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1 Introduction

The central tenet of celestial holography [1–3] is that a scattering amplitude of n massless
particles, with momenta {pi} and helicities {si}, when recast in a basis of boost eigenstates,
can be interpreted as a correlation function of n operators with conformal weights (hi, h̄i) in
a two-dimensional celestial conformal field theory (CCFT). The four-dimensional helicity
si of particle i is the same as the two-dimensional spin si = hi−h̄i, and we use ∆i = hi+h̄i.

This dictionary implies that the OPE of two operators in CCFT is determined by the
collinear limit of the corresponding scattering amplitudes [4–6]. Specifically, the OPE is
given by

Oh1,h̄1
(z1, z̄1)Oh2,h̄2

(z2, z̄2) ∼ 1
z12

∑
p

∞∑
m=0

C(m)
p

(
h̄1, h̄2

)
z̄p+m12 ∂̄mOh1+h2−1,h̄1+h̄2+p(z2, z̄2)

(1.1)
where zij = zi−zj and the OPE coefficient C(m)

p

(
h̄1, h̄2

)
corresponding to the contribution

of an operator with weights (h1 + h2 − 1, h̄1 + h̄2 + p+m) is given by [4–6]

C(m)
p (h̄1, h̄2) = −1

2κs1,s2,−sI

1
m!B(2h̄1 + p+m, 2h̄2 + p), (1.2)

where B(a, b) is the Euler beta function and κs1,s2,−sI is the coupling constant appearing
in the bulk three-point scattering amplitude of particles with helicities s1, s2 and −sI , with
sI = s1 + s2 − p − 1. Thus there is a direct link between the bulk three-point couplings
and the celestial OPE. Restricting to tree-level and excluding massless higher spins leaves
a finite roster of bulk three-point amplitudes which could potentially contribute to the sum
in (1.1). These have been tabulated in [5].
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It was observed in [7] that the OPE of conformally soft graviton operators (those with
∆i = 2, 1, 0,−1,−2, . . . ), in the absence of higher derivative interactions in the bulk, forms
a symmetry algebra. This algebra was identified as the Kac Moody algebra of the wedge
subalgebra of w1+∞ in [8]. The inclusion of higher derivative interactions in the bulk
deforms the algebra as demonstrated in [9]. In particular, note that for a given value of
p, only the soft currents with ∆ ≥ p − 1 are modified. This implies that there is short
list of operators that can modify the subleading and subsubleading soft currents. This is
consistent with the results of [10–12]. In [9] it was also shown that the algebra of soft modes
violates the Jacobi identity unless the bulk couplings satisfy certain particular constraints
(reviewed in section 2 below). In particular, this implies that the OPE of the soft modes
is not associative for arbitrary couplings. It is natural to wonder about the implications
of celestial OPE associativity on bulk scattering amplitudes. The purpose of this paper is
to answer this question and to investigate the properties of amplitudes in theories which
have an associative celestial OPE at tree level.

The paper is organized as follows. In section 2 we briefly review the constraints ob-
tained by imposing the Jacobi identity on the algebra of soft modes [9]. We then rephrase
the question of tree-level associativity directly at the level of bulk scattering amplitudes in
section 3 and show that they yield the same constraints on the bulk couplings. In section 4
we demonstrate that these constraints lead to the vanishing of certain four-point ampli-
tudes and we work out the consequences on amplitudes of higher multiplicity. We close
with a discussion of various open questions.

2 Review of the coupling constants constraints

We begin by listing all relevant three-point amplitudes and briefly reviewing the constraints
among their couplings found in [9]. The most generic scenario involves a graviton, gluons
and scalars. However, there are subsets of these particles which yield an associative OPE.

