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Abstract. For an elastic body containing periodically distributed voids, several effec-
tive techniques are presented which can be used to obtain the effective elastic moduli
with any desired degree of accuracy. The results include the effects of void geometry as
well as void interactions. For a body containing spherical voids, numerical results are
presented and compared with those obtained by other methods.

1. Introduction. Estimates of the overall elastic moduli of an elastic solid which
contains voids or cracks are of considerable theoretical and practical interest. In view of
this, different methods have been developed by various authors. Most approaches fall
into the following classes: (1) self-consistent model, (2) variational approach, (3) statisti-
cal method, and (4) exact solutions.

What is now known as the self-consistent method has been used by MacKenzie [1]
and later Kerner [2] to estimate the elastic and thermoelastic properties of a solid
containing spherical voids [1] and a composite solid [2]. In this approach, say, the void is
surrounded by a matrix shell which in turn is surrounded by an unbounded porous
material. The elastic moduli derived by these authors [1, 2] turn out to be the same as the
lowest upper bound later obtained by Hashin and Shtrikman [3] by a variational
approach. Hill [4] and Budiansky [5] have used the self-consistent method to estimate the
elastic moduli of composites; where the inclusion is regarded as being embedded in an
unbounded medium which has the same elastic properties as those of the composite and
which is subjected to the prescribed uniform loading at infinity. Then Eshelbyv [6]
solution for an ellipsoidal inclusion embedded in an unbounded elastic medium ;s used
to estimate the final results. Hill [4, p. 220] points out that the self-consistent method is
"unreliable under extreme conditions", i.e. for voids and rigid inclusions, "exc • .vhen
the dispersed phase is sufficiently dilute". It should be mentioned that the self .^.isistent
method had been used earlier by Hershey [7] and Kroner [8] to construct a model for
polycrystalline materials.

* Received November 13, 1979; revised version received February 27, 1980. The authors wish to thank Dr.
M. Hejazi who helped in obtaining the numerical results. This work has been supported by the National
Science Foundation under Grant No. ENG76-03921 to Northwestern University.

** Present address: Department of Mechanical and Aerospace Engineering, University of Delaware,
Newark, Delaware, 19711.



44 S. NEMAT-NASSER AND M. TAYA

Within the framework of extremum principles in elasticity and by introducing a
comparison model and a polarization stress, Hashin and Shtrikman [3] derive bounds on
the effective elastic moduli of composites. In the case of voids, their method yields only
the lowest upper bound, the corresponding highest lower bound becoming zero.

In actual cases void distribution and void geometry are statistical in character, and
therefore must be regarded as randomly varying quantities. To account for this, Willis [9]
has generalized Hashin and Shtrikman's [3] method, and has discussed a two-point
correlation function for composites of this kind. In an earlier work [10] Christoffersen
dealt with randomly distributed voids or inclusions in an infinite elastic medium, assum-
ing a constant transformation strain within each void or inclusion. Recently, Afzali and
Nemat-Nasser [11] have estimated the elastic moduli for a solid containing periodically
distributed voids by calculating the " effective " body forces which must be placed at the
center of each void in order to render the void surface traction-free. In this calculation
the interaction effects are taken into account to a large extent. However, the results are
not exact, although they show considerable improvement on various previous results.
This will be discussed later on.

When the voids or inclusions have simple geometries and are periodically distributed,
one may attempt to construct exact solutions. Eshelby's [6] results for an ellipsoidal
inclusion in an infinite medium are of this kind, where the periodicity length can be
regarded as infinity. Eshelby introduces the concept of transformation strain which, in the
case of one ellipsoidal inclusion in an infinite medium, turns out to be constant. For a
body containing periodically distributed voids and inclusions, one may effectively employ
the concept of transformation strain which, however, will no longer be a constant tensor.
On the other hand, because of periodicity, one may confine attention to a unit cell,
expand the transformation strain as well as other field quantities in appropriate Fourier
series, and then construct an integral equation for the corresponding unknown transfor-
mation strain. Then this integral equation may be solved by various schemes. For an
elastic solid containing periodically distributed voids of the same geometry, we have
carried out in this paper the program outlined above.

