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contains self-interactions by way of a particular type of non-linear electrodynamics. The

electrical response in these models exhibits typical features of Mott-like states: i) the low-

temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by

varying various parameters; iii) for large enough self-interaction strength, the conductivity

can even decrease with increasing doping (density of carriers) — which appears as a sharp

manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable

towards superconductivity at large enough doping. We exhibit some of the properties

of the resulting insulator-superconductor transition, which is sensitive to the momentum

dissipation rate in a specific way. These models imply a clear and generic correlation

between Mott behaviour and significant effects in the nonlinear electrical response. We

compute the nonlinear current-voltage curve in our model and find that indeed at large

voltage the conductivity is largely reduced.
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1 Mottivation

Strongly correlated materials are interesting because interactions play a very significant role

and therefore they are not easy to describe. Examples of these materials include basically

all known high-temperature superconductors, strange metals, correlated insulators, etc.

There is a vast literature on these materials and on the various techniques to describe

them, see e.g. [1–5] for reviews. It is widely accepted that one can distinguish 3 different

mechanisms that can be responsible for the nontrivial (electrical) response: electron-phonon

(e-ph), electron-disorder (e-dis), and electron-electron (e-e) interactions. Usually, Mott

insulators [6–8] refer to the materials that are dominated by the latter: charge-carrier self-

interactions. Of course, in real materials a combination of them all might be relevant, but

it is important to distinguish and understand them separately. The heuristic picture that

summarizes the Mott behaviour (sometimes referred to as Mottness) is that of an electronic

traffic jam: strong enough e-e interactions should, of course, prevent the available mobile
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charge carriers to efficiently transport charge. The purpose of this article is to use the

bottom-up version of the gauge-gravity duality as a low-energy effective model for this

type of materials.

There has been a remarkable progress recently in understanding how the gauge-gravity

duality methods can be adapted for condensed matter problems. What the holographic

models accomplish to do is to give explicit and nontrivial (i.e., interacting) yet tractable

field theories that include various operators and which can be used to model the limit of

strong-correlations and criticality. For instance, it is very well understood how to construct

gravitational models in 3+1 dimensions that behave as 2+1 CFTs with a charge current Jµ
and a stress tensor Tµν operators: these are simply Einstein-Maxwell theories in asymptot-

ically AdS spacetimes. We also know how to introduce the breaking of translations, which

is certainly a crucial ingredient for the condensed matter applications since this includes

both phonons and disorder. There are various ways to introduce translation breaking sec-

tor, but one of the most convenient ones is through a set of marginal operators OI [9–13].

In the gravity picture, these models reduce to Einstein-Maxwell-Stueckelberg theories, or

what is the same, to a certain class of Maxwell - Massive Gravity theories [14–18].

Two basic messages from these recent developments are:

i) the bottom-up version of the gauge-gravity duality provides an effective description

at low energies. This should be taken strictly in the sense of Effective Field Theo-

ries (EFTs) that are formulated directly in terms of low-energy degrees of freedom

(the Tµν , Jµ and OI operators and the excitations contained therein), which has the

advantage that it represents an efficient re-summation of all the non-trivial interac-

tions. Therefore, there is absolutely no reference to the microscopic structure of the

material. Still, the low energy observables such as the transport parameters (and

the various constraints among them) are neatly accessible in a controlled way. A big

difference with respect to standard EFTs is that instead of having an energy-gap in

the mass spectrum of excitations, one has a gap in the spectrum of scaling dimensions

of the various operators. This is the key ingredient that allows for a well-defined no-

tion of effective conformal theory which, in turn, allows to study and model strongly

coupled systems with critical or scaling behavior.

ii) interactions amongst the various sectors that participate in the CFT have a clear

counterpart in the gravity side where the dynamics unfolds in a rather standard, local

and classical field theory formulation. For instance, the e-ph and e-dis interactions

stem from a various types of interactions between the Maxwell and Stueckelberg

sectors [10, 19, 20].

In this article we will focus on modeling materials that are dominated by e-e interac-

tions with the same kind of effective holographic methods. Since the electron or charge

sector is encoded in the charge current operator Jµ, and this is incarnated holographically

in the Maxwell gauge field Aµ, introducing self-interactions in the charge sector clearly

requires to introduce self-interactions for the U(1) gauge field Aµ. The only way to intro-

duce such self-interactions while preserving gauge-invariance is that the the field strength
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Fµν = ∇µAν − ∇νAµ appears in the Lagrangian beyond quadratic level. In other words,

that the gauge-field Lagrangian in the gravity side is what is usually called Nonlinear

Electrodynamics (NED).

The main point that we are going to illustrate is that the effective holographic models

with a Nonlinear Electrodynamics (NED) of certain type: i) provide simple, tractable and

consistent models that are naturally fit to model Mott-physics; and ii) the phenomenology

of these models matches well with this interpretation. For instance, one can easily realize

a metal-insulator transition (MIT) that is clearly driven by “e-e interactions”, that is, by

the nonlinear structure of the Maxwell/charge sector. In the examples below, there is no

other dynamical ingredient (such as a non-trivial renormalization group flow at T = 0, or

a significant amount of momentum dissipation) that plays any role in the MIT, therefore

we find that these MITs are clearly driven by the e-e interactions.

We shall then consider non-linear extensions of the Maxwell theory, that is to include

nonlinear terms in the gauge field action such as

FµνF
µν + (FµνF

µν)2 + (F̃µνF
µν)2 + . . .

It is of course not necessary for our purposes to consider the most general NED theory,

but since we are certainly interested in the strong field (nonlinear) regime, then it is more

convenient to assume from the start that the Lagrangian depends on the field strength

invariants through a generic functional form. For the sake of simplicity, it will suffice to

consider the class of NED models with a Lagrangian of the form:

K
(
FµνF

µν
)

(1.1)

with K a generic function. Let us now remark a few points.

First of all, considering functions of FµνF
µν (and F̃µνF

µν) is perfectly compatible with

the EFT logic: it can be understood as a truncation of the action to all the nonlinear terms

that are of first order in derivatives, which is relevant in the regime where the fields are

strong and with small gradients. This is exactly the kind of limit where the DBI action is a

good approximation for certain higher dimensional extended objects with localized gauge

fields. Note also that, as the DBI case makes manifest, in some cases the full functional

form of K can be protected by symmetries.

Second, including higher powers of FµνF
µν is relevant even for the linear electrical

response because we are interested in black brane solutions with a nonzero charge density

(which maps to the density of mobile charge carriers). In these solutions, Fµν has a nonzero

background value and all terms in the infinite series (1.1) can therefore contribute to the

linear conductivity. Indeed, in Reissner-Nordström black brane solutions F 2 grows large

close to the horizon, so one can foresee that that gauge field nonlinearities can considerably

affect the near-horizon region (the IR properties of the charged CFT plasma such as the

DC conductivity).

Third, the choice of nonlinear model (1.1) is by far not the most general one, but we

stick to it just as a minimal model that includes self-interactions of the Maxwell/charge

sector. We exclude other high dimension operators in the bulk such as F̃µνF
µν and powers
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thereof just for simplicity; and (∇F )2 and powers thereof because they increase the order

of the equations of motion, so they have to be treated as perturbations. Similarly, we

leave out other operators involving the charge and translation breaking sector because

these would correspond to more complicated cross-interactions between charge carriers to

disorder and/or phonons.

All in all, we just take (1.1) as a minimal, consistent and effective model that allows

us to explore the effect of these charge sector nonlinearities by themselves in the transport

properties. As already emphasized, we stick to the simplest (and most challenging) class of

models that produce no mass gap (down to T = 0) and which still contain a nonzero density

of charge carriers. In the holographic models, we identify the density of charge carriers

simply as the charge density of the charged black brane solutions, ρ, since the ‘elements’

of the black brane horizon certainly carry charge and are mobile to some extent. Since in

actual materials the density of charge carriers can be controlled externally by electron- or

hole- ‘doping’, one can further identify the BB charge density ρ as the electron/hole doping.

Summary of results. Next we summarize our main results, which we divide in 4 groups.

1) Spotting Mott insulators in holographic nonlinear electrodynamics :

- We study general Nonlinear Electrodynamics (NED) models of the type (1.1) with

arbitrary kinetic function K(z) embedded in the holographic setup. We find the

NED charged, asymptotically AdS, planar Black Branes solutions to these models,

the analogues of the ‘Reissner-Nordström’ solutions for NED theories. We find the

consistency constraints on the choice of K(z) that ensure that the model is free from

instabilities or other pathologies. We then study their linear and nonlinear electric

response for the models that pass the consistency constraints.

- We identify an especially interesting and simple class of NED to study defined by a

1-parameter family of ‘benchmark’ DBI-like models, endowed with a parameter, Θ,

that encodes the strength of the nonlinearities. For the standard DBI case one has

Θ < 0, which exhibits metallic properties. We extend the analysis to the continuation

to Θ > 0 (which is ghost-free version of a DBI model with negative tension). We dub

this case iDBI since it displays insulating properties.

- Our benchmark holographic models contains then basically 4 parameters (aside from

the AdS length ℓ): i) the BB charge density ρ; ii) the graviton ‘mass’ m; iii) the

gauge self-coupling Θ and iv) the gauge-metric coupling q (that controls how much

backreaction the gauge sector gives on the metric). We find that a consistent con-

densed matter re-interpretation of these parameters is as follows. ρ (with dimensions

of charge density) corresponds to the net mobile charge-carrier density. In some ma-

terial this can be externally dialed by means of electron/hole doping, so in practice

one can identify ρ with the electron/hole doping (of course up to the offset defined

by the carrier density at zero electron/hole doping). m2 can be identified with the

momentum dissipation rate of the corresponding QFT [16]. Θ is dimensionless and

characterizes the strength of unscreened e-e interactions for the low-energy charge
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carriers. Note that in our models both signs for Θ are in principle allowed. Dif-

ferent signs for Θ lead to opposite kind of self-interaction that could be labelled as

‘attractive’ or ‘repulsive’. It is quite indirect how this effective interaction relates

to the interaction between individual carriers (electrons and/or holes). Because of

the bottom-up nature of our setup we do not have any handle on the corresponding

CFT picture and we are not able to say with certainty that the present deformation

corresponds to current-current self interactions. Non linearities change directly the

dynamics of the corresponding current operator in the IR region. The phenomenolog-

ical results presented in the paper will confirm the possible interpretation of the new

ingredient as effective e-e interactions. In real materials, e-e interactions are repulsive

but electron-hole interactions are attractive, and so both signs could be relevant to

model different types of material/carrier composition. For Mott-like insulators (dom-

inated by one-sign carriers), however, one would expects that only one sign of Θ will

manage to mimic the e-e (repulsive) interactions. Indeed, we find that the models

reproduce Mott-like behaviour only for Θ > 0. Finally (qℓ)2 from the CM perspective

controls the mixing between the current density and the momentum density as well

as perhaps the fraction of the energy density that is stored in e-e interactions. This

last identification is admittedly more speculative but also less central to our work.

- The iDBI model at the level of the background already presents quite interesting

properties. For values of the self-coupling Θ larger than a certain threshold Θ1

(Θ1 = (qℓ)2/3), the background solutions admit only up to a maximum charge den-

sity ρ⋆.
1 The value of ρ⋆ depends on the momentum relaxation rate and the self-

interaction strength. Indeed, in the simplest models below we will find (see eq. (2.14))

a linear relation between the maximal carrier density ρ⋆ and the momentum relax-

ation rate (m2)

ρ⋆ = F (Θ, qℓ) m2 (1.2)

The fact that for close to this upper bound the geometry and gauge-field configura-

tions become more and more singular will imply that the system becomes more and

more unstable. In particular, for ρ < ρ⋆ but close to the maximum ρ⋆ the solutions

are expected to develop a superconducting instability (see below).