The first subset is the graviton-scalar sector, where we consider the usual Einstein-
Hilbert term with coupling proportional to κ−2,2,2, an R3 interaction proportional to κ2,2,2,
an R2φ interaction proportional to κ0,2,2 and an Rφ2 interaction proportional to κ0,0,2. To
be more precise, we specify this sector by the anti-holomorphic1 three-point amplitudes

2++

3−−

1++

κ−2,2,2 = κ−2,2,2
[12]6

[23]2[13]2

2++

3++

1++

κ2,2,2 = κ2,2,2[12]2[23]2[13]2

2++

3φ

1++

κ0,2,2 = κ0,2,2[12]4

2φ

3φ

1++

κ0,0,2 = κ0,0,2
[12]2[13]2

[23]2 (2.1)

1We call A(1s1 , 2s2 , 3s3 ) anti-holomorphic if s1 + s2 + s3 > 0 and holomorphic if s1 + s2 + s3 < 0;
see (A.11).
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together with their holomorphic parity conjugates. Note that in this paper we don’t equate
the coupling constants of the parity conjugate amplitudes with those of the original ampli-
tude. Namely we regard κs1,s2,s3 6= κ−s1,−s2,−s3 in general. The OPE of conformally soft
operators satisfies the Jacobi identity only if the couplings are related by

(κ−2,2,2 − κ0,0,2)κ0,2,2 = 0 , (κ−2,2,2 − κ0,0,2)κ0,0,2 = 0 , (2.2)
3κ2

0,2,2 = 10κ−2,2,2 κ2,2,2 . (2.3)

In particular, note that the presence of a scalar is required if the R3 interaction has a non-
zero coefficient. The equivalence principle requires κ−2,2,2 = κ0,0,2, which automatically
ensures (2.2), but (2.3) is more nontrivial.

The second subset is the gluon-scalar sector defined by the three-point amplitudes

2b,+

3c,−

1a,+

κ−1,1,1 = ifabcκ−1,1,1
[12]3

[23][31]

2+,b

3+,c

1+,a

κ1,1,1 = ifabcκ1,1,1[12][23][31]

2+,b

3φ

1+,a

κ0,1,1 =
√

2
Nc
δabκ0,1,1[12]2

2+,b

3φ,c

1+,a

κ0,1,1 = dabcκ0,1,1[12]2 (2.4)

2φ,b

3φ,c

1+,a

κ0,0,1 = ifabcκ0,0,1
[12][31]

[23]

and their parity conjugates. Here fabc are the structure constants of the gauge group and
dabc = 2Tr[{T a, T b}T c]. Note that we have introduced two separate scalar fields—one
adjoint and one singlet. In a general theory, the κ0,1,1 coupling of the former could be
considered independent of that of the latter. However, imposing the Jacobi identity on the
OPE of soft modes requires the precise relative normalization already indicated in the two
figures in the middle row above, and additionally requires

(κ−1,1,1 − κ0,0,1)κ0,0,1 = 0 , (κ−1,1,1 − κ0,0,1)κ0,1,1 = 0 , (2.5)
κ2

0,1,1 = 2κ−1,1,1 κ1,1,1 . (2.6)

The constraints (2.5) are automatically satisfied when we impose κ−1,1,1 = κ0,0,1 as re-
quired by gauge invariance (at the level of a Lagrangian this identity follows when the
kinetic term is written as (Dφ)2 where D is the gauge covariant derivative). However, the
constraint (2.6) is novel.
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Finally, we can couple the two sectors by introducing additional three-point amplitudes

2−,b

3++

1+,a

κ−1,1,2 =
√

2
Nc
δabκ−1,1,2

[13]4

[12]2

2+,b

3++

1+,a

κ1,1,2 =
√

2
Nc
δabκ1,1,2[13]2[23]2

(2.7)
and their parity conjugates. In addition to the constraints in (2.2), (2.3), (2.5), and (2.6),
the celestial Jacobi identity also requires

(κ−2,2,2 − κ−1,1,2)κ−1,1,2 = 0 , (κ−2,2,2 − κ−1,1,2)κ1,1,2 = 0 , (2.8)
κ−1,1,2 κ1,1,2 = κ0,2,2 κ0,1,1 , (κ0,0,2 − κ−1,1,2)κ0,1,1 = 0 , (2.9)
κ−1,1,2 κ1,1,1 = 3κ1,1,2 κ−1,1,1 . (2.10)

Note that all of the constraints presented above are consistent with dimensional analysis
since κs1,s2,s3 has mass dimension 1− |s1 + s2 + s3|.

