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Abstract Limited memory quasi-Newton methods and trust-region methods represent
two efficient approaches used for solving unconstrained optimization problems. A straight-
forward combination of them deteriorates the efficiency of the former approach, especially
in the case of large-scale problems. For this reason, the limited memory methods are usu-
ally combined with a line search. We show how to efficiently combine limited memory and
trust-region techniques. One of our approaches is based on the eigenvalue decomposition
of the limited memory quasi-Newton approximation of the Hessian matrix. The decom-
position allows for finding a nearly-exact solution to the trust-region subproblem defined
by the Euclidean norm with an insignificant computational overhead as compared with
the cost of computing the quasi-Newton direction in line-search limited memory methods.
The other approach is based on two new eigenvalue-based norms. The advantage of the
new norms is that the trust-region subproblem is separable and each of the smaller sub-
problems is easy to solve. We show that our eigenvalue-based limited-memory trust-region
methods are globally convergent. Moreover, we propose improved versions of the existing
limited-memory trust-region algorithms. The presented results of numerical experiments
demonstrate the efficiency of our approach which is competitive with line-search versions
of the L-BFGS method.

Keywords: Unconstrained Optimization; Large-scale Problems; Limited Memory Meth-
ods; Trust Region Methods; Shape-Changing Norm; Eigenvalue Decomposition.
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1 Introduction

We consider the following general unconstrained optimization problem

min
x∈Rn

f(x), (1)
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where f is assumed to be at least continuously differentiable. Line-search and trust-region
methods [14, 34] represent two competing approaches to solving (1). The cases when one
of them is more successful than the other are problem dependent.

At each iteration of the trust-region methods, a trial step is generated by minimizing a
quadratic model of f(x) within a trust region. The trust-region subproblem is formulated,
for the k-th iteration, as follows:

min
s∈Ωk

gTk s+
1

2
sTBks ≡ qk(s), (2)

where gk = ∇f(xk), and Bk is either the true Hessian in xk or its approximation. The
trust region is a ball of radius ∆k

Ωk = {s ∈ Rn : ‖s‖ ≤ ∆k}.

It is usually defined by a fixed vector norm, typically, scaled l2 or l∞ norm. If the trial
step provides a sufficient decrease of f(x), it is accepted, otherwise the trust-region radius
is decreased while keeping the same model function.

Worthy of mention are the following attractive features of the trust-region methods.
Firstly, they are able to take advantage of exploiting a negative curvature information
contained in Bk. They exhibit another important feature when the full quasi-Newton step
−B−1

k gk does not produce a sufficient decrease in f . This happens when the quadratic
model provides a relatively good prediction of f within a trust region of a radius ∆k <
‖ − B−1

k gk‖. Clearly, the accepted trial step provides a better predicted decrease of f
than the one provided within Ωk by the quasi-Newton direction. This gives the trust-
region methods a higher chance to produce a better actual reduction in f . Furthermore,
if Bk � 0 and it is ill-conditioned, the quasi-Newton search direction may be almost or-
thogonal to gk. This is an unfavorable case for the line-search methods. In contrast, the
direction of the vector s(∆k) that solves (2) approaches the direction of −gk when ∆k

decreases.

There exists a variety of approaches [14, 34, 39, 43] to approximately solving the trust-
region subproblem defined by the Euclidean norm. Depending on how accurately the
trust-region subproblem is solved, the methods are categorized as nearly-exact or inexact.

The class of inexact trust-region methods includes, e.g., the dogleg method [36, 37],
double-dogleg method [15], truncated conjugate gradient (CG) method [38, 40], Newton-
Lanczos method [26], subspace CG method [42] and two-dimensional subspace minimiza-
tion method [12].

Faster convergence, in terms of the number of iterations, is generally expected when the
trust-region subproblem is solved more accurately. Nearly-exact methods are usually based
on the optimality conditions, presented by Moré and Sorensen [31] for the Euclidean norm
used in (2). These conditions state that there exists a pair (s∗, σ∗) such that σ∗ ≥ 0 and

(Bk + σ∗I)s∗ = −gk,
σ∗(‖s∗‖2 −∆) = 0,

Bk + σ∗I � 0.
(3)
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In these methods, a nearly-exact solution is obtained by iteratively improving σ and solving
in s the linear system

(Bk + σI)s = −gk. (4)

The class of limited-memory quasi-Newton methods [3, 23, 24, 30, 33] is one of the most
effective tools used for solving large-scale problems, especially when the maintaining and
operating with dense Hessian approximation is costly. In these methods, a few pairs of
vectors

si = xi+1 − xi and yi = ∇f(xi+1)−∇f(xi) (5)

are stored for implicitly building an approximation of the Hessian, or its inverse, by using
a low rank update of a diagonal matrix. The number of such pairs is limited by m � n.
This allows for arranging efficient matrix-vector multiplications involving Bk and B−1

k .