2) Linear electrical response:

- We obtain the DC conductivity σDC in these models in terms of horizon data and

the AC conductivity σ(ω) numerically.

- The consistent models of type (1.1) can be split in two classes, metallic and insulating,

according to whether σDC at T = 0 is enhanced or reduced with respect to the

Maxwell (linear) theory. In metallic/insulating models, the slope of the the kinetic

functionK at large argument is bigger/smaller than for the Maxwell case respectively.

1For ρ > ρ⋆ the solutions have a naked singularity. We shall not address here whether or not these naked

singularities are admissible and can be given a physical interpretation along the lines of [21]. Rather, we

will focus only on the cases where the singularity is hidden by a horizon, that is, to ρ < ρ⋆.
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- We construct insulators that have very low σ and still finite ρ and no confin-

ing/hyperscaling IR dynamics. We find that this is enough to illustrate that it is

possible to implement insulating phases even in the limit of conformal behaviour and

which is clearly driven by the self-interactions of the charge sector, at least in the

context of Effective Holographic models (or bottom-up holography).

- We construct a simple zero temperature transition between the metal and insulator

regimes that occurs by dialing the non thermal parameter that characterizes the self-

coupling. Therefore, we find that this is a sharp example of a MIT that is driven by

charge sector self interactions at strictly T = 0.

- These results also exhibit that there is no lower bound on the electrical conductivity

in effective holographic models, and that charge-sector self-interactions can be a

mechanism to violate the bound that is present in the restricted class of Maxwell

(linear) models [22].

- The iDBI cases exhibit another rather interesting phenomenon. As mentioned before,

above a first threshold, Θ > Θ1 = (qℓ)2/3, an upper bound on the carrier density

appears, ρ < ρ⋆. By further increasing Θ (and for ρ < ρ⋆) a second threshold

Θ2 appears (we find Θ2 = 2Θ1) above which the DC conductivity even becomes

a decreasing function of ρ (at T = 0). We find this property to be a quite sharp

manifestation of Mott-like (electronic traffic jam) behaviour, that further confirms

our interpretation and the possibility of mimicking e-e interactions through bulk non-

linearities within the charge sector.

3) Superconductivity:

- Above the first self-interaction threshold Θ1, an upper bound on the carrier density

appears ρ < ρ⋆. Near the upper bound, the holographic gauge-field configuration

becomes more and more singular and one can expect SC instability to appear. We

study this by allowing a charged scalar condensate to be dynamical and analyzing

its possible instabilities at T = 0. We find indeed that a SC transition is generically

enhanced in the iDBI models, and that SC appears before the upper bound, at a cer-

tain ρSC < ρ⋆ in the iDBI models. This happens quite robustly and independently of

the scalar condensate properties (such as the scaling dimension of the scalar operator

in the CFT language).

- This fits well into the qualitative picture of the Hight Tc SC phase diagram, and

with the identification that the bulk charge density ρ plays the role of electron/hole

doping. This suggests also that the SC ‘dome’ in the phase diagram (see figure 1) in

the electron/hole doping axis should be placed around ρ⋆.

- This suggests that of the ‘critical doping’ ρSC where we have the SC quantum phase

transition has a fixed dependence on the strength of momentum dissipation. Since

ρSC appears necessarily because of the upper bound, one expects that the ρSC depends

on m2 in a similar way as ρ⋆, that is like in (1.2) — the critical electron/hole doping

should increase with the momentum relaxation rate.

– 6 –
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Figure 1. Sketch of the phase diagram of a strongly correlated material. Ins stands for insulating

phase, SC for superconducting phase, FL for the Fermi Liquid Metallic phase and QC for the

Quantum Critical region which has usually a Strange Metal behaviour. The red-shaded area refers

to the Insulator-Superconductor transition that takes place generically in the presently studied iDBI

models at low temperatures.

4) Nonlinear electric response:

It is clear that the main robust and generic feature of NED charged AdS black branes

is that they enjoy a large nonlinear electric response. We illustrate this by computing:

- The nonlinear charge-density vs chemical potential curve ρ−µ. The insulating iDBI

models the curve is always below the linear Maxwell and metallic DBI ones.

- The nonlinear DC conductivity, that is the nonlinear current vs voltage I-V curve

(which is equivalent to the J −E curve) in the ‘probe’ approximation. Again, in the

insulating iDBI models the curve is always below the linear Maxwell and metallic

DBI ones. The probe analysis suggests that the material can withstand a up to a

finite maximum voltage.

Previous literature on holographic models dual to Mott insulators without introducing

Nonlinear Electrodynamics in the bulk include [23–31]. The main difference between the

present work and the latter is that in our model the insulating behaviour2 is clearly only

driven by charge-carrier self interactions even in a situation where there is no hard gap and

that the analysis is performed in a full backreacted fashion (which is not available, yet, for

the probe fermions models for example).

In [35] non linear corrections to the Maxwell term in the bulk were partially discussed

(though not in connection to Mott physics) and some effects on the linear conductivity

similar to the ones we see were found.

2See [32–34] for other holographic realizations of Insulators and MITs driven via other mechanisms.
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The rest of this article is organized as follows. In section 2 we define the family

of models and background black brane solutions that we will study. We will discuss the

constraints which the kinetic function K(z) must satisfy and will define a benchmark model

that satisfies them and allows to illustrate the main features in function of some simple

parameters. In section 3 we present the main phenomenological features of these models.

These include i) the presence of MIT transitions that result from the charge-sector self

interactions, ii) the absence of any lower bounds on the conductivity,3 and iii) the presence

of significant nonlinear response. In section 4 we discuss the SC instability and the presence

of insulator-SC transitions.

In section 5 we discuss a simplified version of the model, namely the probe limit where

the fluctuations of the background metric are completely neglected but still some of the

effects of the charge sector self-interactions persist.

We conclude with some discussion in section 6 and with technical details in the ap-

pendices A, B, C.

2 Modeling e-e interactions with holography

We consider a model with 3 sectors: the metric gµν of a 3+1 dimensional spacetime, a U(1)

gauge field Aµ and a the Stueckelberg fields φI with I = 1, 2, which break translational

invariance. As discussed above, we want to discuss asymptotically AdS solutions and a

model where the gauge sector enjoys non-linear Lagrangian. A representative model that

contains self-interactions in the gauge and Stueckelberg sectors separately has an action of

the form,

S =
M2

P

2

∫

d4x
√−g

[

R− 2Λ + q2K

(

−F
2

2

)

− 2m2 V (X)

]

. (2.1)

Here, X = gµν∂µφ
I∂νφ

I , F 2 = FµνF
µν , Fµν = ∂µAν − ∂νAµ, Λ = −3/ℓ2 with ℓ is the AdS

radius and M2
P the bulk Planck mass. Both the charge and Stueckelberg sectors contain

two mass scales: q or m, which measure the backreaction of these sectors to the metric.

Additionally they have an intrinsic scale that suppresses the nonlinear terms implicit in

K(F 2) and V (X), which is implicit in the functional form of K and V .4 We discuss the

constraints on the possible forms of K(z) below. As mentioned above, this is not the most

general form of the action for neither the gauge nor the Stueckelberg sectors. Still it is

enough to illustrate our points.

Let us emphasize that there is no problem in assuming non-canonical kinetic terms

for Φ or Aµ from the Effective Field Theory point of view in the bulk, precisely because

we allow for a general kinetic function. The full form of K(z) can be protected by some

3See [22, 36–45] for interesting discussions related to the existence or not of universal bounds in the

context of momentum dissipating holography.
4We find convenient to use a normalization for Aµ such that it has dimensions of length. This relates to

the canonical normalization as Aµ
can as Aµ = (ℓ/MP )A

µ
can. In terms of Aµ

can, the gauge field Lagrangian reads

M2
P q

2K(−F 2
can/M

4
gauge), with Mgauge the gauge self-interaction scale. In the benchmark model below (2.8),

K(z) is really a function of Θz with Θ a constant that parameterizes the gauge field self-coupling. The

scale of the gauge nonlinearities is then given by M4
gauge =M2

P ℓ
−2/Θ.
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symmetry, as is the case for instance for Dirac-Born-Infeld (DBI) models. In that case the

nonlinear scale is set by the brane tension which can be parametrically smaller scale than

the Planck mass. Indeed, for the models (2.8) with Θ ≫ 1, then one can safely study the

strong field configurations with M4
P ≫ F 2

can ≫ M4
gauge. In addition, in the qℓ ≪ 1 limit,

the gravitational backreaction can be neglected — this is the ‘probe’ limit.

Let us first exhibit the form of the asymptotically Anti de-Sitter planar black brane

solutions of this model. Using coordinates {t, x, y, u} (with u parameterizing the ‘holo-

graphic’ direction) they can be obtained by the following ansatz,

ds2 =
ℓ2

u2

[

−f(u)dt2 + 1

f(u)
du2 + dx2 + dy2

]

φI = α δIi x
i

At(u) = ℓ2
∫ uh

u

E(t)
t2

dt (2.2)

where E plays the role of the local electric field in the u direction, (−FµνF
µν/2)1/2, on the

solution. The Einstein equations and the Maxwell equations then reduce to (setting ℓ = 1):

4Λ + 12 f(u) + 4m2 V (u2α2)− 2 q2K(E2)− 4u f ′(u) + 4 q2 E2K ′(E2) = 0

K ′(E(u)2) E(u) = ρ u2 (2.3)

The Einstein equation then allows to express the emblackening factor f(u) of the metric

to take the closed form,

f(u) = u3
∫ uh

u

(

− Λ

y4
− m2 V (y2α2)

y4
+
q2K(E(y)2)

2 y4
− q2 y2 ρ E(y)

y4

)

dy (2.4)

which for any given choice of K and V can be immediately worked out. The Maxwell

equation of course becomes non linear, and in the linear case K(z) = z one obtains the

usual, E(u) = ρ u2 and At = µ−ρ u. For general choices of K working out E(u) is obtained
only implicitly (and one may need to perform numerically the integral to obtain At). In

any case, we will restrict ourselves to the simplest cases where one can obtain analytic

expressions. Lastly, note that the choice K(F 2) breaks the S-Duality of the Maxwell

sector in the bulk (corresponding to particle-vortex duality of the dual CFT as in [35])

but it in principle there might be nonlinear choices of the Lagrangian that do not break it

(see e.g. [46, 47]).

2.1 Consistency constraints

Playing with a non linear charge sector we need to be careful and ensure that the system

is consistent and healthy. In order to do so we first of all impose that:

K(0) = 0 , K ′(0) = 1 . (2.5)

which essentially means that for small field strengths we recover the standard Maxwell

theory which is encoded in a linear K function K(z) = z.

– 9 –
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Non linearities in the charged sector in the form of eq.(1.1) may additionally give rise

to issues of consistency in the form of ghosty perturbations and/or gradient instabilities.

We discuss in details the possible problems appearing because of that choice in appendix A.