3 Tree-level OPE associativity from amplitudes

The standard way to check OPE associativity is to introduce a mode expansion of the
participating operators and then compute their commutators using the OPE. If the OPE
is associative, the commutator of these modes must satisfy the Jacobi identity. In the
context of CCFT, the bulk interpretation of this procedure is opaque. Our goal in this
paper is not just to check OPE associativity, but also to interpret the condition directly at
the level of momentum space scattering amplitudes. To derive a more direct check of OPE
associativity consider the following identity involving contour integrals:2∮

|z13|=2

dz1

∮
|z23|=1

dz2
〈
O∆1,s1(z1, z̄1) . . .O∆n,sn(zn, z̄n)

〉
=

=
∮

|z23|=2

dz2

∮
|z13|=1

dz1
〈
O∆1,s1(z1, z̄1) . . .O∆n,sn(zn, z̄n)

〉
+

∮
|z23|=2

dz2

∮
|z12|=1

dz1
〈
O∆1,s1(z1, z̄1) . . .O∆n,sn(zn, z̄n)

〉
.

(3.1)

This is valid as long as all of the (∆i, si) are such that the correlation functions are single-
valued functions of zi. Practically, we evaluate these integrals using the OPE. Thus the
identity serves as a check on the OPE associativity. We can write this in a condensed form as[

Res
2→3

Res
1→2
− Res

1→3
Res
2→3

+ Res
2→3

Res
1→3

] 〈
O∆1,s1(z1, z̄1) . . .O∆n,sn(zn, z̄n)

〉
= 0 . (3.2)

2A similar analysis of the associativity of the one-loop OPE in self-dual Yang-Mills was performed in [13].
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The correlator in (3.2) is nothing but the Mellin transform of the amplitude. If we param-
eterize the momenta of outgoing massless external particles as

pµi ∼ λiλ̃i with λi =
√

2ωi

(
1
zi

)
and λ̃i =

√
2ωi

(
1
z̄i

)
, (3.3)

the transformation from momentum to boost eigenstates is implemented via the Mellin
transform

〈
O∆1,s1 (z1,z̄1)...O∆n,sn (zn,z̄n)

〉
=
∫ n∏
i=1

dωi
ω1−∆i
i

An
({
λ1,λ̃1

}s1
,
{
λ2,λ̃2

}s2
,...,

{
λn,λ̃n

}sn
)
.

(3.4)
Demanding[

Res
2→3

Res
1→2
− Res

1→3
Res
2→3

+ Res
2→3

Res
1→3

]
An

({
λ1, λ̃1

}s1
,
{
λ2, λ̃2

}s2
, . . . ,

{
λn, λ̃n

}sn
)

= 0 (3.5)

ensures that the same is true of the correlator. The upshot is that we can check associa-
tivity of the celestial OPE by evaluating double residues directly on the amplitude rather
than dealing with the celestial correlators.

The first step is to isolate the collinear limits. Bearing in mind that we will later be
interested in examining the effects of (3.5) on amplitudes with various higher derivative
corrections, we will analyze the collinear limit using the all-line shift recursion relations [14,
15], reviewed briefly in appendix A. We begin by using (A.10) to isolate the collinear channel
as the momentum of particle one approaches that of particle two

An
({
λ1, λ̃1

}s1
,
{
λ2, λ̃2

}s2
, . . . ,

{
λn, λ̃n

}sn
)

(3.6)

=
∑
sI

Â3

({
λ̂1, λ̃1

}s1
,
{
λ̂2, λ̃2

}s2
,
{
λ̂I ,

ˆ̃λI
}−sI

) 1
〈12〉 [12]Ân−1

({
λ̂I ,

ˆ̃λI
}sI

, . . . ,
{
λ̂n, λ̃n

}sn
)

+{other channels} .