For most of the quasi-Newton updates, the Hessian approximation admits a compact
representation

Bk = δkI + V T
k WkVk, (6)

where δk is a scalar, Wk ∈ Rm̄×m̄ is a symmetric matrix and Vk ∈ Rn×m̄. This is the main
property that will be exploited in this paper. The value of m̄ depends on the number of
stored pairs (5) and it may vary from iteration to iteration. Its maximal value depends on
the updating formula and equals, typically, m or 2m. To simplify the presentation and our
analysis, especially when specific updating formulas are discussed, we shall assume that
the number of stored pairs and m̄ equal to their maximal values.

So far, the most successful implementations of limited memory methods were associated
with line search. Nowadays, the most popular limited memory line-search methods are
based on the BFGS-update [34], named after Broyden, Fletcher, Goldfarb and Shanno.
The complexity of computing a search direction in the best implementations of these
methods is 4mn.

Line-search methods often employ the strong Wolfe conditions [41] that require addi-
tional function and gradient evaluations. These methods have a strong requirement of
positive definiteness of the Hessian matrix approximation, while trust-region methods,
as mentioned above, can even gain from exploiting information about possible negative
curvature. Moreover, the latter methods do not require gradient computation in unac-
ceptable trial points. Unfortunately, any straightforward embedding of limited memory
quasi-Newton techniques in the trust-region framework deteriorates the efficiency of the
former approach.

The existing refined limited memory trust-region methods [10, 19, 20, 29] typically use
the limited-memory BFGS updates (L-BFGS) for approximating the Hessian and the
Euclidean norm for defining the trust region. In the double-dogleg approach by Kaufman
[29], the Hessian and its inverse are simultaneously approximated using the L-BFGS in
a compact representation [11]. The cost of one iteration for this inexact approach varies
from 4mn+O(m2) to O(n) operations depending on whether the trial step was accepted
at the previous iteration or not. Using the same compact representation, Burke et al.
[10] proposed two versions of implementing the Moré-Sorensen approach [31] for finding a
nearly-exact solution to the trust-region subproblem. The cost of one iteration varies from
2mn+O(m3) to either 2m2n+ 2mn+O(m3) or 6mn+O(m2) operations, depending on
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how the updating of Bk is implemented. Recently Erway and Marcia [18, 19, 20] proposed
a new technique for solving (4), based on the unrolling formula of L-BFGS [11]. In this
case, the cost of one iteration of their implementation [20] is O(m2n) operations. In the
next sections, we describe the aforementioned limited memory trust-region methods in
more detail and compare them with those we propose here.

The aim of this paper is to develop new approaches that would allow for effectively com-
bining the limited memory and trust region techniques. They should break a wide-spread
belief that such combinations are less efficient than the line-search-based methods.

We focus here on the quasi-Newton updates that admit a compact representation (6). It
should be underlined that a compact representation is available for the most of quasi-
Newton updates, such as BFGS [11], symmetric rank-one (SR1) [11] and multipoint sym-
metric secant approximations [8], which contain the Powell-symmetric-Broyden (PSB)
update [37] as a special case. Most recently, Erway and Marcia [21] provided a compact
representation for the entire Broyden convex class of updates.

We begin in Section 2 with showing how to efficiently compute, at a cost of O(m̄3) oper-
ations, the eigenvalues of Bk with implicitly defined eigenvectors. For the case when the
trust region is defined by the Euclidean norm, and the implicit eigenvalue decomposition
is available, we show in Section 3 how to find a nearly-exact solution to the trust-region
subproblem at a cost of 2m̄n+O(m̄) operations. The idea of using the eigenvalue decom-
position for limited memory methods was originally introduced in [7, 9], and then success-
fully exploited in [2, 21, 22]. In Section 4, we introduce two new norms which leans upon
the eigenvalue decomposition of Bk. The shape of the trust region defined by these norms
changes from iteration to iteration. The new norms allow for decomposing the correspond-
ing trust-region subproblem into a set of easy-to-solve quadratic programming problems.
For one of the new norms, the exact solution to the trust-region subproblem is obtained
in closed form. For the other one, the solution is reduced to a small m̄-dimensional trust-
region subproblem in the Euclidean norm. In Section 5, a generic trust-region algorithm
is presented, which is used in the implementation of our algorithms. In Section 6, global
convergence is proved for eigenvalue-based limited memory methods. In Sections 2-6, Bk

is not required to be positive definite. The rest of the paper is focused on specific positive
definite quasi-Newton updates, namely, L-BFGS. For this case, we develop in Section 7
an algorithm, in which the computational cost of one iteration varies from 4mn + O(m3)
to 2mn+O(m2) operations, depending on whether the trial step was accepted at the pre-
vious iteration or not. This means that the highest order term in the computational cost
is the same as for computing the search direction in the line-search L-BFGS algorithms.
In Section 8, we propose improved versions of the limited memory trust-region algorithms
[10, 29]. The results of numerical experiments are presented in Section 9. They demon-
strate the efficiency of our limited memory trust-region algorithms. We conclude our work
and discuss future direction in Section 10.
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2 Spectrum of limited-memory Hessian approxima-

tion

Consider the trust-region subproblem (2), in which we simplify notations by dropping the
subscripts, i.e., we consider

min
s∈Ω

gT s+
1

2
sTBs ≡ q(s). (7)

It is assumed in this paper that the Hessian approximation admits the compact represen-
tation (6), that is,

B = δI + VWV T , (8)

where W ∈ Rm̄×m̄ is a symmetric matrix and V ∈ Rn×m̄. The main assumption here is
that m̄ � n. It is natural to assume that the scalar δ is positive because there are, in
general, no special reasons to base the model q(s) on the hypothesis that the curvature of
f(x) is zero or negative along all directions orthogonal to the columns of V .

