$ is connected for any $i$. We put $D:=B+T_{0}+\cdots+$ $T_{n-1}$ and $D_{S}=\mu_{*}(D)$. Then $K_{X} D \geq K_{S} D_{S}$.

Proof. Let $B_{0}^{\prime}:=\mu_{*}\left(B_{0}\right) \neq 0$ and $T_{i}^{\prime}:=\mu_{*}\left(T_{i}\right)$ for $i=0, \ldots, n-1$.
Claim 2.7.1. $B_{i}=\mu^{*}\left(B_{i}^{\prime}\right)-a E$ for $a \geq 0$, where $B_{i}^{\prime}=\mu_{*}\left(B_{i}\right)$.
Proof of Claim 2.7.1. First we consider $B_{1}$.
If $T_{0}=E$, then $B_{0} T_{0} \geq 1$ because $g\left(T_{0}\right)+B_{0} T_{0}-1 \geq 0$. Hence we get that $B_{0}=\mu^{*}\left(B_{0}^{\prime}\right)-a E$ for $a \geq 1$. Therefore $B_{1}=B_{0}+T_{0}=\mu^{*}\left(B_{0}^{\prime}\right)-(a-1) E$ for $a-1 \geq 0$. Hence $K_{X} B_{1} \geq K_{S} B_{1}^{\prime}=K_{S} B_{0}^{\prime}$, where $B_{1}^{\prime}=\mu_{*}\left(B_{1}\right)$. (We remark that in this case $B_{1}^{\prime}=\mu_{*}\left(B_{1}\right)=B_{0}^{\prime}$.)

If $T_{0} \neq E$, then $T_{0}=\mu^{*}\left(T_{0}^{\prime}\right)-b E$ for $b \geq 0$ because $T_{0}$ is reduced and connected. Since $B_{0}$ is reduced and connected, we get that $B_{0}=\mu^{*}\left(B_{0}^{\prime}\right)-a E$ for $a \geq 0$. Hence $B_{1}=B_{0}+T_{0}=\mu^{*}\left(B_{0}^{\prime}+T_{0}^{\prime}\right)-(a+b) E$ for $a+b \geq 0$.

For $i=k$, we assume that $B_{k}=\mu^{*}\left(B_{k}^{\prime}\right)-a_{k} E$ for $a_{k} \geq 0$. We consider the case in which $i=k+1$.

If $T_{k}=E$, then $B_{k} E \geq 1$ because $g\left(T_{k}\right)+B_{k} T_{k-1}-1 \geq 0$. Hence $B_{k}=$ $\mu^{*}\left(B_{k}^{\prime}\right)-a E$ for $a \geq 1$. Since $T_{k}=E$, we get that $B_{k+1}=B_{k}+T_{k}=\mu^{*}\left(B_{k}^{\prime}\right)-$ $(a-1) E$ for $a-1 \geq 0$.

If $T_{k} \neq E$, then $T_{k}=\mu^{*}\left(T_{k}^{\prime}\right)-c E$ for $c \geq 0$ because $T_{k}$ is reduced and connected. Furthermore by assumption $B_{k}=\mu^{*}\left(B_{k}^{\prime}\right)-a_{k} E$ for $a_{k} \geq 0$. Hence

$$
\begin{aligned}
B_{k+1}=B_{k}+T_{k} & =\mu^{*}\left(B_{k}^{\prime}+T_{k}^{\prime}\right)-\left(a_{k}+c\right) E \\
& =\mu^{*}\left(B_{k+1}^{\prime}\right)-\left(a_{k+1}\right) E
\end{aligned}
$$

for $a_{k+1} \geq 0$. Therefore this completes the proof of Claim 2.7.1.
By this claim, we get that $D=\mu^{*}\left(D_{S}\right)-d E$ for $d \geq 0$. Therefore $K_{X} D \geq K_{S} D_{S}$.

Proposition 2.8. Let $X$ and $S$ be smooth projective surfaces, $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ a generalized composite series with respect to $B$ on $X$. Assume that $B$ is a reduced, connected, and effective divisor and $T_{i}$ is connected for any $i$. Let $\mu: X \rightarrow S$ be a blowing down of a (-1)-curve E. Let $B^{\prime}=\mu_{*}(B)$ and $T_{i}^{\prime}=\mu_{*}\left(T_{i}\right)$, and assume that $T_{i}^{\prime} \neq 0$ for some $i$ and $B^{\prime} \neq 0$. Then there exists a sequence of natural numbers $t_{0}, \ldots, t_{l}$ with $0 \leq t_{0}<\cdots<t_{l} \leq n-1$ such that $\left(B^{\prime} ; T_{t_{0}}^{\prime}, \ldots, T_{t_{1}}^{\prime}\right)$ is a generalized composite series with respect to $B^{\prime}$.