In terms of these, the residue is

Res
z1→z2

An =
∑
sI

A3
(
λ̃s1

1 , λ̃
s2
2 , λ̃

−sI
I

) 1
2√ω1ω2 [12]An−1

({
λI , λ̃I

}sI
, . . . ,

{
λn, λ̃n

}sn
)

(3.7)

where, on the right-hand side, in the limit z12 = 0 we have

λ1 =
√

ω1
ω1 + ω2

λI , λ2 =
√

ω2
ω1 + ω2

λI , λ̃I =
√

ω1
ω1 + ω2

λ̃1 +
√

ω2
ω1 + ω2

λ̃2 . (3.8)

In arriving at (3.7), we have made use of the fact that only anti-holomorphic three-point
amplitudes contribute to the collinear limit (see appendix A) and that the terms from other
channels drop out in this limit. Furthermore, the subamplitude An−1 now depends only
on the unshifted momenta as the deformation parameter α vanishes in the collinear limit
(see (A.7)). Applying this formula a second time, to compute the double residue, therefore

– 5 –
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translates (3.5) into

∑
sI1

[ 1
z̄12z̄I13

1
ω1 + ω2

A3
(
λ̃s1

1 , λ̃
s2
2 , λ̃

−sI1
I1

)
A3
(
λ̃
sI1
I1
, λ̃s3

3 , λ̃
−sI2
I2

)
+ 1
z̄23z̄I11

1
ω2 + ω3

A3
(
λ̃s2

2 , λ̃
s3
3 , λ̃

−sI1
I1

)
A3
(
λ̃
sI1
I1
, λ̃s1

1 , λ̃
−sI2
I2

)
(3.9)

+ 1
z̄31z̄I12

1
ω1 + ω3

A3
(
λ̃s3

3 , λ̃
s1
1 , λ̃

−sI1
I1

)
A3
(
λ̃
sI1
I1
, λ̃s2

2 , λ̃
−sI2
I2

)]
= 0

with z̄I1 = ω1z̄1+ω2z̄2
ω1+ω2

. (We emphasize that this equation must hold for arbitrary sI2 .)
Using the three-point amplitudes defined in the previous section, it is now a straight-
forward (if slightly tedious) exercise to show that (3.9) is true only when the con-
straints (2.2), (2.3), (2.5), (2.6) and (2.8)–(2.10) are satisfied.

4 Amplitudes in EFTs with celestial dual

In this section, we will examine the properties of amplitudes in effective theories that
satisfy (3.9) or equivalently, the constraints reviewed in section 2.

4.1 Four-point amplitudes in the graviton-scalar sector

We start with amplitudes involving external gravitons, which were computed in [16, 17].
The amplitude involving four positive helicity gravitons is3

A4
(
1++,2++,3++,4++)= ±± ∓∓

2++ 3++

1++ 4++

+
φ φ

2++ 3++

1++ 4++

+ (cyclic of 1,2,3) (4.1)

where (cyclic of 1,2,3) refers to the diagrams obtained by making the stated replacements.
Evaluating the diagrams results in

A4
(
1++,2++,3++,4++

)
=κ−2,2,2κ2,2,2

(
[12]5[34]2

〈12〉
〈1X〉2〈2X〉2

〈3X〉2〈4X〉2 + [34]5[12]2

〈34〉
〈3X〉2〈4X〉2

〈1X〉2〈2X〉2

)

+κ2
0,2,2

[12]4[34]4

s12
+ (cyclic of 1,2,3)

=
(
10κ−2,2,2κ2,2,2−3κ2

0,2,2

)
s12s13s23

[12][23][34][41]
〈12〉〈23〉〈34〉〈41〉 (4.2)

= 0

where we used sij = 〈ij〉 [ij]. In the last line, we have imposed the constraint in (2.3) to
conclude that the amplitude vanishes.