Below, we demonstrate how to exploit compact representation (8) and efficiently compute
eigenvalues of B. For trust regions of a certain type, this will permit us to easily solve the
trust-region subproblem (7).

Suppose that the Cholesky factorization V TV = RTR is available, where R ∈ Rm̄×m̄ is
upper triangular. The rank of V , denoted here by r, is equal to the number of nonzero
diagonal elements of R. Let R† ∈ Rr×m̄ be obtained from R by deleting the rows that
contain zero diagonal elements, and let R‡ ∈ Rr×r be obtained by additionally deleting
the columns of R of the same property. Similarly, we obtain V† ∈ Rn×r by deleting the
corresponding columns of V . Consider the n× r matrix

Q = V†R
−1
‡ . (9)

Its columns form an orthonormal basis for the column space of both V† and V . The
equality

V = QR† (10)

can be viewed as the rank revealing QR (RRQR) decomposition of V [1, Theorem 1.3.4].

By decomposition (10), we have

B = δI +QR†WRT
† Q

T ,

where the matrix R†WRT
† ∈ Rr×r is symmetric. Consider its eigenvalue decomposition

R†WRT
† = UDUT , where U ∈ Rr×r is orthogonal and D ∈ Rr×r is a diagonal matrix

composed of the eigenvalues (d1, d2, . . . , dr). Denote P‖ = QU ∈ Rn×r. The columns
of P‖ form an orthonormal basis for the column space of V . This yields the following
representation of the quasi-Newton matrix:

B = δI + P‖DP
T
‖ .

Let P⊥ ∈ Rn×(n−r) define the orthogonal complement to P‖. Then P = [P‖ P⊥] ∈ Rn×n is
an orthogonal matrix. This leads to the eigenvalue decomposition:

B = P

(
Λ 0
0 δIn−r

)
P T , (11)
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where Λ = diag(λ1, λ2, . . . , λr) and λi = δ + di, i = 1, . . . , r. From (11), we conclude that
the spectrum of B consists of:

• r eigenvalues λ1, λ2, . . . , λr with the eigenspace defined by P‖;

• (n− r) identical eigenvalues δ with the eigenspace defined by P⊥.

Thus, B has at most r + 1 distinct eigenvalues that can be computed at a cost of O(r3)
operations for the available W and RRQR decomposition of V .

In our implementation, we do not explicitly construct the matrix Q, but only the triangular
matrix R, which is obtained from the aforementioned Cholesky factorization of the m̄× m̄
Gram matrix V TV at a cost of O(m̄3) operations [25]. The complexity can be decreased to
O(m̄2) if the Cholesky factorization is updated after each iteration by taking into account
that the current matrix V differs from the previous one by at most two columns. We
show in Section 7.3 how to update V TV at m̄n+O(m̄2) operations. Although this will be
shown for the L-BFGS update, the same technique works for the other limited memory
quasi-Newton updates that admit the compact representation (8). Any matrix-vector
multiplications involving Q are implemented using the representation (9). For similar
purposes, we make use of the representation

P‖ = V†R
−1
‡ U. (12)

In contrast to the eigenvalues that are explicitly computed, the eigenvectors are not com-
puted explicitly. Therefore, we can say that the eigenvalue decomposition of B (11) is
defined implicitly. The matrices P , P‖ and P⊥ will be involved in presenting our approach,
but they are not used in any of our algorithms.

In the next section, we describe how to solve the trust-region subproblem (7) in the
Euclidean norm by exploiting the implicit eigenvalue decomposition of B.

3 Trust-region subproblem in the Euclidean norm

It is assumed here that Ω = {s ∈ Rn : ‖s‖2 ≤ ∆}. To simplify notation, ‖ · ‖ denotes
further the Euclidean vector norm and the induced matrix norm.

The Moré-Sorenson approach [31] seeks for an optimal pair (s∗, σ∗) that satisfies conditions
(3). If B � 0 and the quasi-Newton step sN = −B−1g ∈ Ω, then sN solves the trust-region
subproblem. Otherwise, its solution is related to solving the equation

φ(σ) = 0, (13)

where φ(σ) = 1/∆− 1/‖s‖ and s = s(σ) is the solution to the linear system

(B + σI)s = −g. (14)
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In the standard Moré-Sorenson approach, the Cholesky factorization of B+σI is typically
used for solving (14). To avoid this computationally demanding factorization, we take
advantage of the implicitly available eigenvalue decomposition of B (11), which yields:

B + σI = P

(
Λ + σIr 0

0 (δ + σ)In−r

)
P T .