Proof. Let $X$ and $S$ be smooth projective surfaces and let ( $B ; T_{0}, \ldots, T_{n-1}$ ) be a generalized composite series with respect to $B$. Let $\mu: X \rightarrow S$ be a blowing down of a $(-1)$-curve $E$. Recall $B_{i}=B_{i-1}+T_{i-1}$ and $B_{0}:=B$. We put $B_{i}^{\prime}:=\mu_{*}\left(B_{i}\right)$. Then $D_{S}:=B_{n}^{\prime} \geq B_{n-1}^{\prime} \geq \cdots \geq B_{1}^{\prime} \geq B_{0}^{\prime}$.

By reindexing we may assume that $B_{k+1}^{\prime} \neq B_{k}^{\prime}$ for any $k$. Then $\mu_{*}\left(T_{k}\right) \neq 0$, and $T_{k}=\mu^{*}\left(T_{k}^{\prime}\right)-a_{k} E$ for $a_{k} \geq 0$. By Claim 2.7.1 we get that $B_{k}=$ $\mu^{*}\left(B_{k}^{\prime}\right)-b_{k} E$ with $b_{k} \geq 0$. Hence in this case

$$
g\left(T_{k}\right)+B_{k} T_{k}-1=g\left(T_{k}^{\prime}\right)-\frac{a_{k}^{2}-a_{k}}{2}+B_{k}^{\prime} T_{k}^{\prime}-a_{k} b_{k}-1 .
$$

Therefore

$$
\begin{aligned}
g\left(T_{k}^{\prime}\right)+B_{k}^{\prime} T_{k}^{\prime}-1 & =g\left(T_{k}\right)+B_{k} T_{k}-1+\frac{a_{k}^{2}-a_{k}}{2}+a_{k} b_{k} \\
& \geq 0
\end{aligned}
$$

This completes the proof of Proposition 2.8.
Corollary 2.9. Let $X$ be a smooth projective surface with $\kappa(X) \geq 0$ and let $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ be a generalized composite series with respect to $B$. Assume that $B$ is a reduced CNNS-divisor with $h^{0}(B) \geq 2$, and $T_{i}$ is connected for any $i$. Then $K_{X} D \geq 2 q(X)-4$ for $D=B+T_{0}+\cdots+T_{n-1}$.

Proof. Let $\mu: X \rightarrow S$ be a minimalization of $X$. Let $D_{S}:=\mu_{*}(D)$ and $B_{S}:=\mu_{*}(B)$. By Proposition $2.7 K_{X} D \geq K_{S} D_{S}$. By Lemma 2.5 and Proposition 2.8 we have $K_{S} D_{S} \geq K_{S} B_{S}$. By Claim 2.7.1 we get that $B_{S}$ is a CNNSdivisor. Since $h^{0}\left(B_{S}\right) \geq h^{0}(B) \geq 2$, we obtain that $K_{S} B_{S} \geq 2 q(S)-4=$ $2 q(X)-4$ by Theorem 1.2. Therefore we get the assertion.

Next we consider a vanishing theorem.
TheOrem 2.10. Let $X$ be a smooth projective surface and let $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ be a generalized composite series with respect to $B$. We put $T_{i}=\sum_{k=1}^{r_{i}} T_{i, k}$ for $i=0, \ldots, n-1$, where $T_{i, k}$ is an irreducible and reduced divisor on $X$, and $r_{i}$ is the number of irreducible components of $T_{i}$. We put $B_{0}:=B$ and $B_{i}:=B_{i-1}+T_{i-1}$ for $i=1, \ldots, n$. Assume that the following hold.
(1) $B$ is a reduced CNNS-divisor on $X$.
(2) $B_{i} T_{i, k}>0$ for any integers $i$ and $k$ with $0 \leq i \leq n-1$ and $1 \leq k \leq r_{i}$.