3We will omit explicitly displaying the dependence of the amplitude on λ, λ̃ for brevity and only display
the helicities.
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The remaining four-graviton amplitudes A
(
1++, 2++, 3++, 4−−

)
,

A
(
1++, 2−−, 3−−, 4++), and their parity conjugates are not all-line shift constructible

since they violate the condition (A.5). Instead, they were computed in [16–18]:

A
(
1++, 2++, 3++, 4−−

)
= κ2,2,2κ−2,−2,2(〈14〉[13]〈34〉)2 [12][23][31]

〈12〉〈23〉〈31〉 ,

A
(
1++, 2−−, 3−−, 4++

)
= (〈23〉 [14])4

s14

(
κ2

2,2,2s12 s13 − κ2
2,2,0 + κ2

2,2,−2
1

s12 s13

)
,

(4.3)

and we note that these amplitudes are non-vanishing, even on the support of the associa-
tivity constraints.

Moving on to amplitudes involving external scalars in addition to gravitons, the only
amplitude that is all-line shift constructible is

A4
(
1++,2++,3++,4φ

)
=

−− ++
2++ 3++

1++ 4φ

+
φ φ

2++ 3++

1++ 4φ

+ (cyclic of 1,2,3)

=κ−2,2,2κ2,2,0
[12] [34]4

〈12〉
〈4X〉4

〈1X〉2 〈2X〉2
+κ2,2,0κ0,0,2

[12]3 [34]2

〈12〉
〈4X〉2

〈3X〉2
(4.4)

+ (cyclic of 1,2,3)
= 0

and it vanishes on the support of the constraints (2.2).

4.2 Four-point amplitudes in the gluon-scalar sector

The situation in the gluon-scalar sector is similar: the constraints lead to the vanishing
of all-line shift constructible amplitudes. In this sector the only all-line shift constructible
all-gluon amplitude is

A4
(
1+,a1 ,2+,a2 ,3+,a3 ,4+,a4

)
=

∓ ±
2+,a2 3+,a3

1+,a1 4+,a4

(4.5)

+
φb φb

2+,a2 3+,a3

1+,a1 4+,a4

+
φ φ

2+,a2 3+,a3

1+,a1 4+,a4

+ (cyclic of 1,2,3)

– 7 –
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A straightforward calculation yields

A4
(
1+,a1 , 2+,a2 , 3+,a3 , 4+,a4

)
= −fa1a2ef ea3a4 κ−1,1,1κ1,1,1

(
[12]2[34]
〈12〉

〈1X〉〈2X〉
〈3X〉〈4X〉 + [34]2[12]

〈34〉
〈3X〉〈4X〉
〈1X〉〈2X〉

)

+
2κ2

0,1,1
Nc

(
δa1a2δa3a4 [12]2[34]2

〈12〉 [12]

)
+ κ2

0,1,1

(
da1a2bda3a4b [12]2[34]2

〈12〉 [12]

)
+ (cyclic of 1,2,3)

=
(
4κ−1,1,1κ1,1,1 − 2κ2

0,1,1

) [13][24]2

〈13〉 Tr[T a1T a2T a3T a4 ] + (permutation of 1,2,3) . (4.6)

Here we used properties of fabc and dabc, and in the last line the constraint κ2
0,1,1 =

2κ−1,1,1κ1,1,1 from (2.6) to find that this amplitude vanishes as well. The remaining four-
gluon amplitudes are not all-line shift constructible and are non-vanishing for generic cou-
plings, even when all the constraints from section 2 are imposed.

We also find that the four-point amplitude involving three positive helicity gluons
and one scalar (either the adjoint or singlet) is vanishing. For the adjoint scalar, the full
amplitude reads (here we omit on each line “+ cyclic(1,2,3)”)

A4
(
1+,a1 ,2+,a2 ,3+,a3 ,4φ,a4

)

=
− +

2+,a2 3+,a3

1+,a1 4φ,a4

+
φb φb

2+,a2 3+,a3

1+,a1 4φ,a4

=ifa1a2bda3a4bκ−1,1,1κ0,1,1
[34]2

〈12〉
〈4X〉2

〈1X〉〈2X〉+id
a1a2bfa3a4bκ0,1,1κ0,0,1

[12][34]
〈12〉

〈4X〉
〈3X〉 (4.7)