For the sake of clarity, we summarize here the results of the appendix A. All in all, the

minimal constraints for the model (1.1) read:

K(0) = 0 , K ′(0) = 1 , K ′(z) > 0 ,
(√
z K ′(z)

)′
> 0 (2.6)

and will be fully satisfied by the models considered throughout this paper. The last con-

dition in (2.6) arises from the absence of gradient instabilities in the scalar modes of the

gauge-field perturbations. Since the analysis of these modes is rather lengthy we restricted

it to the decoupling limit, that is, to the cases where the mixing with scalar modes in

the metric can be neglected. This corresponds to qℓ ≪ 1, but one does not expect major

differences to appear at larger values of q . These constraints are less simple to express

in full generality but translate into an upper bound on the strength of the gauge-field

nonlinearities in the sub-class of models where K ′(z) < 1, which will affect the models of

insulating type below.

Note that the form of K(z) that is on the verge of violating the last condition is
√
z.

An interesting subclass of models that is close to this behaviour is the DBI-like choice

∼
√
1 + z, where one gets close to this behaviour at large z. We will indeed concentrate on

this kind of models, which is where more dramatic effects arise and some analytic results

can be obtained.

Along with the previous constraints we remind the ones for the non linear transla-

tional symmetry breaking sector which were extracted in [10] and which take the following

structure:

V (0) = 0 V ′(0) = 1 V ′(X) > 0 , V ′(X) + X V ′′(X) > 0 .

2.2 Benchmark model

As mentioned above, we consider generic non-linear electrodynamics (NED) models where

we replace the usual Maxwell term by

− FµνF
µν

2
−→ K

(

−FµνF
µν

2

)

(2.7)

where for the sake of simplicity we assume dependence on FµνF
µν only.

One simple class of models that interpolates between K = z at small z and a generic

power at large z takes the following form

K(z) =
1

Θ p
(1 + Θ z)p − 1

Θ p
(2.8)

In the limit Θ → 0 the model (2.8) reduces to the Maxwell case (for every choice of p),

while increasing Θ in the positive and negative directions we depart consistently from it.

The choice (2.8) represents a higher order deformation of the usual Maxwell action:

K

(−F 2

2

)

= −F
2

2
+ Θ

(p− 1)

8
F 4 − Θ2 (p− 2)(p− 1)

48
F 6 + . . . (2.9)
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From this expression is clear that Θ encodes the non-linearity scale (the ‘critical field’ where

nonlinearities are important being ∝
√

|Θ|). Since this choice complies with K ′(0) = 1 and

F 2 → 0 in the UV region, then in all of our charged black brane solutions the nonlinearities

are going to be noticeable only close to the horizon.

The properties of these models differ a lot depending on the sign of p − 1 and of Θ.

For the rest of the paper we will focus our attention on the DBI-like models (with power

p = 1/2) but we will allow Θ both positive and negative. Therefore, we shall refer to these

models as

DBI −→ p = 1/2, Θ < 0

iDBI −→ p = 1/2, Θ > 0. (2.10)

and ‘iDBI’ is meant to remind that for Θ > 0 we will obtain insulating behavior. For both

signs of Θ, the constraints (2.6) are satisfied.5

Assuming the choice (2.10) the solution for the E function reads:

E(u) =
u2 ρ

√

1− u4 ρ2Θ
(2.11)

The solution satisfies E > 0 and E ′ > 0 and it is then safe from consistency issues and

therefore healthy (see appendix A). For small u (and large temperature T ), can be series

expanded as:

E(u) = ρ u2
︸︷︷︸

Maxwell Term

+Θ
ρ3 u6

2
+ O

(
u7

)
. . . (2.12)

so it is clear that near the AdS boundary (u = 0) the gauge field recovers the linear

behaviour. Also, from this equation and (2.2) it is clear that the integration constant ρ

still plays the role of the charge density.

Another feature that is obvious from (2.11) is that for Θ > 0 the solution can become

complex-valued at large enough u, that is sufficiently towards the IR. The condition on the

gravitational backreaction will then be that the complex (singular) part of the solution is

hidden by a horizon.

Let us sketch the kind of constraints that one gets. For the models (2.10), the canonical

momentum that appears in (2.3), K ′(E(u)) E(u), is a bounded quantity (in the iDBI case,

K ′ E(u) ≤ 1/
√
Θ). Since the equation of motion equates that quantity to ρ u2 then the

solution cannot extend arbitrarily into the infrared region. Therefore in the iDBI models

the singularity is not placed at u→ ∞ but instead at

u⋆ = ρ−1/2Θ−1/4

5One can see the attractive/repulsive nature of these self interactions for Θ > 0 or Θ < 0 respectively

from eq. (2.9). At low fields, the scattering of electromagnetic waves is dominated by this the quartic term,

which is proportional to Θ. Clearly, the effect of the interaction (whether the waves tend to attract or

to repel) is dictated by the sign of Θ. Therefore only one sign can correctly match with the repulsive e-e

interactions that we are trying to model. This is going to be Θ > 0, which corresponds to the ‘negative

tension’ iDBI case.
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where the solution formally becomes complex.6 Note that u⋆ is the place where K
′(u⋆) = 0,

therefore one is at the verge of violating the ghost-freeness condition. One has to require

then that this singularity is always hidden by the horizon, the most stringent constraint

arising at extremality, T = 0. The temperature of the black brane solutions in terms of the

model (with V (z) = z/2m2 so that now α plays the role of m) parameters and the horizon

location reads:

T =
6− α2 u2h −

2 q2

Θ

(

1−
√

1− ρ2 u4hΘ
)

8π uh
, (2.13)

For Θ > 0, requiring that the singularity is hidden by a horizon gives uh < u⋆, or

ρ2 u4hΘ < 1 (2.14)

That this happens all the way down to zero temperature (i.e. uh = u0, with u0 the maximum

value uh can take) then leads to 2 very distinct cases:7

• Θ < q2/3: there is no problem to satisfy uh < u⋆ at any T and ρ.

• Θ > q2/3: ρ needs to be below a certain maximum density, ρ⋆, in order that the

singularity is hidden by a horizon. At ρ⋆, one has that u⋆ = u0, so
8

ρ⋆ =
α2

√
Θ

2(3Θ− (q ℓ)2)
. (2.15)

Note that for the V (z) = z/2m2 choice α is playing exactly the role of the graviton

mass, so (2.15) corresponds precisely the perviously advertised relation between the

charge-carrier density upper bound and the density of impurities, (1.2).

All these features are summarized in figure 2. In the next section we will get back to

the characterization of the DC conductivity and the charge susceptibility in the different

regions of parameter space.

Note that this has a finite limit when the backreaction from the charge sector is small

q → 0. Therefore there is an upper bound on, ρ < α2/6
√
Θ, that applies also in the

vector probe limit. Interestingly, the maximal density of charge-carriers is basically set

by the amount of momentum dissipation (α) and the magnitude of the charge-carrier self-

interactions (Θ), once these overcome a certain threshold (Θ > q2/3). None of these fea-

tures arise in the standard DBI case, in which the ‘sign’ of the self-interactions is opposite.

The DBI case (2.10) corresponding to Θ < 0 has been analyzed in depth in the litera-

ture and it corresponds to a metallic CFT [48]; the main novelty of our work refers to the

iDBI (corresponding to Θ > 0) which gives rise to insulating CFTs.

As it is well known, the DBI case is protected by a symmetry, a non-linearly re-

alized higher-dimensional Poincare group, see e.g. [49, 50]. For this reason, the DBI

action admits a geometrical interpretation as a brane with a localized gauge field that

6Note that this situation arises only for models where K(z) ∼ z1/2 for large z.
7This defines the first threshold mentioned above as Θ1 = q2/3.
8For α = 0, the condition uh ≤ u⋆ all the way down to the extremal horizon translates into θ ≤ q2/3.
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0.0 0.2 0.4 0.6 0.8 1.0
ρ0.0

0.5

1.0

1.5

2.0

θ

α = 0

α = 0.5α = 1α = 1.5

Figure 2. Left : phase diagram in the θ-ρ plane for different α with q = 1. The different curves

are ρ⋆(Θ) (2.15) for various values of the parameter α. The allowed regions (for the solution in

order to have no naked singularities) are below the various curves. On the curves ρ = ρ⋆ and the

extremal horizon coincides with the singularity. Right : sketch of the situation rescaling ρ by α2:

the red shaded region defined the allowed parameter space.

is embedded in higher dimensional space. The brane realizes the spontaneous breaking

of the higher-dimensional Poincare group down to the 3+1 dimensional one. The ac-

tion then is fixed by this nonlinearly realized symmetry to the familiar Nambu-Goto form

∼ (q2/Θ)Det
(

gµν +
√
−ΘFµν

)

at leading order in the derivative expansion (which implies

that the action depends also on F̃µνF
µν , but we are ignoring this here). What we want

to highlight now is that the iDBI case is also protected by the same symmetry, as it is

quite obvious since the structure of the Lagrangian is the same. In the geometrical real-

ization, the Θ > 0 case represents a brane with negative tension yet with a healthy gauge

field embedded in it, which corresponds just to the continuation of (2.8) with p = 1/2 to

Θ > 0. The negative tension might raise concerns about the potential problems finding

a UV completion of this action. Some of these concerns have been rather sharply artic-

ulated previously, e.g., in [51]: EFTs with higher order operators with the ‘wrong’ sign

(such as what happens in the iDBI case) are argued to present generically super-luminal

modes and therefore to lack a Lorentz invariant UV completion. Let us note only here

that it is quite obvious that the UV completion of the low-energy effective scale-invariant

field theory that captures strongly coupled materials is inevitably non-relativistic (at least

in its first step, which must be phrased in terms of non-relativistic degrees of freedom —

atoms). Even in non-relativistic setups there can still exist bounds on signal propagation,

e.g. Lieb-Robinson bounds [78], that one has to be careful about. It is at present unclear to

us to what extent the iDBI models exhibit superluminal modes since in the first place there

are no very sharp resonances in the AC conductivity (see the appendix A for some discus-

sion). But even if there were, it is not clear either whether this is directly a problem. In

the effective holographic models the light-cone structure of the gravity dual corresponds to

an emergent light cone, which in realistic cases has a subluminal limiting velocity v much
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smaller than the speed of light (such as what similarly happens in graphene for which

v ∼ c/300). The presence of modes propagating at velocity bigger than v is not directly

an issue as long as it still remains smaller than c. Therefore, we don’t find that this is

an immediate logical obstacle that forces one to disregard the models of iDBI type. It is

clear that in case that the Lieb-Robinson velocity vLB ≪ c then one would certainly have

a stronger bound than that of no superluminality. While it seems that in some cases this

situation can arise [78], it is unclear whether or not this is a generic feature or whether it

happens in the present context. Undeniably, if this were to be the case then imposing that

no velocity exceeds Lieb-Robinson bounds would certainly be necessary, and it would likely

constrain significantly more the models. These issues therefore deserves further studies but

are outside the scope of this article.

In any case, whether or not the choice of NED Lagrangian is protected by a symmetry

(and whether or not it admits a Lorentz invariant UV completion) is a secondary issue

for our analysis, so we will just continue with a generic K and particularize for the two

models (2.10) and show the results. In the sequel, we analyze the implications of introducing

such non linearities in the context of the transport properties of the dual CFTs.

3 Electric response

3.1 Electric conductivity

The DC conductivity for this model reads:

σDC = K ′(E2(uh)) +
q2 ρ2 u2h
M2(uh)

(3.1)

where M2(uh) = m2 α2 V ′(α2 u2h). The interested reader can find the derivation of this

result in appendix B. For future reference, we will define the first term in (3.1) as the

‘probe’ conductivity (see eq. (5.2)),

σP = K ′(E2(uh)) .