In Sec. 2 we exploit the concept of transformation strain and obtain an integral
equation for this quantity, where the corresponding integral extends over the void
volume only. The integral equation involves an infinite series. In Sec. 3 we examine the
convergence of this series and present several approximate and one exact method of
solution. In addition, we give several illustrative examples. All calculations are performed
for spherical voids arranged in a simple cubic lattice; however, generalization for other
void geometries is mentioned. In Sec. 4 we outline the variational approach for estimat-
ing the overall elastic moduli, use the results of Sec. 3, and obtain overall moduli for
some special cases. We then compare our results with those of other authors when the
Poisson ratio of the matrix is taken equal to 0.3.

2. Formulation. Consider an infinitely extended isotropic elastic body which con-
tains periodically distributed voids of common geometry and dimensions, in such a
manner that the body may be regarded as a collection of unit cells of identical dimen-
sions, each containing one or several voids. In this work the unit cell is assumed to be a
parallelepiped with dimensions A; measured along the rectangular Cartesian coordinate
axes i = 1, 2, 3. The body is subjected to the overall average far-field stresses tr°-, as
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schematically shown in Fig. 1 for the special case of spherical voids; here and in the
sequel all subscripts take on the values 1, 2, 3, and repeated indices are summed over the
same values unless stated otherwise. In the absence of any voids (homogeneous solid)
the corresponding strain field would be given by Cijk, ekl = a°j, where

Cijki — ASij &ki + ^(dikdji + diidjkX (2.1)

and where A and n are the Lame constants for the matrix, Cijki being the corresponding
elasticity tensor; in (2.1) <5y is the Kronecker delta. The existence of voids disturbs the
homogeneous stress and strain fields, and the total stress field can be expressed as

aij = au + aij ~ C'jki(£ki + eki) in £> — O, (2.2)

where <xu = CUklekl is the perturbation stress field introduced by the voids, the corre-
sponding displacement perturbation being u;, and hence = l(Mi, j + uj, ■); a comma
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followed by an index denotes partial differentiation with respect to the corresponding
coordinate. In (2.2) D denotes the domain occupied by a typical unit cell (parallelepiped)
of dimensions A; and Q is the domain occupied by the cavities contained in that unit cell.

The geometric periodicity implies the periodicity of the perturbation field o-y, el7,
and ut. Moreover, within the region Q the total stress field must vanish. To assure this,
one may introduce a transformation strain e* which is identically zero in D - Q, and
is a periodic function1 of x. In each cavity within a cell, the total stress must vanish, i.e.

"I = Cijk,(4 + ekl - £?,) = 0 in ft, (2.3)
and hence

- = Cijkl(skl - e*|) in Q. (2.4)

The total stress must satisfy the equilibrium equation <tJ j = 0, and since efj is a constant
field, (2.3) yields

[Cijfci(efci ~~ = 0 in Q. (2-5)

Because of the periodicity, the fields w, and e* can be expressed in the Fourier series as2

Mx) = X "k(^)e'5' x- e*i(x) = Z SJKSV*' x,
nj = 0 rtj = 0

4/(^) = A a1 a [ x rfx'. tj = 2nnj/Aj (no sum on j), (2.6)
Ai A2 A3 jd

rij — 0, ±1, ±2, ..., i = yj— 1, k, l,j = 1, 2, 3,

From (2.6) j it follows that

"k.i(x) = >■ £' *, (2-7)
± oorttj = o

3where a prime on £ indicates that in the summation, n = (n^n,)1'2 = 0 is excluded.
From (2.7) and (2.6)2, one now obtains upon substitution into (2.5)

— CrjklukQiQj = iCrjklt;*i£j

which can be solved for uk to yield

"*($) = -iCrjple*^jNrM (2.8)
where

Nrk(S) = [SM + W2 - (A + n)UkW + 2^K4, £2 = tljtj + 0. (2.9)

1 Even for ellipsoidal cavities, e* will not be a constant in the present case.
2 Here and in the sequel i is used to indicate yj — l, although it is occasionally also used as a subscript

index. The context makes the usage clear.
3 From (2.6), it is observed that the constant term associated with n = 0 is automatically excluded (by

differentiation) in (2.7), and hence this term does not enter the integral equations (2.11) and (2.13).
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Upon substitution from (2.8) into (2.7), one arrives at

«*» = TCPqJ.mKZ<Nkp(k)e* * . (2.10)
rtj — 0

Finally, by direct substitution into (2.4), one deduces the following integral equation for
the unknown transformation strain £?,:

-4 = £■ Fkirsfc) A ! A [ e*(x>i5'(x-x') dx' - e*j(x), (2.11)
n; = o A j /V2 A3 JQ

where we have set

Fk,rs&) = ^Cpqrs^,Nkp(l) + ZkNlp($)]

2^2 | ^s^kr ^r^ks | ^rs ty ^s^ln ^r^ls 2^ ^k j

2 U + m)-^\iT2,hn,n'n"
gj — Intij/Aj (no sum on /),

n2 = n,w, =/= 0, k,l,r,s= 1,2,3, n, = 0, ±1,..., (2.12)

and where, in arriving at (2.11), we have also used the identity = Cijki e°( .
For the calculation of the effective elastic moduli only the average value of the

transformation strain taken over the void volume is required. Integrating both sides of
(2.11) over the void volume and dividing the results by the void volume Q, we obtain

£?( = ^ jne*/(x) dx

= £°' + OA A A 2? I <£(*>""'dx', (2.13)
L*A1A2A3 nj = 0

where

0O(S)= (2.14)
J Ci

3. Solution methods. We shall now consider several solution methods for Eqs. (2.11)
and (2.13). To render our results more explicit, we shall confine attention first to the case
where each unit cell contains only one spherical void of radius R, with the center located
at the center of the unit cell which we choose as the origin of the coordinate system. Then
we generalize our results for application to cases where the unit cell may include one or
several voids of possibly dissimilar geometries, e.g. one spherical void and one cylindrical
void. Note that in the case of equally spaced spherical voids, we have a cubic unit cell.
Hence we set At = A2 = A3 = A.
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3.1 Periodically distributed spherical voids. In this case we need to calculate the inte-
gral of e±l 4' * over the spherical region Q. Using spherical coordinates, we obtain

C 47E c ̂
g0($) = j e±li x dx = — [ r sin £r dr.

Jn C Jo

= (sin cos qR) if ^ 0
471

£3

471= y R3 if ̂  = 0, = 4 - (3.1)

With the aid of this result, we first examine the convergence character of the infinite
series4 in (2.13). To this end we observe that the function Fklrs(t,) remains finite as n} (and
hence £,•) takes on large values. On the other hand, both the integral and the term g0(£,)
in this series go to zero like 1 /n2 as n}~* ±oo, and hence the infinite series converges
absolutely, its terms going to zero like l/n4 as rij-* ±oo. To see this, we estimate the
integral as follows. The transformation strain is bounded, | e* | < M in il, where M is a
positive finite constant. Then

[ a*(x')e_,t'x dx' <M | e~li'x' dx'

dnM
= -—r- I sin £R — £R cos £R

£3

< 4nM(i/e + R/ei e = $ ■ o, (3.2)
which shows that the terms of the infinite series in (2.13) are of the order of l/£4 for large
values of £.

We shall now examine several methods for solving Eqs. (2.11) and (2.13), starting
with the simplest approximation which utilizes Eq. (2.13).

3.2 Simplest approximation. The structure of Eq. (2.13) suggests a simple method for
approximating £*,. It is obtained if we estimate the integral in the right-hand side as
follows:

[ e*(x')e~iV dx' % e?s [ i5'dx' = £?sgf0(^)- (3-3)
J n •'o

Then (2.13) yields
± 00

MA n i = 0
ers — Ekl> (3-4)

from which e£ can be calculated by matrix inversion.
It should be noted that the approximate solution (3.4) does indeed take into account

void interaction effects as well as the influence of void geometry. In this solution the
quantity g0(£,) reflects the void geometry, whereas the value of the infinite series accounts

4 We shall not attempt to solve (2.11) directly, and therefore we do not discuss the convergence of the
infinite series involved.
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for the void interaction. Therefore the corresponding results are expected to be quite
accurate, as, in fact, they are; this will be shown by means of examples later on.

Examples. As an illustrative example, we apply Eq. (3.4) to the case where = e°dkl,
i.e. uniform dilatation. Hence, we take ejf, = £*5kl, and observe that (3.4) yields

£°
16;r2 (sin cR - qR cos gR)2

1 ~~ lOA 3 L z63QAJ nf==0 V
e = QjZj, Zj = Inrij/K, tij = ±0, ±1  (3.5)

We note that the infinite series in (3.5) converges rapidly. In Sec. 5 the accuracy and
convergence rate of (3.5) are illustrated.