=ifa1a2bda3a4bκ−1,1,1κ0,1,1
[34]2

〈12〉
〈4X〉2

〈1X〉〈2X〉+
(
ifa2a3bda1a4b−ifa3a1bda2a4b

)
κ0,1,1κ0,0,1

[12][34]
〈12〉

〈4X〉
〈3X〉

=ifa1a2bda3a4b

(
κ−1,1,1κ0,1,1

[34]2〈4X〉2

〈12〉〈1X〉〈2X〉−κ0,1,1κ0,0,1
[23][14]〈4X〉
〈23〉〈1X〉 +κ0,1,1κ0,0,1

[31][24]〈4X〉
〈31〉〈2X〉

)
=ifa1a2bda3a4b(κ−1,1,1κ0,1,1−κ0,1,1κ0,0,1) [34]2〈4X〉2

〈12〉〈1X〉〈2X〉
=0

on the support of the constraints (2.8), while the amplitude for the singlet scalar is:

A4
(
1+,a1 , 2+,a2 , 3+,a3 , 4φ

)
=

− +
2+,a2 3+,a3

1+,a1 4φ
+ (cyclic of 1,2,3)

= i

√
2
Nc
κ−1,1,1κ0,1,1f

a1a2bδa3b [34]2

〈12〉
〈4X〉2

〈1X〉〈2X〉 + (cyclic of 1,2,3) (4.8)

= i

√
2
Nc
κ−1,1,1κ0,1,1f

a1a2a3

(
[34]2〈4X〉2

〈12〉〈1X〉〈2X〉 + [14]2〈4X〉2

〈23〉〈2X〉〈3X〉 + [24]2〈4X〉2

〈31〉〈3X〉〈1X〉

)
= 0 .
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4.3 Amplitudes of arbitrary multiplicity

We can now generalize the results of the previous sections to amplitudes of arbitrary
multiplicity.

For amplitudes that are all-line shift constructible, the general statement is that all
contributions that involve purely holomorphic (or purely anti-holomorphic) vertices to am-
plitudes must vanish due to the constraints. So, in particular, if an amplitude is all-line
shift constructible and each term breaks down into only purely holomorphic or purely
anti-holomorphic three-point building blocks, then the entire amplitude must vanish.

To see this, let us start by constructing an arbitrary four-point amplitude by using
the all-line shift recursion relations to glue together two anti-holomorphic three-point
amplitudes:

A4
({
λ1, λ̃1

}s1
,
{
λ2, λ̃2

}s2
,
{
λ3, λ̃3

}s3
,
{
λ4, λ̃4

}s4)

=

2s2

1s1

P−sI
I −P sI

I

3s3

4s4

+ (cyclic of 1,2,3) (4.9)

=
∑
sI

[
A3
(
λ̃s1

1 , λ̃
s2
2 ,

ˆ̃λ−sI
I

) 1
〈12〉 [12]A3

(ˆ̃λsI
I , λ̃

s3
3 , λ̃

s4
4

)
+ (cyclic of 1,2,3)

]
.

Using momentum conservation, we can rewrite this as

[34]
〈12〉

∑
sI

[
A3
(
λ̃s1

1 , λ̃
s2
2 ,

ˆ̃λ−sI
I

) 1
[12] [34]A3

(ˆ̃λsI
I , λ̃

s3
3 , λ̃

s4
4

)
+A3

(
λ̃s1

1 , λ̃
s3
3 ,

ˆ̃λ−sI
I

) 1
[31] [24]A3

(ˆ̃λsI
I , λ̃

s2
2 , λ̃

s4
4

)
(4.10)

+A3
(
λ̃s1

1 , λ̃
s4
2 ,

ˆ̃λ−sI
I

) 1
[14] [23]A3

(ˆ̃λsI
I , λ̃

s3
3 , λ̃

s2
4

)]
,

which must hold for arbitrary s4. This is precisely the double residue condition (3.9)
on the support of four-point momentum conservation! Hence we conclude that tree-level
associativity of the celestial OPE forces any four-point amplitude constructed solely from
anti-holomorphic vertices to vanish.4