For the benchmark models (2.10) along with the choice of a linear potential

V (z) = z/2m2

for the φ scalars (so that the α parameter directly encodes the momentum relaxation rate

), the DC conductivity reads:

σDC =
√

1− ρ2 u4hΘ+
2 q2 ρ2 u2h

α2
. (3.2)

From this and (2.13), one can straightforwardly obtain how σDC depends on T , ρ, etc. In

this section we focus on the iDBI models (2.10) with full backreaction, since this gives rise

to an insulating behaviour.

It is quite clear upon series expansion around ρ = 0 that there is a very dramatic

change of behaviour for (3.2) at T = 0 above a certain threshold for the self-interaction
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θ ≡ Θ/q2 bound on ρ σ0P⋆ σ0DC⋆ ∂σ0DC/∂ρ

θ < 1/3 no bound 1 > σ0P |ρ→∞ > 0 σ0DC|ρ→∞ → ∞ > 0

1/3 < θ < 2/3 ρ ≤ ρ⋆ σ0P⋆ = 0 σ0DC⋆ =
1

3 θ−1 > 1 > 0

θ = 2/3 ρ ≤ ρ⋆ σ0P⋆ = 0 σ0DC⋆ = 1 0

θ > 2/3 ρ ≤ ρ⋆ σ0P⋆ = 0 σ0DC⋆ =
1

3 θ−1 < 1 < 0

Table 1. DC electrical conductivity σDC at zero temperature for the iDBI model (θ > 0). The full

conductivity at T = 0 is bounded between 1 and σ0

DC⋆
. The ‘probe’ conductivity at T = 0 (defined

as σ0

P
= K ′|u0), is bounded between 1 and σP⋆, which is the limiting value at the maximal density

ρ = ρ⋆.

θ = 1/3-0.1

0 1 2 3 4 5 6
ρ0

1

2

3

4

5

6

σ

θ=2/3-0.1

0.2 0.4 0.6 0.8 1.0 1.2
ρ0.2

0.4

0.6

0.8

1.0

1.2

1.4

σ θ=1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ρ0.0

0.2

0.4

0.6

0.8

1.0

1.2

σ

Figure 3. Probe (5.2) (dashed) and full (3.2) (solid) DC conductivity at zero temperature in

function of the charge density ρ for the various regimes of θ ≡ Θ/q2. One can see that for θ > 2/3

(bottom-right) the DC conductivity decreases increasing the charge density and gets a minimum

value which goes to zero ∝ 1/θ.

parameter, specifically Θ > (2/3)q2.9 Above this threshold, the DC conductivity decreases

with increasing ρ (at constant T ), a feature that is very far from the Drude metal. Instead,

this is quite reminiscent of the traffic jam picture of a Mott insulator. Note that this

threshold is larger than the threshold Θ > q2/3 that imposes an upper bound on the

the charge density ρ < ρ⋆. The various different bahaviours of the electric conductivity

(at zero temperature) that one can have depending Θ are summarized in table 1 and in

figures 3 and 4.

More specifically, for non-zero α one can distinguish 4 cases:

• Θ < q2/3: there is no problem to satisfy uh < u⋆ at any T and ρ. The probe

conductivity at T = 0, σ0P , (5.2) is positive and less than 1 ( the Maxwell value in

unit of q2); the complete one at T = 0, σ0DC is positive too and getting larger and

larger than 1 increasing the charge density ρ.

• q2/3 < Θ < 2 q2/3: for θ > q2/3 there is always a maximum density, ρ⋆, such that

u⋆ = u0 and σ0P = χ0 = 0 (probe DC conductivity and charge susceptibility at zero

9This defines the second threshold mentioned above as Θ2 = 2q2/3.
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Figure 4. σ0
⋆
, the DC conductivity at T = 0 and ρ⋆, as given by (3.3) in function of Θ. For

simplicity we fix q = 1. Note this quantity exists only for Θ > q2/3.

temperature), with ρ⋆ given in (2.15). The full DC conductivity (given by (3.2)) at

this particular value of the charge density and at zero temperature reads:

σ0DC⋆ =
q2

3 θ − q2
(3.3)

and it is surprisingly independent of the parameter α. In this regime, σ0DC satisfies

∂σ0DC/∂ρ > 0 (no traffic jam). At ρ⋆, this is larger than 1, but bounded.

• Θ = 2 q2/3: at ρ⋆ we have σ0P = 0 while σ0 = 1 (in units of q2) for every ρ⋆.

• Θ ≥ 2 q2/3: at ρ⋆ we have again σ0P = 0. Now, though, there is ‘traffic jam’,

∂σ0DC/∂ρ < 0. The value of σ0DC at the maximum density ρ⋆ goes like q2/(3Θ) for

large Θ and can be therefore arbitrarily low.

We now turn to the study of the ‘optical’ AC conductivity for the iDBI model in

different setups and we will come back to the T = 0 features in the next section 3.2. For

the rest of the paper we fix q = 1 unless explicitly stated.

The first case we present is the linear metric potential case V (z) = z (the model

of [9]), which in the absence of non linear electronic interactions has metallic behaviour.

On top of this background we switch on the iDBI non-linearities in the electron sector

which results in a suppression of the DC conductivity. The results are shown in figure 5

for some representative parameters.

The iDBI case with V (z) = z already shows quite remarkable features:

• It suppresses the DC conductivity, leading to insulating behaviour at low T.

• The competition between the linear potential for the bulk phonons φ and the non lin-

ear iDBI for the electrons produces already a metal-insulator crossover upon dialing

the temperature of the geometry.

• A pinned response in the optical conductivity appears — it is entirely due to the

electron sector. For small T , we notice the appearance of a rather broad but certainly
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Figure 5. Transport properties for the backreacted iDBI (2.10) with Θ = 1 and V (z) = z and:

m2 = ρ = 1.8, α =
√
2.
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Figure 6. Transport properties for the backreacted iDBI with non linear potential V (z) = z + z5

and Θ = 1. Parameters are: m2 = 0.06, ρ = 1 , α =
√
2.

visible resonance at nonzero frequencies. This resonance becomes narrower for bigger

Θ and/or ρ closer to ρ⋆. Given the interpretation that we are proposing here as

traffic-jam-like behaviour, it is natural to interpret this resonance as an accordion

wave effect.

• Even at temperatures where the Drude peak is present it seems that also additional

features appear at higher-frequencies.

One can of course complicate the situation considering also non linear potential in the

bulk phonons sector. One interesting case is for example to take the potential of [10]. The

results for the iDBI model with non linear potential V (z) = z + z5 are shown in figure 6,

and can be summarized as:

• The DC conductivity at low temperature is considerably reduced, thus realizing a

rather good insulator (σDC(T = 0) ≪ 1) and keeping the metal-insulator crossover

already present in the model at finite T .

• The mid-infrared peak observed in [10] is still present in the optical conductivity and

it seems to be enhanced by the iDBI non linear extension, meaning that electron-

electron interactions can contribute to sharpen that resonance.
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Θ > 0
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Θ =0

0.0 0.2 0.4 0.6 0.8
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σDC

Parameter:Θ = -40Θ = -16.7Θ = -5Θ = -1Θ = 2.5Θ = 6.7Θ = 12.5Θ = 18.9

Figure 7. An example of Mott transition in our model. The Metal-Insulator Transition is obtained

dialing the Θ parameter of the model (2.8) with p = 1/2. The potential for the φ scalars is taken

to be linear V (z) = z/2m2. ρ = 0.4 and α = 3.2.

Since in this case the resonance is also present at Θ = 0, this resonance represents a

polaron [10] which, at Θ 6= 0, also includes charge-sector nonlinearities.

• The iDBI non linear interactions provide a second mild peak for larger frequencies

which was not present in [10]. It would be interesting to understand further the

nature of that peak in relation to the pinned response of real Mott Insulators.

3.2 Metal-insulator transitions

The next interesting question is: can we find out a model where the non-linearities in the

electronic sector (e-e interactions) provide a metal-insulator transition? Is there a tunable

parameter we can dial to drive a MIT? In other words, can one find a Quantum Phase

transition where the two phases (metallic and insulating) are connected dialing an external

parameter while keeping the temperature to be zero?

It is then necessary and interesting to find out a tunable parameter whose dialing can

induce such a mechanism. Taking into account that the iDBI corresponds to an insulator

while the DBI to a metal, it quite obvious that that the parameter connecting those models

in a continuous way is none other than the Θ parameter that controls the strength (and

sign) of the e-e interactions in the benchmark models (2.10). At strictly zero temperature

T = 0 we can fix the charge density ρ and the momentum dissipation rate (i.e. graviton

mass) and dialing the Θ parameter we can indeed provide in the full backreacted model

a nice metal-insulator transition which is clearly driven just by the electronic sector’s non

linearities (that is, e-e interactions) and it represents a holographic simple toy example of

the so called Mott transition. An example of this result (making use of formulas (3.2)) is

shown in figure 7.
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   θ > 0

insulator

θ < 0

metal

-20 -10 0 10 20
θ

0.5

1.0

1.5
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Figure 8. Electric DC conductivity at zero temperature obtained dialing the Θ parameter of the

model (2.8) with p = 1/2. The potential for the φ scalars is taken to be linear V (z) = z/2m2. The

left parameters are fixed to be ρ = 0.4 and α = 3.2. The minimum DC value reads ≈ 0.017. For

the full T behaviour see figure 7.

As expected, we can interpolate between the metallic and the insulating behaviour

at fixed zero temperature dialing Θ, that is, by changing the non-linear terms in the field

strength Fµν . We can indeed focus on the T ≈ 0 value of the DC and see how this goes from

a finite (i.e. σ > 1) value to a small and eventually ≈ 0 one dialing Θ. Θ = 0 corresponds

to the Maxwell case; once we start increasing the value of Θ we depart from the Maxwell

case and depending if we go towards negative or positive values we run into a metallic or

an insulating phase.

From the technical point of view the extremality condition (once fixed the amount of

charged density ρ and the graviton mass in an safe way following figure 2) fixes a maximum

value for Θ = Θ0. The DC conductivity at that value can be computed analytically from

the expression (3.2). Depending on the value of ρ and α the DC value at T = 0 (namely

at Θ = Θ0) can become arbitrarily small (but exactly zero just at ρ = ρ⋆ and Θ = ∞,

see table 1).

This certainly requires a certain tuning of parameters,10 as we did in the example of

figure 7. To make things clearer we also plot the value of the DC conductivity at zero

temperature in figure 8, with the same parameters of figure 7. This result refers to the zero

temperature limit of the DC conductivity and it is a clear fingerprint of the presence of a

MIT transition driven by the θ parameter.

Let us emphasize is that at this level, there is no direct link of the Θ parameter into

external control parameters that can be used in real condensed matter, and this question

is beyond the scope of this article. One clear statement, though, is that Θ clearly has

to do with the amount (and sign) of non-linearities in the Maxwell sector. Dialing Θ,

then, must correspond to increasing/decreasing the strength of electron self-interactions

10The notion of tuning in condensed matter is slightly different than in particle physics. Most of the High

Tc superconductors are synthetic compounds that present significant amounts of design, and therefore can

be considered as tuned systems.
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and consequently their mobility. The bottom-up approach we follow impossibilitates us to

have a direct control on the dual QFT picture. Whereas the non linearities are certainly

modifying the dynamics of the corresponding current operator Jµ, the results of the present

work are somehow confirming the euristic interpretation of such deformation as effective e-e

interactions. We expect the iDBI case to mimic some sort of strong coulomb interaction

between electrons which leads to pinning behaviour à la Mott. Definitely, it would be

illuminating to understand better its role and search for a better parameter to dial to

compare with real situations.