As a second example, consider a simple shearing where e?2 # 0 and ef2 # 0, while all
other components are zero. Eq. (3.4) then yields

g12

P°b12

32tt2 j(5? + &) iX + M \ZHl I (sin cos <^)2
QA\%\ 2c2 U + 2I C6 (3.6)

In Sec. 5, this and related results are illustrated numerically.
We note that simple shear may be produced by setting = e°, £°2 = — e°, and

F*   p* p*bll — e*, £22 = —e*, with all other components being zero. Then Eq. (3.4) yields

£*
„o

± oo / p \2| 3 _i_ ,, / / p \2 / p \ 2 \
1 - "QA £(W!'-Si((l)-(!)>»(3.7)

The values obtained from this equation are discussed in Sec. 5, where it is shown that,
(3.6) and (3.7) do not yield identical results, as has also been observed by Christoffersen
[10], using a different approach.5

3.3 Polynomial approximation. We shall now consider more accurate estimates for
the transformation strain, using Eq. (2.11). To this end we approximate the transforma-
tion strain by a polynomial with unknown coefficients which are then calculated with the
aid of (2.11) and either a Galerkin method or a variational approach. In the present
context, the former yields a more effective computational tool, whereas the latter involves
series which may not even converge.

For illustration we consider the case where the unit cells are cubes of dimension A
and contain a centrally located spherical void of radius R. Then we estimate the transfor-
mation strain by

e*(x) = CJ||x/KI" (sum on a), a = 0, 1, 2, ..., K, (3.8)
substitute this into (2.11), and carry out the required integration. For the spherical void,
all the integrals involved can be reduced to

r An
9oc(t>) = e~'* *|x|* dx = —- rl + a sin dr, (3.9)

<= •'o

' This is because the simple cubic arrangement of voids does not result in isotropy.
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where the last expression is obtained by employing spherical coordinates. For a = 0, (3.1)
yields the required integral. For other values of a, we use the recursion relation

I r1+x sin t,r dr = - ^R1 + 01 cos £R + R* sin £R - ^ ( r"~1 sin £r dr.
s Q £ Jo

(3.10)
In Appendix A explicit expressions for g7 are listed.

With the aid of (3.8) and (3.9), the integral equation (2.11) is reduced to

p° -bkl — ^kr^ls £' FklrA\)9*{%Yl'XA 3R" a = 0,1 (3.11)

To calculate the unknown coefficients C's from this equation, we may use a Galerkin
method, as discussed below.

Galerkin method. To obtain a system of linear equations for the unknown coefficients
C"s, we multiply both sides of Eq. (3.11) by | x/R |" for /? = 0, 1, ..., K, and integrate the
resulting equations over the void volume D in order to arrive at the following system of
linear equations:

4nR3 1
(3.12)

As seen from Appendix A, the quantity gx is of the order of l/£2 for large £. Therefore,
the infinite series in (3.12) converges like l/<^4.

We note that for a = = 0, Eq. (3.12) reduces to (3.4) if we identify C° with £* .
Hence the coefficients Crs for a = 1, 2, K represent the deviation of the transforma-
tion strain from uniformity.

Since only the average value of the transformation strain enters the calculation of the
effective elastic moduli, from (3.8) we have

£kl -c«LL d\ = C° + fC1 + |C2 + ■■■. (3.13)

Using a three-term approximation, i.e. a, jS = 0, 1, 2, we have calculated the results
obtained from the system of equations (3.12), which correspond to uniform dilatation
and simple shear. These and related numerical results are presented and discussed in
Sec. 5.

Variational method. The calculation of the unknown coefficients in the polynomial
approximation (3.8) may be based on a variational approach. Although this may sound
more appealing, it leads to infinite series which may not be convergent. Here we shall
obtain the corresponding equations.