The construction of higher-point amplitudes proceeds in a similar manner. However,
unlike the four-particle case, we can encounter amplitudes that are all-line shift con-
structible but non-vanishing. This can occur because none of the non-zero four-point
amplitudes are purely anti-holomorphic or purely holomorphic, so any higher-point ampli-
tudes (when constructed via all-line shift recursion) that receive contributions from these
amplitudes will also be non-vanishing. An example is the five-point all-plus amplitude

4The apparent asymmetry between holomorphic and anti-holomorphic in our discussion arises from our
choice of using the holomorphic all-line shift in appendix A. Of course, all conclusions hold for parity con-
jugate amplitudes as well, and could be manifested by using an anti-holomorphic all-line shift instead. In
constructing higher-point amplitudes recursively, one has the freedom to independently choose the holo-
morphic or anti-holomorphic shift term-by-term and in various levels of the recursion.
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A5(1+, 2+, 3+, 4+, 5+), which is all-line shift constructible but has a term involving the
product of two non-zero amplitudes A3(1+, 2+, 3+) × A4(1−, 2+, 3+, 4+), the second of
which includes both holomorphic and anti-holomorphic vertices. However, constructible
higher-point amplitudes will be vanishing at tree level if they do not receive contributions
from any channels other than those involving only purely holomorphic or anti-holomorphic
vertices as building blocks.

5 Discussion

The constraints (2.2), (2.3), (2.5), (2.6) and (2.8)–(2.10) are incredibly restrictive. Most
apparently sensible theories fail to satisfy them. Heterotic string theory (compactified on
a torus to 4D) ostensibly fails to satisfy them due to the presence of R2φ terms and the
absence of an R3 term.5 However, the four-positive helicity graviton amplitude vanishes
in this theory as can be seen from the double copy construction [19]. This is because κ2,2,2
vanishes and the two scalars (axion and dilaton) give contributions to the left-hand side
of (2.3) that vanish when summed. While the vanishing of the four-positive helicity ampli-
tude does not guarantee associativity, it serves as an easy (particularly when the spectrum
involves multiple particles with the same helicity) but powerful check on OPE associativity.
It is intriguing to wonder about other contributions (massive particles, bound states, reso-
nances, extended objects) to the OPE of massless particles, see for e.g. [20]. If some or all
of these contributions are indeed present, this suggests that the OPE in (1.1) is incomplete
and these additional contributions might modify the analysis in this paper. Alternatively,
theories which fail to satisfy these constraints simply do not have celestial duals.

Interestingly, one other example of a theory which does satisfy the constraints is the
chiral higher-spin theory studied in [21–23]. Working in the light-cone approach, they
derived the following solution for the coupling constants after requiring Poincaré symmetry:

κs1,s2,s3 ∼
(lP )s1+s2+s3−1

Γ(s1 + s2 + s3) s1 + s2 + s3 > 0 , (5.1)

where lP is a parameter with dimension of length. One can easily check that (5.1) satisfies
all the constraints in (2.2), (2.3), (2.5), (2.6) and (2.8)–(2.10).

In light of [13, 24] it is natural to speculate about the prospect of a self-dual theory on
the support of the associativity constraints, generalizing self-dual Yang-Mills and self-dual
gravity with some higher derivative corrections. The key property of self-dual Yang-Mills
and self-dual gravity is that only the anti-holomorphic three-point vertices are nonzero,
and all higher-point amplitudes vanish at tree level. After including the higher-derivative
interactions, if we continue to keep only the anti-holomorphic three-point vertices and set
the holomorphic three-point vertices to zero, then all higher-point tree-level amplitudes
will be vanishing only when the constraints are satisfied as we have shown. We leave the
study of such possibilities for future work.