Consider a new n-dimensional variable defined by the orthogonal matrix P as

v = P T s =

(
v‖
v⊥

)
∈ Rn, (15)

where v‖ = P T
‖ s ∈ Rr and v⊥ = P T

⊥s ∈ Rn−r. Then equation (14) is reduced to{
(Λ + σIr)v‖ = −g‖

(δ + σ)v⊥ = −g⊥
, (16)

where g‖ = P T
‖ g ∈ Rr and g⊥ = P T

⊥g ∈ Rn−r. For the values of σ that make this system

nonsingular, we denote its solution by v(σ). Since ‖s‖ = ‖v‖, the function φ(σ) in (13)
can now be defined as φ(σ) = 1/∆− 1/‖v(σ)‖.

Let λmin stand for the smallest eigenvalue of B. Let Pmin be the set of columns of P that
span the subspace corresponding to λmin. We denote v∗ = P T s∗ and seek now for a pair
(v∗, σ∗) that solves (16). Conditions (3) require also that

σ∗(‖v∗‖ −∆) = 0 and σ∗ ≥ max (0,−λmin) . (17)

We shall show how to find a pair with the required properties separately for each of the
following two cases.

Case I: λmin > 0 or ‖P T
ming‖ 6= 0.

Here if λmin > 0 and ‖v(0)‖ ≤ ∆, we have v∗ = v(0) and σ∗ = 0. Otherwise,

σ∗ > max (0,−λmin) . (18)

Then equation (13) is solved by Newton’s root-finding algorithm [31], where each iteration
takes the form

σ ← σ − φ(σ)

φ′(σ)
= σ − (‖v(σ)‖ −∆) · ‖v(σ)‖2

∆ · vT (σ)v′(σ)
. (19)

For this formula, equation (16) yields

‖v(σ)‖2 = gT‖ (Λ + σIr)
−2g‖ + (δ + σ)−2‖g⊥‖2 (20)

and

vT (σ)v′(σ) = −vT (σ)

(
Λ + σIr 0

0 (δ + σ)In−r

)−1

v(σ)

= −gT‖ (Λ + σIr)
−3g‖ − (δ + σ)−3‖g⊥‖2. (21)

It is easy to control the iterates from below by making use of the property (18), which
guarantees that the diagonal matrices Λ+σIr and (δ+σ)In−r are nonsingular. In practice,

8



just a pair of iterations (19) are often sufficient for solving (13) to an appropriate accuracy
[34]. For the obtained approximate value σ∗, the two blocks that compose v∗ are defined
by the formulas

v∗‖ = −(Λ + σ∗Ir)
−1g‖, (22)

v∗⊥ = −(δ + σ∗)−1g⊥. (23)

Case II: λmin ≤ 0 and ‖P T
ming‖ = 0.

Here λmin < 0 corresponds to the so-called hard case [31]. Since it was assumed that
δ > 0, we have λmin 6= δ. Let r̄ be the algebraic multiplicity of λmin. Suppose that the
eigenvalues are sorted in the way that λmin = λ1 = . . . = λr̄ < λi, for all i > r̄. Denote
v̄ = (vr̄+1, vr̄+2, . . . , vn)T . The process of finding an optimal pair (σ∗, v∗) is based on a
simple analysis of the alternatives in (16), which require that, for all 1 ≤ i ≤ r̄, either
λi + σ = 0 or (v‖)i = 0. It is associated with finding the unique solution of the following
auxiliary trust-region subproblem:

min
v̄∈Ω̄

r∑
i=r̄+1

(
(g‖)i(v‖)i +

λi − λmin

2
(v‖)

2
i

)
+ gT⊥v⊥ +

δ − λmin

2
‖v⊥‖2,

where Ω̄ = {v̄ ∈ Rn−r̄ : ‖v̄‖ ≤ ∆}. This subprolem corresponds to the already considered
Case I because its objective function is strictly convex. Let σ̄∗ and v̄∗ = (v∗r̄+1, v

∗
r̄+2, . . . , v

∗
n)T

be the optimal pair for the auxiliary subproblem. Denote

µ =

{
0, if λmin = 0,√

∆2 − ‖v̄∗‖2, if λmin < 0.

It can be easily verified that the pair

σ∗ = −λmin + σ̄∗, v∗ = (µ, 0, . . . , 0,︸ ︷︷ ︸
r̄

v∗r̄+1, . . . , v
∗
n)T

satisfies the optimality conditions (16) and (17). The vector v∗⊥ is defined by formula (23),
but as one can see below, it is not necessary to compute this vector. The same refers to
v∗⊥ in Case I.