There are various ways by which a relevant variational statement can be constructed.
The simplest seems to be to use the virtual work method. To this end we observe from
Eq. (2.3) that the total stress must vanish within the voids in a typical cell. With Suj
representing a smooth virtual displacement and 5ujUi the corresponding gradient, we
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multiply both sides of (2.3) by the virtual displacement gradient Sujti, sum over i and j,
integrate the results over fi, and arrive at

| QjkiK i + "t, i(x) - £?/(*)) ;•(*) dx = 0. (3.14)

We now approximate the transformation strain by (3.8) and substitute into (2.10) to
obtain

X51' Fijmn(^)gM)ei^x
ti;- 0

-'mn • (3.15)

^ rv

Then <5u, ̂ is obtained from (3.12), if we replace C*„ by dC^„. Now upon substitution into
(3.14), we arrive at

T5 cuki Z' I' fur,(^)f,jm„(n)^o(^ + r\)gx(z,)gM) ~ curs £' f
= 0 mj = 0 rij = 0

=r p-i6)
tij = 0

where we have set equal to zero the coefficients of <5Cfj and where <r?- = Cijk( e°,. In this
system of linear equations the double-triple infinite series in the left-hand side of (3.16) is
a source of considerable computational difficulties, and indeed may not be convergent.
This makes the method ineffective.

3.4 A complete solution method. Since the kernel of the integral in (2.11) is separable,
this equation may be reduced to a system of linear algebraic equations for the unknown
coefficients

EJZ,) = f E*(x')e-ii x'dx'. (3.17)

To this end we multiply both sides of (2.11) by integrate the results over Q and,
rearranging terms, arrive at

-9o(r\K = -£*,(Tl) + i If JWgfefoOl - WrM (3-18)
A nj=0

This is an infinite system of linear equations for the unknown coefficients £«(%). For each
fixed t] the infinite series in the right-hand side converges better than l/c4 This can be
seen from (3.1) and the estimate (3.2). Moreover, these unknown coefficients go to zero
with increasing t, like l/£2. Hence, in actual calculations only a finite number of equa-
tions and the same finite number of terms for the infinite series may be employed. In this
manner, the final solution yields

£?,(*) * + if FhJQEJ&V*- *, (3.19)
TXj = 0

where the infinite series is truncated after tij = ± N, the corresponding number of linear
equations in (3.18) then being (2N + l)3.

We note that in the matrix representation of the right-hand side of (3.18) the matrix of
the coefficients of the unknowns is strongly dominated by diagonal elements, and the
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off-diagonal elements diminish like l/|r) — £|2. Hence, one may not need to include too
many terms in order to obtain reasonable estimates. Moreover, for the calculation of the
effective elastic moduli, we need to obtain only the most dominant terms in (3.18),
namely

£rs(0) = e*(x ) dx'. (3.20)
n

3.5 Generalization. In all the equations presented above for various solution schemes,
the only quantity which relates to the void geometry is gC((^). Therefore the basic solution
schemes can be applied to any porous elastic medium which consists of a collection of
cubical (or parallelepiped) unit cells, each containing the same number of voids with the
same geometrical structure. For example, if one considers a rectangular void of dimen-
sions ait i = 1, 2, 3, in each unit cell, then the function g0fc) becomes

g
go(5) = r E E sin ai£i sin a2^2 sin a3£3 if ^ 0

CiC2C3

= <Jia2a3 if £ = 0.

In a similar manner, one can obtain results for ellipsoidal, cylindrical, and other void
geometries. Moreover, if there are several voids with different geometries, then we simply
replace the corresponding gx functions by the sum of the corresponding quantities.

4. Effective elastic moduli. We shall estimate the effective elastic moduli of a porous
elastic medium containing periodically distributed voids by considering the strain energy.
To this end let the body occupy the region D with the boundary S on which (self-
equilibrating) tractions 7] are prescribed. Using the notation of Sec. 2, the total potential
energy is

W = I I (au + j + u'.j) dx ~ f Tt(u? + "■) dS> (41)
^ Jn Js

where quantities denoted by superscript zero are the fields which would be induced if the
solid were homogeneous and voidless and the corresponding quantities without super-
script zero are the perturbations produced because of the existence of voids. If we denote
the total potential energy of the body in the absence of voids but subjected to the same
boundary conditions by W0, then the change in the potential energy AW is given by