Then $h^{1}\left(K_{X}+D\right)=0$ for $D=B+T_{0}+\cdots+T_{n-1}$.
Proof. We put $B_{i, 0}:=B_{i}$ and $B_{i, k}:=B_{i, k-1}+T_{i, k}$ for $1 \leq k \leq r_{i}$. Here we note that $B_{i, r_{i}}=B_{i+1,0}$.

We consider the following exact sequence:

$$
\left.0 \rightarrow \mathcal{O}\left(K_{X}+B_{i, k-1}\right) \rightarrow \mathcal{O}\left(K_{X}+B_{i, k-1}+T_{i, k}\right) \rightarrow \omega_{T_{i, k}} \otimes \mathcal{O}\left(B_{i, k-1}\right)\right|_{T_{i, k}} \rightarrow 0
$$

where $\omega_{T_{i, k}}$ is the dualizing sheaf of $T_{i, k}$. Then we get that

$$
H^{1}\left(K_{X}+B_{i, k-1}\right) \rightarrow H^{1}\left(K_{X}+B_{i, k}\right) \rightarrow H^{1}\left(\left.\omega_{T_{i, k}} \otimes \mathcal{O}\left(B_{i, k-1}\right)\right|_{T_{i, k}}\right)
$$

We note that $T_{i, s} \neq T_{i, t}$ for $s \neq t$ because $T_{i}$ is reduced by Definition 2.1. Hence by the assumption (2) above, we get that, for $k=1, \ldots, r_{i}$,

$$
B_{i, k-1} T_{i, k}=\left(B_{i}+T_{i, 1}+\cdots+T_{i, k-1}\right) T_{i, k}>0
$$

Since $T_{i, k}$ is irreducible and reduced, we get that $h^{1}\left(\left.\omega_{T_{i, k}} \otimes \mathcal{O}\left(B_{i, k-1}\right)\right|_{T_{i, k}}\right)=$ $h^{0}\left(\left.\mathcal{O}\left(-B_{i, k-1}\right)\right|_{T_{i, k}}\right)=0$ because $\operatorname{deg}\left(\left.B_{i, k-1}\right|_{T_{i, k}}\right)=B_{i, k-1} T_{i, k}>0$. Therefore

$$
h^{1}\left(K_{X}+B_{i, k-1}\right) \geq h^{1}\left(K_{X}+B_{i, k}\right)
$$

for any integers $i$ and $k$ with $0 \leq i \leq n-1$ and $1 \leq k \leq r_{i}$.
By the assumption, $B_{0}$ is a reduced and connected effective divisor on $X$. Furthermore since $B_{0}$ is a CNNS-divisor, $H^{1}\left(\mathcal{O}_{X}\right) \rightarrow H^{1}\left(\mathcal{O}_{B_{0}}\right)$ is injective by Lemma 1.3 in [Fk1]. Hence by Lemma 1.11 and the Serre duality, we get that $h^{1}\left(K_{X}+B_{0}\right)=0$.

Therefore we get that

$$
\begin{aligned}
0 & =h^{1}\left(K_{X}+B_{0}\right) \\
& \geq h^{1}\left(K_{X}+B_{0,1}\right) \\
& \geq \cdots \\
& \geq h^{1}\left(K_{X}+B_{0, r_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =h^{1}\left(K_{X}+B_{1}\right) \\
& \geq \cdots \\
& \geq h^{1}\left(K_{X}+B_{n}\right) \\
& =h^{1}\left(K_{X}+D\right),
\end{aligned}
$$

and this completes the proof of Theorem 2.10.
By considering the above properties, it is natural to consider the following type:
( $\star \star \star$ ) Let $X$ be a smooth projective surface, and let $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ be a generalized composite series with respect to $B$. Assume that $B$ is a reduced CNNS-divisor and $T_{i}$ is connected for any $i=0, \ldots, n-1$. Here we remark that if $D=B+T_{0}+\cdots+T_{n-1}$ is a CNNS-divisor with $D_{\text {red }}=B$, then $B$ is a CNNS-divisor.

In the next section we will give some examples of $(\star \star \star)$.

## 3. Some examples

THEOREM 3.1. Let $X$ be a smooth projective surface. If $D$ is a nef and big effective $\boldsymbol{Q}$-divisor, then there exists a generalized composite series with respect to $B,\left(B ; T_{0}, \ldots, T_{n-1}\right)$ such that $\lceil D\rceil=B+T_{0}+\cdots+T_{n-1},(\lceil D\rceil)_{\mathrm{red}}=B$, and $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ satisfies $(\star \star \star)$.