In each of the cases, we compute, first,

g‖ = UTR−T‡ V T
† g. (24)

It is then used for finding ‖g⊥‖ from the relation

‖g⊥||2 = ‖g‖2 − ‖g‖‖2, (25)

which follows from the orthogonality of P represented as

P⊥P
T
⊥ = I − P‖P T

‖ . (26)

The described procedure of finding σ∗ and v∗‖ produces an exact or nearly-exact solution

to the trust-region subproblem (7). This solution is computed using (15), (23) and (26) as

s∗ = P‖v
∗
‖ + P⊥v

∗
⊥ = P‖v

∗
‖ − (δ + σ∗)−1P⊥P

T
⊥g

= −(δ + σ∗)−1g + P‖
(
v∗‖ + (δ + σ∗)−1g‖

)
. (27)
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The presented eigenvalue-based approach to solving the trust-region subproblem has the
following attractive feature. Once the eigenvalues of B are computed, in Case I, formula
(24) requires m̄n + O(m̄2) operations1, and formulas (20) and (21) require O(m̄) opera-
tions per iteration to approximately solve (13). The computation of v∗‖ by formula (22)

requires O(m̄) operations. In Case II, the computation of σ∗ and v∗‖ has the same order of

complexity. The computation of s∗ by formula (27) requires a few additional matrix-vector
multiplications for P‖ defined by (12). The associated cost is m̄n+O(m̄2).

In the next section, we introduce an alternative eigenvalue-based approach to solving the
trust-region subproblem.

4 Trust-region subproblem in eigenvalue-based norms

We consider here the trust-region subproblem (7) defined by the norms introduced below.
All constituent parts of the compact representation (8) are assumed to be available.

4.1 Eigenvalue-based decomposition of the model function

Observe that the new variable defined by (15) allows us to decompose the objective func-
tion in (7) as

qP (v) ≡ q(Pv) = q(P‖v‖ + P⊥v⊥) = q‖(v‖) + q⊥(v⊥), (28)

where

q‖(v‖) = gT‖ v‖ +
1

2
vT‖ Λv‖ =

r∑
i=1

(
(g‖)i(v‖)i +

λi
2

(v‖)
2
i

)
, (29)

q⊥(v⊥) = gT⊥v⊥ +
δ

2
‖v⊥‖2. (30)

It should be noted that when the trust region is defined by the standard norms like l2 or
l∞, this decomposition does not give any advantage, in contrast to the case of the new
norms proposed below.

4.2 New norms and related subproblem properties

In this subsection, we introduce two nonstandard norms to define the trust region. The
new norms enable us to decompose the original trust-region subproblem into a set of
smaller subproblems, which can be easily solved. For one of the new norms, the solution
can be written in closed form.

1Here and in other estimates of computational complexity, it is assumed that r = m̄. This corresponds
to the maximal number of arithmetic operations.
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4.2.1 Shape changing norms

To exploit separability of the objective function, we introduce the following norms:

‖s‖P,∞ ≡ max
(
‖P T
‖ s‖∞, ‖P T

⊥s‖
)
, (31)

‖s‖P,2 ≡ max
(
‖P T
‖ s‖, ‖P T

⊥s‖
)
. (32)

Recall that ‖ · ‖ stands for the Euclidean norm. It can be easily verified that (31) and
(32) do satisfy the vector norm axioms. Since P changes from iteration to iteration, we
refer to them as shape-changing norms. The following result establishes a norm equivalence
between the new norms and the Euclidean norm with the equivalence factors not depending
on P .

Lemma 1 For any vector x ∈ Rn and orthogonal matrix P = [P‖ P⊥] ∈ Rn×n, where
P‖ ∈ Rn×r and P⊥ ∈ Rn×(n−r), the following inequalities hold:

‖x‖√
r + 1

≤ ‖x‖P,∞ ≤ ‖x‖ (33)

and
1√
2
‖x‖ ≤ ‖x‖P,2 ≤ ‖x‖. (34)

Here, the lower and upper bounds are attainable.

Proof. We start by justifying the lower bound in (34). The definition (32) gives ‖P T
‖ x‖2 ≤

‖x‖2
P,2 and ‖P T

⊥x‖2 ≤ ‖x‖2
P,2. Then we have

‖x‖2 = ‖P Tx‖2 = ‖P T
‖ x‖2 + ‖P T

⊥x‖2 ≤ 2‖x‖2
P,2, (35)

which establishes the first of the bounds (34). Further, the inequality above becomes
an equality for every x that satisfies ‖P T

‖ x‖ = ‖P⊥x‖, which shows that this bound is
attainable.

Due to (35), the second inequality in (34) obviously holds. Notice that it holds with
equality for any x that satisfies P T

‖ x = 0.

Consider now the norm (31). Since ‖P T
‖ x‖∞ ≤ ‖P T

‖ x‖, we have ‖x‖P,∞ ≤ ‖x‖P,2. Then

the upper bound in (33) follows from (34). This bound is attainable for the same choice
of x as above.

It remains to justify the lower bound in (33). Using the norm definition (31) and the
relations between l2 and l∞ norms, we get

‖x‖2
P,∞ ≥ ‖P T

‖ x‖2
∞ ≥

1

r
‖P T
‖ x‖2 ,

‖x‖2
P,∞ ≥ ‖P T

⊥x‖2 .