Let us also mention that these results also imply that same model also exhibits MITs

(at fixed Θ) by varying various other external parameters such as µ, ρ or T , at least in

some region of the parameter space (and with the conductivity decreasing in the insulating

phase to a finite but small value).

3.3 Non-linear susceptibility

From the non-linear nature of the charge sector of these models, it it clear that a very generic

property of these models is that they should display a strong nonlinear response. Let us

initiate here the analysis of the nonlinear response by studying the simplest in principle

observable, namely, the static charge susceptibility. See also [52] for similar analyses in the

holographic context.

The solution for the gauge field in the general model reads:

At(u) =

∫ uh

u

E(t)
t2

dt (3.4)

and already implements the regularity condition at the horizon. From (3.4) we can define

the chemical potential and the charge density for instance as

µ = At(0)−At(uh) , ρ = −A′
t(0) , (3.5)

which is as much as requiring the gauge field to asymptote close to the boundary to

At = µ− ρ u. For the Maxwell theory the solution reads E(u) = ρ u2 such that we recover

the usual expression µ = ρ uh. Consequently, the static charge susceptibility (at constant

entropy density s = 2π/u2h)

χE =
∂ρ

∂µ

is just equal to u−1
h . Instead, in the non-linear models (2.10) the relation between chemical

potential and charge density instead is easily seen to be given by

µ = ρ uh 2F1

(
1

4
,
1

2
;
5

4
;u4h ρ

2Θ

)

, (3.6)

where 2F1 (a, b; c; z) is the hypergeometric function. Again we see that at large temperature,

which corresponds to small uh, these theories are just a small deformation around the linear

Maxwell theory:

µ = ρ uh + Θ
ρ3 u5h
10

+O
(
u6h

)
+ . . . (3.7)
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Figure 9. Non linear susceptibility for the models (2.10) with α = 0. Left : static charge suscep-

tibility χ in function of temperature T at fixed charge density ρ = 4; Right : ρ − µ curve at fixed

uh = 0.8. Clearly, the iDBI case presents nonlinear screening (a reduction of ρ compared to the

linear extrapolation). Conversely the DBI case presents nonlinear anti-screening. Note that both

at big temperature T and small chemical potential µ the non linear models reduce to the linear

Maxwell case. Note also that for Θ = 1/3 the susceptibility χ, like the probe conductivity σ, goes

to 0 at null temperature (see also figure 3).

Figure 10. More on the susceptibility χ for the iDBI model (q is fixed to 1 everywhere). Left :

susceptibility in function of temperature for different momentum strengths α at ρ = ρ⋆ and Θ = 2.

Note as χ(0) = 0 which is indeed a generic fact at ρ = ρ⋆ and it correlates with a vanishing probe

DC conductivity. Center : ρ(µ) for Θ = 2, α = 1 and different temperatures. Note since Θ > q2/3

there is a maximum ρ and µ. Right : ρ(µ) for Θ = 0.2, α = 1 and different temperatures. Note

since Θ < q2/3 there is no maximum ρ and µ.

An example of susceptibility in function of temperature (at constant charge density) and

of the ρ − µ curve at constant entropy density is shown in figure 9 for different Θ and

zero momentum dissipation. One can see the two different effects induced by the non

linear (2.10) models are sensitive just in the range of large uh (small T ), as expected.

While the DBI model enhances the response of the charge density to a chemical potential,

the iDBI decreases it. More about this quantity is shown in figure 10 where the plots are

generalized for finite momentum dissipation and at constant temperature T.

– 21 –



J
H
E
P
1
2
(
2
0
1
6
)
1
0
7

The common feature is that at ρ = ρ⋆ (and at Θ = q2/3 for zero momentum dissipation)

the charge susceptibility χ is zero at zero temperature and this correlates with the vanishing

of the probe conductivity. As already shown in figure 2 for Θ > q2/3 there is a maximum

amount of charge density ρ⋆ (and of relative chemical potential µ⋆) which the system can

afford, while for Θ < q2/3 there is no such a bound as shown in figure 10.

4 Superconducting instability

Strongly correlated electronic systems provide for a richer and more complicated phase

diagram than the one we discussed so far. Upon varying parameters like the temperature

or the doping (mobile charge density, i.e., ρ), new phases arise — most notably a super-

conducting (SC) phase. The SC phase shows up in a dome-shape region in the T −ρ phase

diagram as sketched in figure 1 and transitions between the SC phase and the normal

phase (metallic or insulating) appear in the form of Quantum Phase transitions (at T = 0)

still affecting a wider region of the actual phase diagram which takes the name of quantum

critical region (QC).

The SC phase transition in these strongly correlated systems can be modeled using

the tool of the AdS-CFT correspondence [59, 60] (see also [61–64] for some recent progress

towards reproducing this phase diagram in the context of effective holographic theories).

Previous studies of the Insulator-Superconductor transition in holography include [29, 57].

The way to account for the SC transition in effective holographic models is by realizing

that the charged fermion bilinear OSC that can condense (and thereby break the electro-

magnetic U(1) symmetry) is a charged scalar operator. Therefore in the gravity dual one

must include that degree of freedom — a charged scalar field ψ dual to the fermion bilinear.

At the lowest order in derivatives and in powers of ψ (which is a valid approximation at

low energies and near the SC transition) the effective action in the gravity dual is

SSC = −
∫

d4x
√−g

(
|Dψ|2 + M2 |ψ|2 + . . .

)
(4.1)

with Dµψ = (∂µ − i g Aµ)ψ and g the charge of ψ.

As usual, whenever the v.e.v. of the condensate (in the ground state) is non vanishing,

〈OSC〉 6= 0, the system is in the SC phase.11 In the gravity dual, upon decreasing the

temperature T or increasing the charge density ρ one expects the system to spontaneously

develop a non trivial profile for the scalar field ψ with 〈OSC〉 6= 0 and eventually the normal

phase develops a SC instability.

In order to construct the full SC solution and phase diagram one needs to resort to

numerical methods. Still, one can use a simpler criterium to identify whether the SC

instability appears or not, relying on properties of the presumed normal phase at T = 0.

At ‘extremality’ the near-horizon geometry takes the usual form AdS2 ⊗ R2 and a robust

criterium to check the instability of the background is given by the so called BF bound

11In the gravity dual, and in the normal quantization, 〈OSC〉 is encoded in the normalizable mode of the

scalar field ψ near the UV boundary, see [59] for further details.
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violation:

M2
eff L

2
2 < −1

4
(4.2)

where L2 is the size of the AdS2 geometry at the extremal horizon u = u0 given by:

L2
2 =

2L2

f ′′(u0)u20
(4.3)

and M2
eff is the effective mass of the scalar field ψ at the horizon which can be written like:

M2
eff = M2 + g2A2

t g
tt (4.4)

The second term is negative and it can grow large at the horizon and the effective mass

Meff can go below the BF bound and produce an instability of the background towards a

new solution where the profile of the scalar ψ is not trivial (i.e. the SC phase).

Since the second term in (4.4) involves the value of the gauge field At at the horizon

the instability is very sensitive to possible non linear structure in the charge sector like

the ones introduced in the previous sections. One immediate question is therefore whether

these non-linearities enhance or obstruct the SC transition. We will restrict ourselves to

the caseM = 0, but other choices ofM do not alter much the main results. The parameter

that controls whether SC appears or not then is

ζSC = A2
t g

tt L2
2

computed at the extremal horizon u = u0, so that

ζSC < − 1

4
→ SC .

If ζSC is suppressed by the non linear effects the SC phase transition gets more difficult and

the relative critical temperature must Tc decrease (at other quantities fixed); conversely,

if ζSC is increased by the non linearities than the SC instability is favored and Tc must

increase.

It has been shown in [67] that DBI extensions of the usual Holographic Superconductor

model suppress the SC instability and decrease the critical temperature Tc. We plot the

behaviour of this quantity in figure 11.

Our computation (shown in the inset) confirms that for the DBI case θ < 0 the actual

value of ζSC is smaller than the ‘Maxwell’ Θ = 0 value, ζMSC, meaning that the SC instability

is disfavored in that case. On the contrary, for the iDBI model ζSC > ζMSC indicating that

the SC transition is facilitated by the non-linearities.

To illustrate better our results, let us introduce the critical density ρSC as the value of

ρ where ζSC = −1/4. As shown in figure 11, for Θ > 0 we find that

ρSC < ρ⋆ (4.5)

meaning that the system will develop the SC instability while the singularity is still hidden

by a horizon (at T = 0). In addition, figure 11 also shows that the near-horizon curvature
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Figure 11. SC instability. Left : the SC parameter ζSC in function of the charge density ρ for

α = 1, q = 1 at different θ. Whenever ζSC < −1/4 (colored region) the SC instability appears. The

inset shows ζSC at unitary charge density in function of θ and how iDBI enhances the SC instability.

Right : the corresponding AdS2 length (in units of AdS4 length) for the same parameters. The dots

indicate the value at which the SC instability appear for various θ. Note that in the presence of

a maximum charge density ρ⋆ the AdS2 length (but not the effective dimensionless mass squared

ζSC) vanishes exactly at the value signaling the singularity.

radius ℓ2 does not decrease too much at the SC transition (at ρ⋆, instead, ℓ2 must vanish

because that is when the singularity becomes naked). Therefore, the gravity dual does not

become especially strongly coupled at ρSC and so we can trust that this transition is going

to happen.

One also notices form figure 11 that ρSC is quite close to ρ⋆ at least for large enough Θ,

which is when the insulator is most insulating. From (2.15), we know that ρ⋆ is a growing

function of the parameter α, and this implies that in the iDBI models the insulator-SC

critical doping ρSC should also be a growing function of the momentum relaxation rate

(at least for sizeable Θ). This property seems to indeed arise in recent studies of the

phase diagram for High-Tc superconductors where diagram is extended on the momentum

relaxation rate axis [65].

In order to make more definite statements, a proper analysis is needed of the full phase

diagram for these holographic superconductor models with iDBI non linearities, and we

have to leave it for future work. In any case, the increase in ζSC seems to give a quite

generic and robust reason why this class of models should be expected to enhance perhaps

dramatically the appearance of superconductivity.

5 Decoupling limit

It is very useful to consider a decoupling or ‘probe’ limit, where the gauge field is dynamical

and non-linear but its backreaction on the metric is neglected. In this limit the dynamics

simplifies significantly and one can get easily intuition and analytic control, to the extent

that extracting the nonlinear response will also be quite easy.
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A sharp notion of this limit is to decouple the metric fluctuation so that the metric is

‘frozen’ to the black brane background. Technically, this is accomplished by taking q → 0

and MP → ∞ keeping qMP and ℓ (and m) finite. In this way one can focus on the non-

trivial dynamics stemming from the gauge sector self-coupling. For this sector q becomes

just an overall factor that does not play any role.

This analysis can actually be done for any fixed background solution so we shall con-

sider here that the emblackening factor f(u) is an arbitrary function with a simple zero

at uh. In fact, one can further distinguish various possibilities within the same decoupling

limit that allows one to simplify what contributes to the background. To fix the terminol-

ogy, we shall call the ‘probe limit I’ the limit: q → 0 and MP → ∞ with qMP , ℓ, m, µ and

ρ finite completely removes the effect of the gauge sector in the metric. In this limit, the

response must be insensitive to q. As is clear from (2.15), in this limit ρ⋆ =
α2

6
√
Θ
.