Proof. Let $D$ be an effective $Q$-divisor on $X$ such that $D$ is nef and big. We put $D=\sum_{i} b_{i} D_{i}$ for $b_{i} \in \boldsymbol{Q}_{>0}$. Let

$$
e_{0}=\max _{i}\left\{\frac{\left\lceil b_{i}\right\rceil-1}{b_{i}}\right\}
$$

If $e_{0}=0$, then $\lceil D\rceil$ is a reduced divisor, and we put $B=\lceil D\rceil$ and $T_{0}=\cdots=$ $T_{n-1}=0$.

So we assume that $e_{0} \neq 0$. Then $\lceil D\rceil-\left\lceil e_{0} D\right\rceil$ is a reduced effective divisor. We put

$$
\bar{N}_{0}=\lceil D\rceil-\left\lceil e_{0} D\right\rceil, D(0):=D
$$

and we put

$$
D(1):=e_{0} D(0)
$$

In general, let

$$
D(j)=\sum_{i} b_{j, i} D_{i}
$$

and let

$$
e_{j}=\max _{i}\left\{\frac{\left\lceil b_{j, i}\right\rceil-1}{b_{j, i}}\right\}
$$

Then $\lceil D(j)\rceil-\left\lceil e_{j} D(j)\right\rceil$ is a reduced effective divisor. Let

$$
\bar{N}_{j}=\lceil D(j)\rceil-\left\lceil e_{j} D(j)\right\rceil
$$

and we put

$$
D(j+1):=e_{j} D(j) .
$$

We do this process repeatedly and we stop this process if $e_{j}=0$. And we obtain that there exist a reduced effective divisor $B$ and a sequence of reduced divisors $\bar{N}_{0}, \ldots, \bar{N}_{l}$ such that $\lceil D\rceil=B+\bar{N}_{0}+\cdots+\bar{N}_{l}$ and $(\lceil D\rceil)_{\text {red }}=B=\left\lceil e_{l} \cdots e_{0} D\right\rceil$.

Let

$$
N_{i}:=\bar{N}_{l-i},
$$

and

$$
N_{i}=\sum_{m=1}^{t_{i}} N_{i, m}
$$

be a decomposition of connected component of $N_{i}$ for $0 \leq i \leq l$, where $t_{i}$ is a positive integer. We put $B_{i}=B_{i-1}+N_{i-1}$ and $B_{0}=B$. Then by the choice of $N_{i}$, we get that $B_{i}=\left\lceil\beta_{i} D\right\rceil$ for $0 \leq i \leq l$, where $\beta_{i}=e_{l-i} \cdots e_{0}$ and $B_{l+1}=\lceil D\rceil$. Hence $h^{1}\left(K_{X}+B_{i}\right)=0$ for any integer $i$ with $0 \leq i \leq l+1$ by Theorem 1.10. On the other hand, there exists the following exact sequence for any integer $i$ with $0 \leq i \leq l$

$$
\left.0 \rightarrow \mathcal{O}\left(K_{X}+B_{i}\right) \rightarrow \mathcal{O}\left(K_{X}+B_{i+1}\right) \rightarrow \mathcal{O}\left(K_{X}+B_{i+1}\right)\right|_{N_{i}} \rightarrow 0 .
$$

Hence

$$
H^{1}\left(K_{X}+B_{i+1}\right) \rightarrow H^{1}\left(\left.\left(K_{X}+B_{i+1}\right)\right|_{N_{i}}\right) \rightarrow H^{2}\left(K_{X}+B_{i}\right)
$$

is exact. Since $h^{2}\left(K_{X}+B_{i}\right)=0$, we get that $h^{1}\left(\left.\left(K_{X}+B_{i+1}\right)\right|_{N_{i}}\right)=0$. Therefore $h^{1}\left(\left.\left(K_{X}+B_{i}+N_{i, m}\right)\right|_{N_{i, m}}\right)=0$ for any $i, m$ because $N_{i, m} \cap N_{i, m^{\prime}}=\emptyset$ for $m \neq m^{\prime}$. Furthermore

$$
\begin{equation*}
h^{1}\left(\left.\left(K_{X}+B_{i}+\sum_{m=1}^{r} N_{i, m}\right)\right|_{N_{i, r}}\right)=0 \tag{A}
\end{equation*}
$$

for any $r=1, \ldots, t_{i}$.
Claim 3.1.1.

$$
h^{1}\left(K_{X}+B_{i}+\sum_{m=1}^{r} N_{i, m}\right)=0
$$

for any $r=1, \ldots, t_{i}$.