Due to (35), these inequalities imply

(r + 1)‖x‖2
P,∞ ≥ ‖P T

‖ x‖2 + ‖P T
⊥x‖2 = ‖x‖2.
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This proves the first inequality in (33). It holds with equality for every x that satisfies
‖P T
‖ x‖∞ = ‖P⊥x‖. This accomplishes the proof of the lemma.

It should be emphasized that the bounds in (33) and (34) do not depend on n. Moreover,
according to Lemma 1, the norm (32), in contrast to the l∞ norm, does not differ too much
from the l2 norm in the sense of their ratio. The same refers to the other shape-changing
norm when r is sufficiently small. For r = 10, which is a typical value in our numerical
experiments, the norm (31) is not less than approximately one third of the l2 norm.

4.2.2 Subproblem separability for the new norms

For the norm (31), the trust region Ω is defined by the inequalities

‖s‖P,∞ ≤ ∆ ⇐⇒
{
|(v‖)i| ≤ ∆, i = 1, . . . , r,
‖v⊥‖ ≤ ∆.

By combining this with the separability of the model function (28), (29), (30), we get the
following separability of the trust-region subproblem:

min
‖s‖P,∞≤∆

q(s) =
r∑
i=1

min
|(v‖)i|≤∆

(
(g‖)i(v‖)i +

λi
2

(v‖)
2
i

)
(36)

+ min
‖v⊥‖≤∆

(
gT⊥v⊥ +

δ

2
‖v⊥‖2

)
.

We can write the solution to each of these subproblems in closed form as

(v∗‖)i =


− 1
λi

(g‖)i , if |(g‖)i| ≤ λi∆, λi > 0,

ζ , if (g‖)i = 0, λi ≤ 0,
− ∆
|(g‖)|i (g‖)i , otherwise,

i = 1, . . . , r; (37)

v∗⊥ = −tg⊥, (38)

where ζ = ±∆ for λi < 0, ζ ∈ [−∆,∆] for λi = 0 and

t =

{ 1
δ
, if ‖g⊥‖ ≤ δ∆,
∆
‖g⊥‖

, otherwise.
(39)

In the original space, the corresponding optimal solution s∗ is calculated as

s∗ = Pv∗ = P‖v
∗
‖ + P⊥v

∗
⊥,

where P⊥v
∗
⊥ = −tP⊥P T

⊥g. Recalling (26), we finally obtain

s∗ = −tg + P‖(v
∗
‖ + tg‖). (40)

Here the cost of computing v∗‖ by (37) is O(m̄). The formulas for P‖ (12) and g‖ (24)

suggest that the dominant cost in (40) is determined by two matrix-vector multiplica-
tions involving V†. This requires 2m̄n operations. Hence, the overall cost of solving the
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trust-region subproblem defined by norm (31) is essentially the same as for the Euclidean
norm (see Section 3). The advantage of the new norm (31) over the Euclidean norm is
a decomposition of the trust-region subproblem that yields the closed-form solution (40)
without invoking any iterative procedure.

Consider now the trust region defined by the norm (32). In this case, the trust-region
subproblem is decomposed into the two subproblems:

min
‖s‖P,2≤∆

q(s) = min
‖v‖‖≤∆

(
gT‖ v‖ +

1

2
vT‖ Λv‖

)
+ min
‖v⊥‖≤∆

(
gT⊥v⊥ +

δ

2
‖v⊥‖2

)
. (41)

Here, the first subproblem is a low-dimensional case of problem (7). It can be easily
solved by any standard trust-region method [14], especially because Λ is diagonal. In
case of truncated conjugate gradient method, it requires only a few simple operations
with r-dimensional vectors per one CG iteration. For the dogleg method, it is required to
compute the quasi-Newton step −Λ−1g‖ and the steepest descent step −µ‖g‖, where µ‖ =
gT‖ Λg‖/g

T
‖ g‖. These operations require O(m̄) multiplications. Moreover, the procedure

described in Section 3 can be easily adapted for the purpose of finding a nearly-exact
solution v∗‖ to the first subproblem.

The second subproblem in (41) is the same as in (36) with the optimal solution v∗⊥ defined
by formulas (38) and (39). Then one can show, as above, that the solution to (41) is
of the form (40). The same formula is applied to finding an approximate solution to
the trust-region subproblem (41) when v∗‖ represents an approximate solution to the first
subproblem.

5 Algorithm

In Algorithm 1, we present a generic trust-region framework [14] in the form close to our
implementation (see Section 9 for details). In this algorithm, the trust-region subproblem
(2) is assumed to be defined by a vector norm ‖ · ‖k. This norm may differ from the
Euclidean norm, and moreover, it may change from iteration to iteration, like the norms
(31) and (32).

We say that the trust-region subproblem is solved with sufficient accuracy, if there exists
a scalar 0 < c < 1 such that the inequality

qk(sk) ≤ −c‖gk‖2 min

(
1

‖Bk‖
,

∆

‖gk‖k

)
holds for all k ≥ 0. In other words, the model decrease is at least a fixed fraction of that
attained by the Cauchy point [14]. The sufficient accuracy property plays an important
role in proving global convergence of inexact trust-region methods.