In addition, let us call ‘probe limit II’, the following one: q → 0 and MP → ∞
with µ, ρ → ∞ keeping qMP , ℓ, m, and q µ and q ρ finite so that we still decouple the

metric and gauge perturbations but keeps a finite backraction from the charge density in

the background (in f(u)). This limit has the advantage that one can then remove the

translation-breaking sector (setting the graviton mass m = 0) while the DC conductivity

continues to be finite. In this limit, the response must be insensitive to m. Indeed,

eq. (2.15) implies that there is no maximal value for ρ but there is a bound for the self-

coupling, Θ < (qℓ)2/3. From the CFT perspective, in this limit there is no momentum

density operator in the dual CFT so the DC conductivity can be finite even preserving

translational symmetry.

5.1 Linear conductivity

The equation for a probe vector on top of our geometry (with unspecified f(u)) at zero

momentum reads:
E(u)
u2

∂u

(
u2 f(u)

E(u) a′(u)

)

+
ω2

f(u)
a(u) = 0 (5.1)

In this approximation the DC conductivity is just:

σPDC = K ′(E2(uh)) (5.2)

As expected in the case of the linear theory (i.e. Maxwell), this quantity is trivially constant

and it coincides with the conformal value 1.

We want to study the model (2.10) and its transport properties; we are particularly

interested in the case iDBI cases (2.10) where the dual CFT exhibits insulating behaviour.12

The DC conductivity takes the simple form

σPDC =
√

1− ρ2 u4hΘ . (5.3)

To discuss the temperature dependence of this one needs to assume something for f(u), and

how it is affected by the chemical potential. We start considering the non linearly charged

BH geometry with zero momentum dissipation, α = 0, (probe limit II); we emphasize that

12The DBI case has been extensively studied previously — it shows purely metallic nehaviour [48].
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Figure 12. iDBI (2.10) in the probe limit with zero momentum dissipation α = 0. We fix

ρ = 1. Left : DC conductivity at zero temperature in function of Θ. Right : optical conductivity at

T = 0.003 for various values of Θ between the maximum one 1/3 to the Maxwell case Θ = 0.

in that case we necessitate Θ ≤ (qℓ)2/3 to have a well defined extremal black hole. From

now on, we set qℓ = 1. One important feature that determines the nature of the dual CFT

is the DC conductivity at zero temperature which within this easy approximation can be

computed directly and reads:

σ0DC = 1− 3Θ (5.4)

It is nice to see that there is another clear indication that the model for Θ > 1/3 is not

safe in the probe limit which is encoded in the fact that the DC conductivity becomes

negative. This formula explicitly shows how for Θ ≤ 1/3 the DC value is always less than

the linear Maxwell case, which tells us that the iDBI choice (2.10) somehow obstructs the

charge carriers’ mobility, leading to an insulating behaviour.

One also notices that in the limit where Θ is very close to the maximum value 1/3 and

the corresponding “material” is a very good insulator a peak in the optical conductivity

appears and gets sharper, see figure 12. An important point to underline is that the

optical conductivity (in the probe limit as in the rest of the paper) shows a soft-gapped

behaviour, while real Mott-Insulators are defined by an hard-gapped one.13 Within the

present holographic models it appears very difficult to produce such hard gap. To reproduce

this feature, it seems that one needs to resort to a dilaton with nontrivial running.

We then go to the ‘probe limit I’, where the background is completely dictated by the

momentum dissipation sector, α 6= 0. Doing so in order to have a well defined extremal

limit for our black hole we need to satisfy the bounds explained before and summarized in

figure 2. We emphasize that from now on, wherever not explicitly said, we are using the

choice (2.10) with Θ = 1.

13It has been recently argued that in ‘many body localized systems’ there could exist a power law

σ(ω) ∝ ωβ behaviour at low frequency with 1 < β < 2 [56]. It would be nice to check and study further

this scaling in our class of models.
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Figure 13. Models (2.10) with Θ = ±1 in the probe limit with: m2=1.8, α=
√
2, ρ=1.8, V (z)=z;

Left : iDBI, showing an insulating behaviour; Right : DBI model exhibiting a metallic behaviour.

Figure 13 shows that the non-linear extensions of Maxwell theory modify the DC

conductivity (even in the probe vector limit), which now acquires a non trivial temperature

dependence. At large temperature we recover the usual Maxwell (constant) result, as it

should because large T corresponds to small F 2 and we are considering only choices of

K(z) that go linear K(z) ≃ z + . . . at small z. The low temperature behaviour, on the

contrary, is very sensitive to the non-linearities and the particular model considered.

The iDBI (2.10) shows a strong suppresssion of the DC conductivity towards small

temperatures and eventually a vanishing DC conductivity at T = 0 can be obtained (by

dialing Θ and/or µ). This is the main reason to interpret these models as insulators. In

a sense, in the iDBI models the electronic interactions are such that the charge carriers

conductance is suppressed at small temperature. Conversely, the usual DBI model increases

the DC conductivity at small T exhibiting a typical metallic behaviour [48].

We continue with the analysis of the optical conductivity for the choice (2.10): the

results are plotted in figures 14 and 15. In all the cases the large frequency limit coincides

with the usual Maxwell conformal case (which in 2 + 1 dimensions acquires the constant

value σ∞ = 1); this is again a direct consequence of the fact that non linearities are relevant

just in the IR region of the geometry while they dont affect any UV property.

The DBI model exhibits at small temperatures a clear Drude Peak behaviour which is

characteristic of metallic materials; decreasing the temperature a smooth crossover drives

into an incoherent metallic phase where the AC conductivity is almost constant and no

dominating excitation appears. One can easily keep track of this dynamical behaviour

studying the motion of the quasinormal modes of the system with temperature as done for

a different setup in [58].

The iDBI provides for a completely different phenomenology: there is a strong sup-

pression of the conductivity at small frequencies and a spectral weight transfer to a ‘mid-

infrared’ peak. These features classify this model as an insulator. In this case the QNMs

spectrum would be more similar to the one shown in [10].

Note that in this section (5) the metric fluctuations are switched off and therefore we

lack of a stress tensor in our CFT, this is the reason why we dont see any infinite in the DC

– 27 –



J
H
E
P
1
2
(
2
0
1
6
)
1
0
7

Figure 14. AC conductivity for the DBI model (with Θ = −1) in the probe vector limit with

m2 = 1.8, α =
√
2, ρ = 1.8, V (z) = z, the DC part is plotted in figure 13. The metallic behaviour

is evident.

Figure 15. AC conductivity for the iDBI (with Θ = 1) in the probe vector limit with m2 =

1.8, α =
√
2, ρ = 1.8, V (z) = z, the DC part is plotted in figure 13. The insulating behaviour

appears clear.

conductivity and the reason why we do not need any dissipative mechanism to enter in the

game. All the properties in this section just arise from the electron-electron interactions

provided by the non-linear electromagnetic extension (although the thermodynamics, at

least in the second approximation, is also affected by the dissipative sector).

5.2 Non-linear conductivity

Let us now discuss the non-linear electrical response. The standard way to describe it is

by exhibiting the nonlinear current-voltage (J − E) diagram, which encodes a nonlinear

version of the electrical conductivity. We shall restrict to the DC case and to the simplest

but nontrivial case to analyze, namely the probe vector limit where we neglect any mixing

with the vector modes in the metric but still we keep all the nonlinear self-couplings of the

gauge field. Similar studies have been done before, see [53–55].
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We introduce an ansatz for the gauge field At = At(u) and Ax = Ex t+ δAx(u).
14 The

NED-Maxwell equations in a black brane background with a generic emblackening factor

f(u) reduce to

K ′
(−F 2

2

)

A′
t = −ρ

K ′
(−F 2

2

)

f(u) δA′
x = Jx (5.5)

where (since K ′(0) = 1) we already identified the integration constants ρ and Jx as the

charge density and charge current. The field-strength invariant reduces to

z ≡ −F 2

2
= u4

(

A′2
t +

E2
x

f(u)
− f(u)δA′2

x

)

(5.6)

Using (5.5) and demanding z to be regular at the horizon, one quickly obtains that

Jx = K ′
(−F 2

2

) ∣
∣
∣
uh

Ex (5.7)

which nicely reproduces the linear conductivity result for small fields.

However, (5.7) is much more informative now, as it holds for any value of Ex and,

indeed, K ′|uh
depends nonlinearly on E2

x. Let us make this dependence more manifest.

To illustrate this, let us turn to the DBI/iDBI cases, the computation simplifies a lot.

The equations of motion (5.5) can be brought to the form

− A′
t

ρ
=
f(u)δA′

x

Jx
=

√

ΘE2
x u

4 + f(u)

Θ J2
x u

4 + (1−Θρ2u4) f(u)
(5.8)

There is a choice of integration constants that maximizes the regularity of the solution,

namely, that the argument of the square-root does not change sign anywhere. This could

happen at the point uc = uc(E
2
x) defined by

f(uc) + Θu4c E
2
x = 0 . (5.9)

At the same point one must then require

J2
x u

4
c + (1−Θρ2u4c) f(uc) = 0

so that the nonlinear conductivity is

σNL ≡ Jx
Ex

=
√

1−Θ ρ2 u4c . (5.10)

It is easy to check that this indeed coincides with K ′|uh
.

14Note that this ansatz differs from the one in [53, 54] in that we are including the ‘backreaction’ of

δAx(u) on At, which can be non-trivial starting at order E2 for non-canonical kinetic terms. This suggests

that at nonlinear level the µ− ρ curve also depends on E2, but we shall not discuss this effect here.
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Figure 16. Current-voltage (Jx − Ex) curve for the non linear models 2.10 with parameters

ρ = uh = 1 and Θ = −5,−1,−0.2, 0, 0.2, 0.3, 0.5. Dashed line is the linear Maxwell theory. The

background used for this plot is for simplicity taken to be RN but the qualitative results are

insensitive to that.

Note that for DBI models, uc < uh whereas for iDBI models uc > uh. The IR regularity

condition in that case originates from behind the horizon, which is certainly a bit intriguing.

However, we do not find this to be necessarily a problem from any practical point of view

(see appendix C for more details about it).

We summarize in figure 16 the resulting nonlinear J-E diagram. For DBI models, one

clearly sees that at large E one recovers σNL = 1 + O(E−2). Therefore, even if the J − E

curve is entirely above the J = E line, the nonlinear effect is to reduce the conductivity

(from
√

1−Θρ2u4h to 1). This is welcome since the Coulomb e-e interactions are expected

if anything to reduce the conductivity. And as we see this does happen at high field even

for the DBI case (which is the one where the linear conductivity is enhanced with respect

to the Maxwell case).

For the iDBI models the nonlinear effect is also to reduce the conductivity, but in a

more dramatic way. Indeed, σNL vanishes at some finite Ex. There is both a maximum

current and voltage (or applied field Ex) that the material can withstand. Presumably,

the region where the dJ/dE < 0 signals an instability, akin to the electrical breakdown of

insulators. The details of this instability are left for future investigation.

One also notices in figure 16 that the curves terminate at a maximal applied field Ex

in a branch-point fashion. This suggests that at that point one the gauge field becomes

complex and therefore a naked singularity should re-appear. For such large applied voltage,

then, one needs to do a proper analysis by including the backreaction. We defer this to

future work.