Proof. We prove this by induction. Since $h^{1}\left(K_{X}+B_{i}\right)=0$ and $h^{1}\left(\left.\left(K_{X}+B_{i}+N_{i, 1}\right)\right|_{N_{i, 1}}\right)=0$ by (A), we get that $h^{1}\left(K_{X}+B_{i}+N_{i, 1}\right)=0$.

Assume that

$$
h^{1}\left(K_{X}+B_{i}+\sum_{m=1}^{u} N_{i, m}\right)=0
$$

for $1 \leq u<t_{i}$. By using (A) we obtain that

$$
h^{1}\left(K_{X}+B_{i}+\sum_{m=1}^{u+1} N_{i, m}\right)=0 .
$$

Hence we get the assertion of Claim 3.1.1.
Let $B_{i, 0}:=B_{i}$ and $B_{i, k}=B_{i, k-1}+N_{i, k}$ for $0 \leq i \leq l$ and $1 \leq k \leq t_{i}$, and $B_{i+1,0}=B_{i, t_{i}}$ for $0 \leq i \leq l-1$. Here we note that $B_{l, t_{l}}=\lceil D\rceil$.

Then by Claim 3.1.1 we have $h^{1}\left(K_{X}+B_{i, k}\right)=0$ for any integers $i$ and $k$ with $0 \leq i \leq l$ and $0 \leq k \leq t_{i}$. Since $h^{2}\left(K_{X}+B_{i, k}\right)=0$, we get the following by the Riemann-Roch theorem:

$$
\begin{aligned}
h^{0}\left(K_{X}+B_{i, k}\right)-h^{0}\left(K_{X}\right) & =g\left(B_{i, k}\right)-q(X) \\
& =g\left(B_{i, k-1}\right)-q(X)+g\left(N_{i, k}\right)+B_{i, k-1} N_{i, k}-1
\end{aligned}
$$

and

$$
h^{0}\left(K_{X}+B_{i, k-1}\right)-h^{0}\left(K_{X}\right)=g\left(B_{i, k-1}\right)-q(X) .
$$

Therefore

$$
h^{0}\left(K_{X}+B_{i, k}\right)-h^{0}\left(K_{X}+B_{i, k-1}\right)=g\left(N_{i, k}\right)+B_{i, k-1} N_{i, k}-1 .
$$

On the other hand $h^{0}\left(K_{X}+B_{i, k}\right)-h^{0}\left(K_{X}+B_{i, k-1}\right) \geq 0$ by construction. Hence $g\left(N_{i, k}\right)+B_{i, k-1} N_{i, k}-1 \geq 0$.

Therefore ( $B ; N_{0,1}, \ldots, N_{0, t_{0}}, N_{1,1}, \ldots, N_{1, t_{1}}, \ldots, N_{l, 1}, \ldots, N_{l, t_{1}}$ ) is a generalized composite series with respect to $B$ which satisfies $(* * *)$. This completes the proof of Theorem 3.1.

By Proposition 1.5 and the definition of an $s$-connected effective divisor, we can also prove the following result.

Proposition 3.2. Let $X$ be a smooth projective surface. If $D$ is an $s$ connected effective divisor, then there exists a generalized composite series with respect to $B_{0},\left(B_{0} ; T_{0}, \ldots, T_{n-1}\right)$ such that $D=B_{0}+T_{0}+\cdots+T_{n-1}, D_{\mathrm{red}}=B_{0}$, and $T_{i}$ is irreducible for any $i$.