AW = W - W0 = ^ -I- (Jij(ufj + M,, j)] dx - [ dS
Z J n2 J/5

= Jn auui.j -\aUe*j + \ffijui.j dx - 1^"/ ds

= ~\ f <r?jefj dx, (4.2)

where we have used Hooke's law, the Gauss theorem, and the fact that both <x° and au
are stress fields in equilibrium with zero body forces. Moreover, we have noted that the
transformation strain £* is zero in D - H, where Q is the region occupied by all voids
contained in the total domain D.
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Denote by C*kl the overall effective elastic modulus tensor of the porous body, and let
D?jkl be the corresponding elastic compliance; the elastic compliance of the matrix will be
denoted by Dijkl. By definition, the total elastic energy of the porous body is jD*kt Cy akl ,
which, in view of (4.2), can be expressed as

D?jki<T?jOu = Dljkl(T%a°kl + I [ ffyfiy dx, (4.3)
u Jn

and since, in the context of the present work, <r,° is constant, we obtain

D*jk, ffy <rkl = Dijkl <x°- , (4.4)

where e* is the average value of the transformation strain over Q, defined in Eq. (2.13);
note that Qd* = £,/0), as seen from (3.17).

We now decompose the applied stress into the dilatational <x° and distortional im-
parts as

<Jy = + k°<5y, (4.5)
and under the assumption of overall isotropy6 obtain from (4.4)

-02 -0 -0 _02 .0 0 (~Wt° P* 4- ^_|_ 0' 0' _ ^  _|_ 0' U _J_ ' 3 £kk) ^
9K* 2/x* 9K 2/i

where K* and n* are, respectively, the overall bulk and shear moduli of the porous
elastic body, K and /i those of the matrix, and where O = 4nR3/3 and A is the void
spacing. From Eq. (4.6) we can calculate the effective moduli from the knowledge of e*.

Examples. First consider a uniform dilatational stress field afj = and from
(4.6) obtain

~ = 1 + W/a°y£*kk = 1 + f(e*kk/e°), e° = <r°/3 K, (4.7)

where / = 4nR3/2A3 is the void volume fraction.
Next, consider a uniform distortional field, = t®i = t°, with all other components

of t°j being zero. Then (4.6) yields

— = 1 + (2fif /z°)e* 2 = 1 +/(e?2/e 12), £12 = t°/2^. (4.8)
/*

On the other hand, if the overall shear is produced by <t°! = ct° and (t°2 = — <r°, with all
other components being zero, we obtain

A
n*

Note that e^/e0, £12/612 > and e*/e° are given in the preceding section.

, = 1 + (2 = 1 +f(e*/e°), e° = <t°/2/z. (4.9)

6 Even when the matrix is isotropic, the void's geometry and spacing may result in an overall anisotropy;
however, the simple cubic arrangement of spherical voids does not result in isotropy.
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Table 1. Estimates of the effective bulk modulus: the simplest approximation, Eqs. (3.5) and (4.7).

Void volume JV = 1 N = 3 N = 4 N = 10 N = 25 N = 45
fraction, /

(%) K*/K e*/e" K*/K e*/e0 K*/K e*/e° K*/K c*/e° K*/K r*/r° K*/K

5 0.930 1.511 0.911 1.950 0.907 2.057 0.899 2.250 0.895 2.351 0.894 2.384
10 0.856 1.681 0.838 1.932 0.834 1.983 0.824 2.134 0.819 2.205 0.818 2.228
15 0.801 1.659 0.783 1.844 0.778 1.904 0.768 2.015 0.763 2.070 0.762 2.088
20 0.760 1.577 0.740 1.761 0.734 1.809 0.724 1.904 0.720 1.948 0.718 1.963
25 0.728 1.493 0.703 1.689 0.699 1.721 0.689 1.803 0.685 1.840 0.684 1.852
30 0.701 1.421 0.673 1.618 0.670 1.645 0.661 1.711 0.657 1.742 0.656 1.752

5. Discussion and numerical results. For an elastic body containing periodically
distributed voids of arbitrary geometry, several computational schemes were presented in
the preceding section by means of which the effective elastic moduli and the stress and
strain fields can be estimated. Here we shall examine and illustrate in detail the conver-
gence behavior of the infinite series involved give several numerical examples, and com-
pare the resulting estimates of the effective elastic moduli with those reported by others
using different methods.