6 Convergence Analysis

In Algorithm 1, we assume that if the norm is defined by (31), then the exact solution
is found as described in Section 4.2.2. In case of norm (32), we assume that the first

13



Algorithm 1 Trust-Region Method

Require: x0 ∈ Rn, ∆0 > 0, ε > 0, δ0 > 0, 0 ≤ τ1 < τ2 < 0.5 < τ3 < 1,
0 < c1 < c2 ≤ 0.5 < c3 < 1 < c4

Compute g0 and B0 = δ0I
for k = 0, 1, 2, . . . do

if ‖gk‖ ≤ ε then
return

end if
Find sk that solves (2) with sufficient accuracy

Compute the ratio ρk = f(xk+sk)−f(xk)
qk(sk)

if ρk≥ τ1 then
xk+1 = xk + sk
Compute gk+1 and update Bk+1

else
xk+1 = xk

end if
if ρk < τ2 then

∆k+1 = min (c1∆k, c2‖sk‖k)
else

if ρk ≥ τ3 and ‖sk‖k ≥ c3∆k then
∆k+1 = c4∆k

else
∆k+1 = ∆k

end if
end if

end for
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subproblem in (41) is solved with sufficient accuracy and the second subproblem is solved
exactly. This, according to the following result, guarantees that the whole trust-region
subproblem is solved with sufficient accuracy.

Lemma 2 Let v = (v‖, v⊥)T be a solution to the trust-region subproblem (41), such that

q‖(v‖) ≤ −c0‖g‖‖min

(
‖g‖‖
‖Λ‖

,∆

)
(42)

for some 0 < c0 < 1 and v⊥ is the exact solution to the second subproblem defined by (38)
and (39). Suppose that g 6= 0, then

qP (v) ≤ −c‖g‖2 min

(
1

‖B‖
,

∆

‖g‖P,2

)
, (43)

where c = min(c0,
1
2
).

Proof. Since v⊥ is the Cauchy point for the second subproblem, the following inequality
holds (see, e.g., [34, Lemma 4.3]):

q⊥(v⊥) ≤ −1

2
‖g⊥‖min

(
‖g⊥‖
|δ|

,∆

)
. (44)

Since P is orthogonal, the eigenvalue decomposition of B (11) implies

‖B‖ =

∥∥∥∥ Λ 0
0 δIn−r

∥∥∥∥ = max (‖Λ‖, |δ|) . (45)

By the norm definition (32), we have ‖g‖P,2 = max(‖g‖‖, ‖g⊥‖). This formula along with
(42), (44) and (45) yield

q‖(v‖) ≤ −c‖g‖‖min

(
‖g‖‖
‖B‖

,∆
‖g‖‖
‖g‖P,2

)
= −c‖g‖‖2 min

(
1

‖B‖
,

∆

‖g‖P,2

)
,

q⊥(v⊥) ≤ −c‖g⊥‖min

(
‖g⊥‖
‖B‖

,∆
‖g⊥‖
‖g‖P,2

)
= −c‖g⊥‖2 min

(
1

‖B‖
,

∆

‖g‖P,2

)
.

Combining these inequalities with (25), we finally obtain the inequality

q‖(v‖) + q⊥(v⊥) ≤ −c‖g‖2 min

(
1

‖B‖
,

∆

‖g‖P,2

)
.

Then the trust-region decomposition (28) implies (43). This accomplishes the proof.

Corollary 3 If inequality (42) holds for all k ≥ 0, where c0 does not depend on k, then
the trust-region subproblem (41) is solved with sufficient accuracy.
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Although the shape of the trust region defined by the new norms changes from iteration
to iteration, it turns out that Algorithm 1, where the trust region subproblem is solved
as proposed in Section 4.2.2, converges to a stationary point. This fact is justified by the
following result.

Theorem 4 Let f : Rn → R be twice-continuously differentiable and bounded from below
on Rn. Suppose that there exists a scalar c1 > 0 such that

‖∇2f(x)‖ ≤ c1

for all x ∈ Rn. Consider the infinite sequence {xk} generated by Algorithm 1, in which the
norm ‖ · ‖k is defined by any of the two formulas (31) or (32), and the stopping criterion
is suppressed. Suppose also that there exists a scalar c2 > 0 such that

‖Bk‖ ≤ c2, ∀k ≥ 0. (46)

Then
lim
k→∞
‖∇f(xk)‖ = 0. (47)

Proof. By Lemma 1, there holds the equivalence between the norms ‖·‖k and the Euclidean
norm where the coefficients in the lower and upper bounds do not depend on k. Moreover,
Algorithm 1 explicitly requires that the trust-region subproblem is solved with sufficient
accuracy. All this and the assumptions of the theorem allow us to apply here Theorem
6.4.6 in [14] which proves the convergence (47).