Proof. Assume that $D$ is $s$-connected. We put $D=\sum_{i} b_{i} D_{i}$. Let $B_{0}=D_{\text {red }}$. Assume that $D \neq D_{\text {red }}$. We put $B_{0}^{\prime}=D-B_{0}$. Then by Proposition
1.5 there exists an irreducible component $C_{0}^{\prime}$ of $B_{0}^{\prime}$ such that $B_{0} C_{0}^{\prime}>0$. We put $B_{1}=B_{0}+C_{0}^{\prime}$. If $D=B_{1}$, then this is stop. If $D \neq B_{1}$, then we put $B_{1}^{\prime}=D-B_{1}$. Then by Proposition 1.5 there exists an irreducible component $C_{1}^{\prime}$ of $B_{1}^{\prime}$ such that $B_{1} C_{1}^{\prime}>0$. We put $B_{2}=B_{1}+C_{1}^{\prime}$. For any $i$, if $D=B_{i}$, then this is stop. If $D \neq B_{i}$, then we put $B_{i}^{\prime}=D-B_{i}$. Then by Proposition 1.5 there exists an irreducible component $C_{i}^{\prime}$ of $B_{i}^{\prime}$ such that $B_{i} C_{i}^{\prime}>0$. We put $B_{i+1}=B_{i}+C_{i}^{\prime}$. We do this process repeatedly. So we get a generalized composite series with respect to $D_{\text {red }},\left(D_{\text {red }} ; C_{0}^{\prime}, \ldots, C_{l}^{\prime}\right)$, and $D=D_{\text {red }}+$ $C_{0}^{\prime}+\cdots+C_{l}^{\prime}$. This completes the proof of Proposition 3.2.

## 4. Sectional genus of the round up of nef and big effective $Q$-divisors

Here we consider the sectional genus of the round up of effective nef and big $Q$-divisor $D$. Let $X$ be a smooth projective surface. Then $g(\lceil D\rceil) \geq q(X)$ by Theorem 3.1 and Theorem 2.4 (or Theorem 1.10). So in particular $g(\lceil D\rceil) \geq 0$. Here we will classify $(X, D)$ with $g(\lceil D\rceil)=0$.

Proposition 4.1. Let $X$ be a smooth projective surface and let $D$ be a nef and big effective $Q$-divisor on $X$. If $g(\lceil D\rceil)=0$, then there exist a smooth projective surface $S$, an effective divisor $D_{S}$, and a birational morphism $\pi: X \rightarrow S$ such that $(\lceil D\rceil)_{\text {red }}=\pi^{-1} D_{S}+\sum_{i} a_{i} C_{i}$ for nonnegative integers $a_{i}$ and smooth rational curves $C_{i}$ with $C_{i}^{2} \leq-1, g(\lceil D\rceil)=g\left(D_{S}\right)$ and one of the following holds:
(1) $\left(S, D_{S}\right) \cong\left(\boldsymbol{P}^{2}, \mathcal{O}(1)\right)$,
(2) $\left(S, D_{S}\right) \cong\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right)$,
(3) $\left(S, D_{S}\right)$ is a scroll over $\boldsymbol{P}^{1}$,
(4) $(\lceil D\rceil)_{\text {red }}=\sum C_{i}, C_{i} C_{j} \leq 1$ for any $i \neq j$, and the dual graph of this is tree, where $\pi^{-1} D_{S}$ denotes the strict transform of $D_{S}$ via $\pi$.

Proof. By Theorem 3.1, there exists a generalized composite series with respect to $B,\left(B ; T_{0}, \ldots, T_{n-1}\right)$ such that $\lceil D\rceil=B+T_{0}+\cdots+T_{n-1},(\lceil D\rceil)_{\text {red }}=B$, and $\left(B ; T_{0}, \ldots, T_{n-1}\right)$ satisfies $(\star \star \star)$. Let $B_{i}=B_{i-1}+T_{i-1}$ and $B_{0}:=B$. So we get that $g(\lceil D\rceil) \geq g\left(B_{n-1}\right) \geq \cdots \geq g\left(B_{0}\right)$. Since $g\left(B_{0}\right) \geq 0$, we get that $0=g(\lceil D\rceil)=g\left(B_{n-1}\right)=\cdots=g\left(B_{0}\right) \quad$ and $g\left(T_{i}\right)+B_{i} T_{i}-1=0$. So we study $\left(X, B_{0}\right)$ with $g\left(B_{0}\right)=0$. Here we use Theorem 1.9 for $\left(X, B_{0}\right)$. Then we get that there exist a smooth projective surface $S$, a birational morphism $\pi: X \rightarrow S$, and a reduced connected effective divisor $D_{S}$ on $S$ such that $g\left(B_{0}\right)=g\left(D_{S}\right)$ and $B_{0}=\pi^{-1} D_{S}+\sum_{i} a_{i} C_{i}$ for nonnegative integers $a_{i}$ and smooth rational curves $C_{i}$ with $C_{i}^{2} \leq-1$. Since $g\left(D_{S}\right)=g\left(B_{0}\right)=0$, we get that $\left(K_{S}+D_{S}\right) D_{S}<0$, and by Theorem 1.9 one of the following holds:
(I) $\left(S, D_{S}\right) \cong\left(\boldsymbol{P}^{2}, \mathcal{O}(1)\right)$,
(II) $\quad\left(S, D_{S}\right) \cong\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right)$,
(III) $\left(S, D_{S}\right)$ is a scroll over a smooth curve,
(IV) $D_{S}$ is a smooth rational curve.