Consider first the infinite series in Eq. (3.5). The individual terms in this series depend
only on the magnitude of the vector ^ = 2ntij/A, rij = ±0, -I-1, ±N, if the series is
truncated at nj= ±(N + 1). The dominant term in this series is cos2 £R/£4. Hence the
total truncation error is less than A/t;(N +1), where A is a positive constant. In view of
this, we need only to include the term associated with tij for which the magnitude of the
vector is less than or equal to 2nN/A. Similar comments apply to the infinite series
involved in Eqs. (3.6), (3.7), and (3.12).

We have calculated the right-hand sides of Eqs. (3.5), (3.6) and (3.7) for different
values of N in order to examine the convergence of the involved series.

The calculations pertaining to the estimate of the bulk modulus, using the simplest
approximation, Eq. (3.5), together with Eq. (4.7), are shown in Table 1 for the values of
N indicated and the void volume fraction / = 4nR3/3A3. As is seen, convergence is
reasonable. In addition to this, we have also obtained results using the complete solution
method of Sec. 3.4. This involves considerable computational effort, and is used to
confirm the estimates presented in Table 1. For example, for N = 4 and / = 30%, the

Table 2. Estimates of the effective bulk modulus: Galerkin approximations, N = 4.

Void volume Two-term approximation Three-term approximation
fraction, /

(%) K*/K e*/e° C° C1 K*/K e*/e°

5 0.904 2.131 3.635 - 2.006 0.902 2.169 1.120 5.948 - 5.687
10 0.831 2.033 3.287 -1.672 0.829 2.065 0.766 6.414 -5.853
15 0.775 1.938 2.991 -1.403 0.773 1.961 0.847 5.491 -5.007
20 0.731 1.836 2.791 -1.273 0.729 1.857 0.757 5.272 -4.758
25 0.696 1.743 2.598 -1.140 0.694 1.760 0.734 4.871 -4.378
30 0.667 1.662 2.411 -0.999 0.665 1.676 0.723 4.450 - 3.975
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Table 3. Estimates of the effective shear modulus: the simplest
approximation, Eqs. (3.6) and (4.8).

Void volume
fraction, /

(%) N = 4 N = 10 N = 25 AT = 45

5 0.941 0.917 0.915 0.914
10 0.888 0.847 0.844 0.843
15 0.841 0.789 0.786 0.785
20 0.800 0.742 0.738 0.737
25 0.763 0.702 0.699 0.698
30 0.731 0.670 0.667 0.666

simplest approximation gives K*/K = 0.670, whereas our complete solution gives
K*/K = 0.664.

The simplest approximation is actually a one-term Galerkin estimate, as is seen by
comparing Eq. (3.5) with (3.12) and (3.13). In Table 2 the estimates for the effective bulk
modulus obtained by two- and three-term Galerkin approximations, are summarized for
N = 4. As is seen, again the simplest approximation reported in Table 1 appears quite
adequate.

The estimates of the effective shear modulus obtained by the simplest approximation,
Eqs. (3.6) and (4.8), are presented in Table 3 for various values of N. Here the rate of
convergence of the infinite series involved follows essentially the same pattern as that
displayed in Table 1. In Table 4 we have compared the results of Eqs. (3.6) and (4.8) with
those of (3.7) and (4.9) for N = 4. The corresponding estimates by the three-term Galer-
kin approximation are given in Table 5. Finally, Table 6 summarizes for N = 4 the
estimates obtained by means of the complete solution method of Sec. 3.4.

An examination of these numerical results reveals that the basic method is indeed
very effective and that, in all cases, the simplest approximation provides adequate
estimates.

Table 4. Estimates of the effective shear modulus: the simplest approxi-
mation, N = 4.

Void volume Eqs. (3.6) and (4.8)t Eqs. (3.7) and (4.9)J
fraction, /    

(%) l**/p £*/e°

5 0.941 1.263 0.950 1.064
10 0.888 1.265 0.904 1.069
15 0.841 1.263 0.862 1.066
20 0.800 1.254 0.825 1.062
25 0.763 1.242 0.791 1.058
30 0.731 1.229 0.760 1.053

t Simple shear: if | . J Simple shear: I

I
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Table 5. Estimates of the effective shear modulus: three-term Galerkin approximations, N = 4.