5We thank Mina Himwich for pointing this out.
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A All-line shift recursion relations

In this appendix we will review the all-line shift recursion relations following [16].
The all-line shift recursion relations are based on shifting all of the external mo-

menta. For the purpose this appendix, we treat λ, λ̃ (consequently z, z̄) as indepen-
dent complex variables. We will refer to them as holomorphic and anti-holomorphic
respectively. We denote a scattering amplitude involving n massless particles (all con-
sidered outgoing) with momenta p1 = λ1λ̃1, . . . , pn = λnλ̃n and helicities s1, . . . , sn by
An

({
λ1, λ̃1

}s1
, . . . ,

{
λn, λ̃n

}sn
)
. Consider an all-line holomorphic shift

λ̂i = λi + αwiX i = 1, . . . , n (A.1)

where X is an arbitrary reference spinor, α is the deformation parameter and the wi are
chosen to satisfy momentum conservation

n∑
i=1

wiλ̃i = 0 . (A.2)

The deformed amplitude has the following large α behavior [16]

Ân (α)→ αa as α→∞ with 2a = 4− n− c−
n∑
i=1

si , (A.3)

where c is the mass dimension of the product of couplings in the amplitude. The unde-
formed amplitude can be related to its residues at non-zero values of α via the residue
theorem

An (α = 0) =
∮
α=0

dα
α
An (α) = −

∑
j

Res
α=αj

[ 1
α
An
]
. (A.4)

In order to use the all-line shift recursion to compute amplitudes recursively, it is crucial
that there be no contribution to (A.4) from a residue at infinity. From (A.3) we see that
this will be the case as long as

4− n− c−
n∑
i=1

si < 0 . (A.5)
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When this holds, then the tree-level deformed amplitude only has simple poles which occur
when the sum of a subset of the external momenta goes on shell. The amplitude factorizes
into lower-point subamplitudes on the residue of the pole.

In the paper, our main interest lies in the collinear channel where we have

2s2

1s1

P−sI
I −P sI

I

3s3

· · ·

(A.6)

The value of α that corresponds to this channel is the one that makes the intermediate
momentum PI go on shell:

P̂ 2
I =

〈
1̂2̂
〉

[12] = 0 =⇒ α = − 〈12〉
w1 〈X2〉 − w2 〈X1〉 , (A.7)

and we can write

λ̂1 = 〈X1〉
w1 〈X2〉−w2 〈X1〉 (w1λ2−w2λ1) , λ̂2 = 〈X2〉

w1 〈X2〉−w2 〈X1〉 (w1λ2−w2λ1) , (A.8)

λ̂I =w1λ2−w2λ1 ,
ˆ̃λI = 〈X1〉 λ̃1 +〈X2〉 λ̃2

w1 〈X2〉−w2 〈X1〉 . (A.9)

We therefore have

An
({
λ1, λ̃1

}s1
,
{
λ2, λ̃2

}s2
, . . . ,

{
λn, λ̃n

}sn
)

(A.10)

=
∑
sI

Â3

({
λ̂1, λ̃1

}s1
,
{
λ̂2, λ̃2

}s2
,
{
λ̂I ,

ˆ̃λI
}−sI

) 1
〈12〉 [12]Ân−1

({
λ̂I ,

ˆ̃λI
}sI

, . . . ,
{
λ̂n, λ̃n

}sn
)

+{other channels}

The other channels may include other collinear (for e.g. 34 collinear) as well as multiparticle
poles.

The recursive computation of amplitudes is seeded by three-point amplitudes, which
are completely fixed by Lorentz invariance and little group scaling to be6

A(1s1 , 2s2 , 3s3) =
{
κs1,s2,s3 [12]s1+s2−s3 [23]s2+s3−s1 [31]s3+s1−s2 , if s1 + s2 + s3 > 0 ,
κs1,s2,s3〈12〉s3−s1−s2〈23〉s1−s2−s3〈31〉s2−s1−s3 , if s1 + s2 + s3 < 0 .

(A.11)
A crucial aspect of the holomorphic shift is that the holomorphic three-point amplitudes
vanish. This follows from the proportionality of the three holomorphic spinors λ̂1, λ̂2 and
λ̂I in (A.8), (A.9). Thus, only anti-holomorphic three-point amplitudes contribute in the
collinear limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

6In (2.4) and (2.7) we define certain κ’s with different overall normalizations compared to this standard.
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