For the first two cases we find that $g(\lceil D\rceil)=g\left(D_{S}\right)=0$.

If $\left(S, D_{S}\right)$ is a scroll over a smooth curve $C$, then $g\left(D_{S}\right)=g(C)$. Hence $g(C)=0$.

Next we study the last case. Since $g\left(D_{S}\right)=g(\lceil D\rceil)=g\left(B_{0}\right)=0$, by the proof of Theorem 1.9 we get that $(\lceil D\rceil)_{\text {red }}=\sum_{i} C_{i}$, where $C_{i}$ is a smooth rational curve with $C_{i} C_{j} \leq 1$ for any $i \neq j$ and the dual graph of $D$ is a tree.

Question 4.2. If $\kappa(X) \geq 0$, then does there exist an example of the last case?

An answer of this question is YES.
Example 4.3. Let $X$ be a smooth projective surface with $\kappa(X)=1$. Assume that $X$ is minimal. Then there exists an elliptic fibration $f: X \rightarrow C$. Furthermore we assume that $C=\boldsymbol{P}^{1}, f$ has a section $C_{0}$, and $f$ has a singular fiber of type $I_{n}^{*}, I I^{*}, I I I^{*}$, or $I V^{*}$. The dual graph of any fiber of these types is a tree. Let $F$ be one of its singular fiber. Then $C_{0}+m F$ is a nef and big effective divisor for any large $m$. For large $N>0$, we get that $D=$ $(1 / N)\left(C_{0}+m F\right)$ is a nef and big $\boldsymbol{Q}$-divisor such that $\lceil D\rceil=\left(C_{0}+m F\right)_{\text {red }}$. Then $g(\lceil D\rceil)=0$.

Example 4.4. Let $\mathscr{E}$ be a normalized vector bundle of rank 2 on $\boldsymbol{P}^{1}$ and let $p: \boldsymbol{P}(\mathscr{E}) \rightarrow \boldsymbol{P}^{1}$ be its projection. Let $C_{0}$ be a minimal section of $p$ and $F$ its fiber. (For the definition of the minimal section of $p$, see [Ha].) Let $e=-C_{0}^{2}$. Then $e \geq 0$. We put $B=3 C_{0}+(3 e+1) F$. Then $|2 B|=\left|6 C_{0}+(6 e+2) F\right|$. Since $\left|C_{0}+e F\right|$ is base point free, we get that there exist smooth divisors $D_{1}, \ldots, D_{6}$ such that $D_{i} \in\left|C_{0}+e F\right|$ for any $i=1, \ldots, 6$. Then $D_{i} D_{j}=$ $\left(C_{0}+e F\right)^{2}=e \geq 0$. Assume that $e=1$. Let $T=\bigcup_{i<j}\left(D_{i} \cap D_{j}\right)$. Then $T$ is a finite set with $T \neq \emptyset$. Let $F_{1}$ and $F_{2}$ be fibers of $p$ such that $F_{i} \cap T=\emptyset$ for $i=1,2$. On the other hand, $\left(C_{0}+F\right) C_{0}=0$. So $C_{0} \cap D_{i}=\emptyset$ for any i. Let $\left\{x_{i, j}\right\}=F_{i} \cap D_{j}$. Here we consider a double covering branched at $D_{1}+\cdots+D_{6}+F_{1}+F_{2}$. Since $T \neq \emptyset$ and $F_{i} \cap D_{j} \neq \emptyset$, in order to make a double covering between smooth projective surfaces we take the canonical resolution of the double covering. (See Section 2 in [Ho].)