Interestingly enough, nonlinear current-voltage curves quite close to the ones for the

iDBI models have been measured in some lanthanide and cuprate compounds, [69]. See

also [70, 71] for other studies of the nonlinear electric response in strange metals.
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6 Discussion

Since we already give a summary of our results in section 1, let us discuss now only the

most salient features of the present results. The iDBI models (2.10) (with Θ > 0), seem to

behave effectively like Mott insulators in various different respects: i) the conductivity is

unbounded from below, ii) there are MI transitions, iii) the conductivity can in some cases

be even a decreasing function of carrier density, which appears like a clear smoking gun

of traffic jam-like behavior. This happens in models where the only dynamical mechanism

responsible for these features are the charge-sector self-interactions (see [23–34] for more

holographic models based on other mechanisms). Indeed, all of our models are scale invari-

ant, they present no dynamical mass gap generation down to T = 0, nor any significant

effects from the charge-disorder or charge-phonon couplings. In our view these already add

up to quite significant evidence that these models do capture effectively Mott-like behavior.

We went on, then, to search for more characteristic features of these models, and we

encountered 2 quite welcome ‘surprises’. First, we found that the models can support up

to a maximum carrier density ρ⋆ which is set by the momentum relaxation rate (which can

be thought of as the density of impurities) and the strength of the self-interactions. An

upper bound on the carrier density like this (that holds only in the holographic models that

display Mott-like behaviour) is quite reminiscent of the so-called ‘Mott criterium’, that the

carrier density must not exceed a certain bound (for 3 dimensional materials, n1/3 ≃ a0
where a0 is the Bohr radius [6, 66]. Obviously, the two bounds are qualitatively quite

different, since the present one directly refers to disorder while the Mott criterium does

not. However, we still find it quite striking and encouraging that there is an upper bound

at all, given the disparity of the present approach compared to the traditional ones. In

addition, having the upper bound depend on the momentum relaxation rate suggests that

the basic mechanism that prevents the carrier concentration and which gives rise to the

insulating behavior could be interpreted/related to Anderson-Mott localization.

The second surprise is that at densities close to (but below) this maximum density,

our models generically develop an instability towards a superconducting state, implying

that that the insulators that display Mott-like behavior should also exhibit an insulator-

superconductor transition. This fits very well with the typical form of the High Tc su-

perconductor phase diagram (as in figure 1) in function of the electron/hole doping. If

confirmed, this has quite a few implications: even though the low-energy description does

not unveil what is the underlying mechanism that drives this type of superconductivity (in

terms of how the microscopic degrees of freedom ‘pair’), still it seems that one can link the

mechanism behind the insulator-SC to the one operating in the metal-insulator transitions

— at least for those which are driven by electron-electron interactions (and which are close

to having a holographic dual). In particular, the value of the critical doping where the

insulator-SC occurs should depend on the graviton mass in a similar way as the maxi-

mal density ρ⋆ — that is it should grow with momentum dissipation strength — perhaps

generically. Interestingly enough, this does happen in some materials [65].

We find that these facts support quite strongly that the effective holographic models

as developed in this work (allowing for quite general couplings in the Lagrangian), in
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the sense that they can be meaningfully used to model quite nontrivial phenomena in a

clear, controlled and convenient way (the ground state admits a homogeneous description).

Indeed, the effective holographic exercise makes good sense: there is a simple and clear

map between the different actors in condensed matter (electrons, phonons, disorder) and

the different ingredients in effective holography (the gauge field, the Stueckelberg sector

and whether it breaks translations mostly explicitly of spontaneously). Accordingly, there

is a simple and clear correspondence with the kinds of interactions with different sectors.

Interestingly, the various interactions between the gauge and Stueckelberg sectors match

with what one expects from the condensed matter point of view. There are of course many

points to develop and elaborate on, which we have to defer for future work.

In this connection, we have to comment on two more (un)surprises. The first one is the

(likely) presence of modes that are superluminal (in the gravity side) in the iDBI model.15

This certainly implies that the possible UV completion of the present models cannot be

relativistic with the same notion of Lorentz invariance. However, this is not necessarily

a problem for the effective holographic models. Indeed, in the effective approach to the

gauge/gravity duality, the starting point is that one takes the gravity dual theory simply as

a dynamical implementation of some strongly-coupled scale-invariant field theory. This can

in principle be relativistic or not (this is just a matter of choice or convenience) and it is used

to model the strongly coupled dynamics from the lowest energies to some ‘intermediate’

cutoff scale below the ionic lattice spacing scale. For the gauge/gravity duality the case of

relativistic invariant CFTs is certainly the best understood from a technical point of view,

in part because it is the simplest one to study — it involves the least number of degrees

of freedom/operators. From the condensed matter perspective, however, it certainly looks

non-generic to assume that the scale invariant theory is relativistic. The only reason

we assume this here so is by convenience — these are the simplest models. It is clear,

however, that this is meant to be interpreted as an emergent notion of Lorentz invariance,

that is, with an emergent limiting speed that is of course constrained to be smaller than

the speed of light. From this point of view, then, it is clear that the presence of modes

that are faster than the emergent limiting speed is not a problem per se. Rather, it might

give a potentially generic prediction that is in principle compatible with causality and

with observations because the emergent limiting speeds are normally subluminal — as is

the case for instance of graphene. An important qualification is given by the potential

presence of other bounds on the propagation velocites, such as for instance the the so-

called Lieb-Robinson bounds mentioned in the introduction. This subject certainly needs

further investigation in this context.

The second (un)surprise relates to the obvious concern that appears once one attempts

to use holography as a low-energy effective description as we discuss here: how can a low-

energy effective description (with effective Lagrangians that involve quite generic functions

of operators) be predictive?16 Fully answering this question is outside the scope of this

article, but let us make one remark. The effective holographic Mott insulators constructed

15The appearance of bulk superluminal modes has also been found before in similar models [10, 73].
16See [72] for a recent critique on the AdS-CMT panorama and its degree of success in this respect.
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here crucially require large nonlinearities in the charge sector by way of non-canonical

kinetic terms. It is quite reasonable then to expect enhanced effects also in the non-

linear electrical response (as was already pointed out in [10] for similar models). We have

initiated here a more detailed study of the nonlinear electrical response in the present

models (previous studies were done in [53–55]) and found indeed very sharp effects in the

nonlinear ρ − µ (susceptibility) curve as well as in the nonlinear current-voltage (J − E).

Mainly, the effects are in the form of a strong suppression of the susceptibility dρ/dµ and

conductivity dJ/dE at large density or voltage. These nonlinear effects can be computed

in a controlled way (i.e., within the regime of validity of the effective theory) and quite

easily in our models and generalizations thereof. Given that both the Mott-like insulating

behavior (in the linear conductivity) and large nonlinear effects originate from the same

gauge-field nonlinearities (a nonlinearK(z)), one would expect that the correlation between

i) Mott-like behavior in the (linear) response and ii) large nonlinear electrical response

is a generic and robust. Interestingly enough, from the experimental side the nonlinear

regime can be accessed in some cases and large nonlinear effects along these lines have

indeed been observed [69–71]. It is of course still not straightforward to extract how this

linear-nonlinear correlation applies to real world materials — in the first place because in

many cases there can be more than one competing effect.17 However, given that nonlinear

transport/response includes a large set of observables, and given that the nonlinear response

in the holographic models is basically fixed once the linear response is fixed, we find that

this an obvious class of phenomena to ‘test’ these models, and there is even a potential

to ‘explain’ certain cross-correlations between linear- and nonlinear- response observables

within these effective holographic descriptions.18

Admittedly, it is unclear whether this can be enough to make these models really

useful. In any case, developing more the nonlinear response (electrical, thermal and of any

sort) looks like a direction of potential great interest. We hope to return to this topic soon.
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A Consistency

In this appendix we describe the minimal consistency conditions to ensure that our model

stays healthy and free of patologies in both the vector and scalar (non-linear) sectors. We

focus our analysis to the decoupling limit; of course a full treatment would be great but

beyond the scope of this paper.

To achieve control on the correct renormalization of the various kinetic terms we use

the trick of adding an external source to the second order lagrangian which reads:

L̃(2) → L(2) − Jµ
extAµ , Jext

µ = (Jt, Jx, Jy, Ju) . (A.1)

We then proceed in the decoupling limit (metric perturbations frozen) and analyze both

the vector and the scalar modes contained in Aµ. It is quite straightforward to check

that the equation for the transverse-vector modes (which satisfy ∂iδA
i
v = 0) δAi

v of the

perturbations becomes:
[

∂2u +

(
f ′(u)

f(u)
− E ′(u)

E(u) +
2

u

)

∂u +
∂2y
f(u)

− ∂2t
f(u)2

]

δAi =
Ji

2u2f(u)K ′ (E2(u))
. (A.2)

Requiring no ghosts in this sector already gives a constraint on the function K, which reads

No ghosts in the vector sector → K ′(z) > 0 (A.3)

Let’s switch to the scalar degrees of freedom of the perturbations which are encoded in:

δAµ = (δAt, ∂xζ, ∂yζ, δAu) (A.4)

We use the gauge freedom to fix δAt = 0; we are left with three non-independent equations,

f

K ′(E2)
∂u

(
2 ρ u

E ′ δAu

)

+ ∇2 ζ = 0 ,

E
u2 f

∂u

(
u2 f

E (δAu − ∂uζ)

)

+ ∂2t ζ = 0 ,

∇2 (δAu − ∂uζ)−
2 E
u f E ′∂

2
t δ Au =

Ju
2u2K ′ (E(u)2) .

The easiest way to get a single equation for the single dynamical scalar mode (which we

can identify as Au) is to take the u-derivative of the first equation and substite it on the

last one. We obtain:

∇2δAu + ∂u

(
f

K ′(E2)
∂u

(
2 E
u E ′ δAu

))

− 2 E
u f E ′ ∂

2
t δAu =

Ju
2u2K ′ (E(u)2) . (A.5)

No ghosts in the longitudinal sector does not impose any further constraints on K (note

that K ′(z) > 0 implies E > 0).

From eq. (A.5) we can read off the value of the ‘local’ speed of sound (along the xi

directions) for longitudinal modes, which reads:

c2s =
u E ′

2 E (A.6)
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A conservative requirement in order not to have gradient instabilities in the longitudinal

sector is that c2s > 0, which leads to

No gradient instabilities in the scalar sector → E ′(u) > 0 (A.7)

Note that using the Maxwell equation for the background metric (2.3) this condition can

be rewritten into:

K ′(z) + 2K ′′(z) > 0 →
(√
z K ′(z)

)′
> 0 . (A.8)

All in all we get the following constraints:

K ′(z) > 0 ,
(√
z K ′(z)

)′
> 0

where ′ denotes always the derivative with respect to the argument of the function.

These can be rewritten in term of the E function appearing in the ansatz as:

E(u) > 0 , E ′(u) > 0

Therefore requiring c2s > 0 is equivalent to requiring that the canonical momentum E is a

monotonous function of u.

In conclusion, from the expression (A.6) we can analyze the various situations which

can appear in our model. The condition of having the speed of sound exactly unitary (in

units of c2) boils down to the condition of having the action of the Maxwell form and

therefore E(u) ∝ u2. The speed of sound can be rewritten in term of the K function as:

c2s =
K ′(E2)

K ′(E2) + 2K ′′(E2)
(A.9)

and if we compute it for the benchmark models with p = 1/2 defined in 2.10 we get:

c2s =
1

1− u4 ρ2Θ
(A.10)

which means that DBI model, corresponding to a metallic CFT, has subluminal mode

while the iDBI, representing an insulating CFT, shows potentially superluminal modes.