Void volume Simple shear: |[ J Simple shear:
fraction,/

(%)
H*/H ej2/e°12 C° C' C2 n*ln £*/«° C° C' C2

5 0.940 1.268 0.994 1.324 —1.198 0.950 1.064 1.074 0.088 -0.125
10 0.887 1.269 1.025 1.184 -1.073 0.903 1.069 1.092 0.073 -0.130
15 0.840 1.266 1.070 0.992 -0.913 0.862 1.067 1.097 0.068 -0.135
20 0.799 1.257 1.066 0.981 -0.909 0.825 1.063 1.096 0.062 -0.134
25 0.763 1.244 1.074 0.918 -0.864 0.791 1.058 1.092 0.057 -0.128
30 0.730 1.232 1.085 0.840 - 0.806 0.760 1.054 1.083 0.064 - 0.128

In Figs. 2 and 3 we have presented the effective bulk and shear moduli, respectively,
and compared our results with those of previous investigations, as indicated.7 MacKen-
zie's solution does not include void interaction, whereas the solutions given by Afzali and
Nemat-Nasser, while approximate, do include to a certain extent the interaction effects.
The present results, on the other hand, take into account the interaction effects com-
pletely. It is seen that the void interaction has a strengthening effect on the overall behavior
of the solid, as would be expected. The curves in Figs. 2 and 3 labeled NONINTERACT-
ING VOIDS were obtained on the basis of the Eshelby solution for a single void in an
infinite medium. In all the above-mentioned results, the Poisson ratio for the matrix is set
equal to 0.3.

It should be noted that the authors mentioned in Figs. 2 and 3 have considered
elastic media containing randomly distributed voids or inclusions, whereas here we have
examined the case of periodically distributed spherical voids, as also considered by Afzali
and Nemat-Nasser [11].

7 A brief discussion of these solutions is given in Appendix B.

Table 6. Estimates of the effective elastic
moduli: complete solution, N = 4.

Void volume n*/n
fraction, f  

(%) ' K*/K

5 0.902 0.940 0.924
10 0.828 0.887 0.868
15 0.772 0.840 0.824
20 0.727 0.799 0.786
25 0.692 0.762 0.753
30 0.664 0.730 0.725
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K*/K

10 20 30 40

VOID VOLUME FRACTION, f(%)

Fig. 2.

Appendix A. To obtain explicit expressions for the functions

gjg)= [ e~i4 x|x|"dx, a = 0, 1, 2, (A.l)

choose the spherical coordinates r, 0, and cp in Q, and observe that

dM) = -y | r1 + * sin dr. (A.2)
s Jo

Now, from (3.1), and using integration by parts, we arrive for ^ 0 at

^o(4) = 73 (sin cos RQ>
4n
I3
4 ng&) = Oi(-2 + 2 cos RZ + 2U sin Rq - R2? cos RQ, (A.3)

Ajt
g2(Z,) = —2-^5 (— 6 sin R£ + 6R£ cos R£ + 3R2£2 sin R/; - R3£3 cos R£)-

R £
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10 20 30 40

VOID VOLUME FRACTION, f(7.)

Fig. 3.

Appendix B. The Hashin-Shtrikman bounds are given by Eqs. (4.1)—(4.4) of [3].
For voids and when the Poisson ratio v is taken equal to 0.3, these bounds become

K* = li* = 0 — = 1 _ 1 ~f /R , \
L K 1 + 1.625/' n 1 + 0.9091/' * '

where the subscripts L and U refer to these authors' highest lower bound and the lowest
upper bound, respectively. The solution given by Kerner [2], on the other hand, yields

K* 1 -/ n* 1 -/

K i+£/ « .+v
(B.2)

which for v = 0.3 reduce to (B.l)3 4. In a similar way, MacKenzie's solution [1] can be
shown to be identical with (B.2) and (B.l)3 4.

The Hill-Budiansky solution [4, 5], in the present case, is given by

/ 1 "/
+ rrr;——— -= 1,3 K* , 3 K*1 - . 1 +- _ 1)

3K* + 4/j* 3K* + An* \K* J
f  1 -/

6 K* + 2/i* 6 K* + 2/i* / n \
5 3K* + 4/x* + 5 3K* + 4/i* \n* )

(B.3)
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which are, in general, coupled equations, requiring a numerical solution. When v = 1/2
(incompressible material), on the other hand, the equations are uncoupled, and one has

K' 4(l-2/Xl-/) X* 3(1-2/)
T" /<3-/> • ,B4)

In this case, i.e. for v = 0.5, we have K* = /i* = 0 for/= 0.5.
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