Here we take the minimal even resolution of $D_{1}+\cdots+D_{6}+F_{1}+F_{2}$; $\mu: \bar{P} \rightarrow \boldsymbol{P}(\mathscr{E})$. Then $\mu^{*}\left(C_{0}+F_{i}\right)$ is composed with rational curves for $i=1,2$. Moreover, $\left(\mu^{*}\left(C_{0}+F_{i}\right)\right)_{\text {red }}$ is a simple normal crossing divisor and the dual graph of $\left(\mu^{*}\left(C_{0}+F_{i}\right)\right)_{\text {red }}$ is a tree. Then we get a double covering $\pi: X \rightarrow \bar{P}$ whose branch locus is the strict transform of $D_{1}+\cdots+D_{6}+F_{1}+F_{2}$ via $\mu$, where $X$ is a smooth projective surface. By construction we get that $\kappa(X)=2$ and $q(X)=0$. Furthermore $\pi^{*} \circ \mu^{*}\left(C_{0}+F_{i}\right)$ is nef and big, $g\left(\left(\pi^{*} \circ \mu^{*}\left(C_{0}+F_{i}\right)\right)_{\text {red }}\right)=0$, and

$$
\left\lceil\frac{1}{2} \pi^{*} \circ \mu^{*}\left(C_{0}+F_{i}\right)\right\rceil=\left(\pi^{*} \circ \mu^{*}\left(C_{0}+F_{i}\right)\right)_{\mathrm{red}}
$$

This is an example.

## References

[BPV] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3), 4, Springer-Verlag, Berlin, 1984.
[Be] A. Beauville, L'inégalité $p_{g} \geq 2 q-4$ pour les surfaces de type général, Bull. Soc. Math. France, 110 (1982), 343-346. (This is an appendix of O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France, 110 (1982), 319-346.)
[CFL] C. Ciliberto, P. Francia and M. M. Lopes, Remarks on the bicanonical map for surfaces of general type, Math. Z., 224 (1997), 137-166.
[Fk1] Y. Fukuma, On polarized surfaces $(X, L)$ with $h^{0}(L)>0, \kappa(X)=2$, and $g(L)=q(X)$, Trans. Amer. Math. Soc., 348 (1996), 4185-4197.
[Fk2] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces, Geom. Dedicata, 64 (1997), 229-251.
[Fk3] Y. Fukuma, On polarized surfaces $(X, L)$ with $h^{0}(L)>0, \kappa(X) \geq 0$ and $g(L)=q(X)+1$, Geom. Dedicata, 69 (1998), 189-206.
[Fk4] Y. Fukuma, A lower bound for $K_{X} L$ of quasi-polarized surfaces ( $X, L$ ) with non-negative Kodaira dimension, Canad. J. Math., 50 (1998), 1209-1235.
[Fk5] Y. Fukuma, On quasi-polarized surfaces of general type whose sectional genus is equal to the irregularity, Geom. Dedicata, 74 (1999), 37-47.
[Fk6] Y. Fukuma, A classification of polarized surfaces $(X, L)$ with $\kappa(X) \geq 0, \operatorname{dim} \operatorname{Bs}|L| \leq 0$, $g(L)=q(X)+m$, and $h^{0}(L)=m+1$, Kodai Math. J., 24 (2001), 285-304.
[Fk7] Y. Fukuma, Polarized surfaces $(X, L)$ with $g(L)=q(X)+m$, and $h^{0}(L) \geq m+2$, preprint.
[Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977.
[Ho] E. Horikawa, On deformations of quintic surfaces, Invent. Math., 31 (1975), 43-85.
[Ka] Y. Kawamata, A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann., 261 (1982), 43-46.
[Mi] Y. Miyaoka, On the Mumford-Ramanujam vanishing theorem on a surface, Journées de Géométrie Algébrique d'Angers (Juillet 1979)/Algebraic Geometry Angers 1979 (A. Beauville ed.), Sijthoff \& Noordhoff, Alphen aan den Rijn, 1980, 239-247.
[Sa] F. Sakai, Weil divisors on normal surfaces, Duke Math. J., 51 (1984), 877-887.
[V] E. Viehweg, Vanishing theorems, J. Reine Angew. Math., 335 (1982), 1-8.

## Department of Mathematics

Faculty of Science
Kochi University
Akebono-cho, Kochi 780-8520, Japan
e-mail: fukuma@math.kochi-u.ac.jp


[^0]:    1991 Mathematics Subject Classification: Primary 14C20, 14J99.
    Keywords and phrases: Polarized surface, CNNS-divisor, ample divisor, sectional genus, effective divisors.