This pattern is in accordance with what is known to happen in models with non-canonical

kinetic terms [51]. This seems to be a common feature also (see [73]) for other holographic

models that to mimic the Mott physics through dipole fermions coupling in the bulk [23, 24].

Let us emphasize here that despite being certainly an issue to explore further, the

possible problematic consequences of having cs > 1 near the horizon are not quite clear

in the context of holography. cs(u) does not represent the velocity of propagation of any

particular mode or particle, so this does not directly conflict with the Lorentz symmetry

of the underlying theory. Furthermore, in the low energy effective interpretation of holog-

raphy, the velocity that we are implicitly setting to 1 does not necessarily correspond to

the speed of light but perhaps the velocity of a light cone that emerges at low energies.

From this low-energy perspective, the UV-completion of these scale invariant theories is
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actually expected (at least in the first step) completely non-relativistic since it is given in

terms of the atoms that build up the lattice. For these reasons, we do not consider that

cs > 1 jeopardizes the consistency of these setups. Let us remind the reader that exactly

the same situation arises (in the phonon sector) for the models that give rise to insulating

behavior due to electron-phonon interactions [10].

Note that also in the Goldstones’ sector we need to impose consistency constraints to

avoid ghosts, gradient instabilities and to preserve Anti De Sitter as the UV asymptotical

geometry. Namely we have to ensure that:

V ′(X) > 0 , c2S = 1 +
X V ′′(X)

V ′(X)
> 0 , V (0) = 0

We refer to [10] for further details about the consistency issues of the model.

In the main text we consider models which preserve all these minimal conditions; it

would be indeed interesting to perform a full consistency analysis which goes beyond the

decoupling limit, however we do not expect major differences to appear.

B Conductivity

In order to study the transport properties of the dual CFT we follow the conventional

procedure [74]. We are in particular interested in the electric response of the system.19 We

switch on the perturbations defined as:

δgti(t, u, y) = hti(t, u, y) ,

δgui(t, u, y) = hui(t, u, y) ,

δgij(t, u, y) =
1

u2
∂b(t, u, y)

∂y
,

δAi(t, u, y) = ai(t, u, y) ,

δφ(t, u, y) = Φ(t, u, y) .

We then proceed linearizing the equations of motion for those perturbations in a gauge-

invariant picture. Aside from ai, we use the following gauge-invariant combinations:

Ti ≡ u2hti −
∂tΦi

α
, Ui ≡ f(u)

[

hui −
∂uΦi

αu2

]

, Bi ≡ bi −
Φi

α
.

We use also the following definition for the Fourier decomposition of all the fields:

ζA(u, t, y) = e−i (t ω− k y) ζA(u) (B.1)

19It would be really interesting to extend the study of the transport properties including thermal and

magnetic responses; we leave it for future work.
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With these choices we are left with the following equations (see [75] for the generic structure

and procedure):

−2 q2 ρ u2 a′ − i k2 ωB
f − i u2 ω Uf ′

f2 + i u2 ω U ′

f − T

(
2α2 m2V ′(α2u2)

f + k2

f

)

− 2T ′

u + T ′′ = 0 ,

k

[

B′′ +B′
(
f ′

f − 2
u

)

+B

(

ω2

f2 − 2α2m2V ′(α2u2)
f

)

− i ω T
f2 − u2U ′

f

]

= 0 ,

i q2ρ u5ω a f+ 1
2k

2u3f2B′+U
(

−α2m2 u5 f V ′ (α2u2
)
− 1

2k
2u5f+ u5ω2

2

)

− 1
2 i u

3 ω f T ′ = 0 ,

k2B V ′ (α2u2
)
− i ω T V ′(α2u2)

f − 2α2 u3 U V ′′ (α2u2
)
− u2 U ′ V ′ (α2u2

)
= 0 ,

a′′ + a′
(
f ′

f − E ′

E + 2
u

)

+
a(ω2−k2 f)

f2 − E T ′

u2f
− i ω E U

f2 = 0 .

(B.2)

where we kept implicit all the u dependences.

The first four equations displayed in (B.2) are not indipendent and we can forget about

the first one. In addition it is easy to see that T (u) is completly constrained and reads:

T (u) =

if(u)

[

k2B(u) + u2
(

−2α2 uU(u)V ′′(α2u2)
V ′(α2u2)

− U ′(u)

)]

ω
. (B.3)

We can therefore eliminate the gauge invariant combination T in favor of the others one.

At finite momentum k we are left with the system of coupled equations given by:

E(u)

u2
∂u

(

u2

E(u)
f(u) a′(u)

)

+

(

ω2

f(u)
− k2 − 2 q2 ρ E(u)

)

a(u) = +
i E(u) (2M2(u) + k2)

ω
U(u)

−
i f(u) E(u) k2

u2 ω
B′(u)

1

u2
∂u

[

f(u)u2

M2(u)
∂u(M

2(u)U(u))

]

+

(

ω2

f(u)
− k2 − 2M2(u)

)

U(u) = −2 i q2 ρω a(u) +
f ′(u) k2

ω
B(u)

k

[

u2 ∂u

(

f(u)

u2
B′(u)

)

+

(

ω2

f(u)
− k2 − 2M2(u)

)

B(u) = −2
M ′(u)

M(u)
U(u)

]

where M2(u) = α2m2 V ′(u2α2).

It is straightforward to check that in the linear case for the Maxwellian sector E(u) =
ρ u2 (and setting q = 1) we recover exactly the equations of [10].

In the homogeneous case (k = 0) (and q = 1) we can simplify the problem (see [9] for

details about the trick) to a 2X2 system of equations which reads:

1

u2
∂u

[
f(u)u2

M2(u)
v′(u)

]

+
ω2

f(u)M2(u)
v(u)− 2 v(u)− 2 ρ a(u) = 0 (B.4)

1

u2
∂u

[
f(u)u2

E(u) a′(u)

]

+
ω2

f(u) E(u)a(u)− 2 v(u)− 2 ρ a(u) = 0 (B.5)

It is straightforward to check that the mass matrix has zero determinant meaning that

there is a massless mode which permits to run the usual argument to get the analytical

formula for the DC conductivity [76].
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We will derive the DC conductivity using the elegant and simple method described

in [77] in a gauge invariant formalism.

For the sake of computing the DC conductivity, we consider a different ansatz with

respect to (B.1). In particular we consider homogeneous modes (k = 0) and a constant

electric field in the x direction, which correspond to the configuration given by:

T (t, u, y) = T (u) ,

U(t, u, y) = U(u) ,

B(t, u, y) = B(u) ,

a(t, u, y) = −Ex t+ a(u) . (B.6)

Because of the homogeneous choice we are left with four equations which dont involve the

B field and which read:

U(u)− Ex q
2 ρ

α2m2 V ′ (α2u2)
= 0 ,

2α2 uU(u)V ′′ (α2u2
)

V ′ (α2u2)
+ U ′(u) = 0 ,

−2 q2 ρ u2 a′(u)− 2α2m2 T (u)V ′ (α2u2
)

f(u)
− 2T ′(u)

u
+ T ′′(u) = 0 ,

a′′(u) + a′(u)

(
f ′(u)

f(u)
− E ′(u)

E(u) +
2

u

)

− E(u)T ′(u)

u2f(u)
= 0 . (B.7)

The first two equations consistently imply:

U(u) =
Ex q

2 ρ

α2m2 V ′ (α2u2)
. (B.8)

Maxwell equations reads, as expected, as the radial conservation of a quantity:

∂u

(

−u
2 ρ f(u)

E(u) a′(u) + ρ T (u)

)

= 0 . (B.9)

which is going to correspond to the electric current J of the dual field theory:

Jx = −f(u)K ′(E(u)2) a′(u) + ρ T ′(u) . (B.10)

This current can be computed at any value of the radial coordinate including the horizon

position u = uh.

The DC conductivity can be then computed dividing the expression (B.10) by the

constant electric field in the x direction:

σxx =
Jx
Ex

(B.11)

In order to do so we need to compute the current J in terms of the horizon data and in

particular we have to find the horizon behaviour of the fluctuations.
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The key point is to impose the regularity at the horizon for the U(1) gauge field (F 2

with finite norm at the horizon); at the level of the perturbation F 2 reads:

F 2 =2u4f(u)a′(u)2 − 4u2T (u)E(u)a′(u)− 2E2
xu

4

f(u)
− 4Exu

4E(u)U(u)

f(u)
+

+
2T (u)2E(u)2

f(u)
− 2u4E(u)2U(u)2

f(u)
(B.12)

Demanding that flux to be finite we need to impose the following regularity conditions at

the horizon:

a′(u) = − Ex

f(u)
, T (u) = u2 U(u) (B.13)

where U(u) is given by (B.8).

All in all the current Jx computed at the horizon position reads:

Jx = ExK
′ (E(uh)2

)
+

Ex q
2 ρ2 u2h

α2m2V ′ (α2u2)
(B.14)

We can finally proceed to define the DC electric conductivity just in terms of horizon data.

The final formula for the DC conductivity is a generalization of the one got in ([10])

and in terms of the horizon quantities reads:

σDC = K ′(E2(uh)) +
q2 ρ2 u2h
M2(uh)

(B.15)

where M2(uh) = α2m2V ′ (α2u2h
)
.

C Non-linear conductivity for general K(z)

Using (5.5) in (5.6), and enforcing the regularity at the horizon by (5.7), one arrives at the

following relation valid for any choice of K(z),

zK ′(z)2 = u4
(

ρ2 + E2
x

K ′(z)2 −K ′(zh)
2

f(u)

)

, (C.1)

with z(u) = −F 2/2 on the solution. This equation is manifestly consistent with regularity

of z at the horizon. From this equation one can in principle extract how z depends on u

and on Ex. It is clear that for the linear case (K ′ = 1), z = ρ2u4 — in particular it does

not depend on Ex; but in the general case, z (and therefore K ′(zh) does depend on Ex.

The way to fix K ′(zh) then requires an additional boundary condition. In non-canonical

theories like this, there are additional regularity conditions that arise naturally which end

up fixing zh.

One can recast (C.1) as

K ′(z)2 = u4
E2

xK
′(zh)

2 − ρ2f(u)

E2
xu

4 − z f(u)
(C.2)
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There is therefore a natural boundary condition that maximizes the regularity of the solu-

tion, namely that the r.h.s. of (C.2) does not change sign anywhere. This could happen at

the point uc̃ defined by

E2
xu

4
c̃ − z(uc̃) f(uc̃) = 0 . (C.3)

The natural regularity condition then demands that at uc̃ the numerator of (C.2) also

vanishes there, that is,

K ′(zh)
2 =

ρ2f(uc̃)

E2
x

=
ρ2u4c̃
z(uc̃)

Since z(u) is a smooth function of u, (C.3) shows that uc̃ depends on Ex smoothly, with

uc̃ = uh +O
(
E2

x

)
for small Ex.

Therefore the nonlinear DC conductivity J
E = K ′(zh) depends smoothly on E2

x in

general, possibly up to some maximum value of Ex where the roots of (C.3) cease to exist.

Let us emphasize that the radius uc̃ is not the same as the uc introduced in (5.9). Still, the

result for the nonlinear conductivity (namely how K(zh) depends on Ex) does not depend

on whether one uses the regularity condition at uc or at uc̃
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