In the case of convex f(x), Theorem 4 holds for the L-BFGS updates due to the bound-
edness of Bk established, i.e., in [33].

Suppose now that f(x) is not necessarily convex. Consider the boundedness of Bk for the
limited memory versions of BFGS, SR1 and stable multipoint symmetric secant updates
[4, 5, 6, 8]. Let Kk denote the sequence of the iteration indexes of those pairs {si, yi}
that are involved in generating Bk starting from an initial Hessian approximation B0

k. The
number of such pairs is assumed to be limited by m, i.e.

|Kk| ≤ m. (48)

In L-BFGS, the positive definiteness of Bk can be enforced by composing Kk of only those
indexes of the recently generated pairs {si, yi} that satisfy the inequality

sTi yi > c3‖si‖‖yi‖ (49)

for a positive constant c3 (see [34]). This requirement permits us to show in the following
lemma that the boundedness of Bk, and hence Theorem 4, hold in the nonconvex case.

Lemma 5 Suppose that the assumptions of Theorem 4 concerning f(x) are satisfied. Let
all Bk be generated by the L-BFGS updating formula. Let the updating start at each
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iteration from B0
k and involve the pairs {si, yi}i∈Kk

, whose number is limited in accordance
with (48). Suppose that there exists a constant c3 ∈ (0, 1) such that, for all k, (49) is
satisfied. Suppose also that there exists a constant c4 > 0 such that the inequality

‖B0
k‖ ≤ c4, ∀k ≥ 0, (50)

holds with the additional assumption that B0
k is positive semi-definite. Then there exists a

constant c2 > 0 such that (46) holds.

Proof. For each i ∈ Kk, the process of updating by the L-BFGS formula the current
Hessian approximation B (initiated with B0

k) can be presented as follows

Bnew = B
1
2

(
I − B

1
2 sis

T
i B

1
2

‖B 1
2 si‖2

)
B

1
2 +

yiy
T
i

sTi yi
.

This equation along with inequality (49) give

‖Bnew‖ ≤ ‖B‖+
‖yi‖
c3‖si‖

,

where in accordance with the boundedness of ∇xxf(x) we have ‖yi‖ ≤ c1‖si‖. After
summing these inequalities over all i ∈ Kk, we obtain the inequality

‖Bk‖ ≤ ‖B0
k‖+mc1/c3,

which, due to (50), finally proves inequality (46) for c2 = c4 +mc1/c3.

The boundedness of Bk generated by SR1 and stable multipoint symmetric secant updates
will be proved in a separate paper, which will be focused on the case of nonconvex f(x).

To guarantee the boundedness of Bk generated by the limited memory version of SR1, we
require that the pairs {si, yi}i∈Kk

satisfy, for a positive constant c3, the inequality

|sTi (yi −Bsi)| > c3‖si‖‖yi −Bsi‖,

where B is the intermediate matrix to be updated based on the pair {si, yi} in the process
of generating Bk. This makes the SR1 updates well defined (see [13, 34]).

The stable multipoint symmetric secant updating process is organized in the way that a
uniform linear independence of the vectors {si}i∈Kk

is maintained. The Hessian approxi-
mations Bk are uniquely defined by the equations

sTi Bksj = sTi yj, pTBksl = pTyl, pTBkp = pTB0
kp, (51)

which hold for all i, j, l ∈ Kk, i < j, and also for all p ∈ Rn, such that pT st = 0 for all
t ∈ Kk. The boundedness of the generated approximations Bk in the case of nonconvex
f(x) follows from the mentioned uniform linear independence and equations (51).

17



7 Implementation details for L-BFGS

In this section, we consider the Hessian approximation B in (7) defined by the L-BFGS
update [11]. It requires to store at most m pairs of vectors {si, yi} obtained at those of
the most recent iterations for which (49) holds. As it was mentioned above, the number
of stored pairs is assumed, for simplicity, to be equal to m. The compact representation
(8) of the L-BFGS update has the form

B = δI − [S Y ]

[
STS/δ L/δ
LT/δ −E

]−1 [
ST

Y T

]
, (52)

in which case m̄ = 2m. In terms of (8), the matrix V = [S Y ] is composed of the
stored pairs (5) in the way that the columns of S = [. . . , si, . . .] and Y = [. . . , yi, . . .] are
sorted in increasing iteration index i. The sequence of these indexes may have some gaps
that correspond to the cases, in which (49) is violated. The matrix W is the inverse of
a 2m × 2m-matrix, which contains a strictly lower triangular part of the matrix STY ,
denoted in (52) by L, and the main diagonal of STY , denoted by E.

At iteration k of L-BFGS, the Hessian approximation of Bk is determined by the stored
pairs {si, yi} and the initial Hessian approximation δkI. The most popular choice of the
parameter δk is defined, like in [34], by the formula

δk =
yTk yk
sTk yk

, (53)

which represents the most recent curvature information about the function.

7.1 Uniform representation of eigenvalue-based solutions

Recall that the approaches presented above rely on the implicitly defined RRQR decom-
position of V and eigenvalue decomposition of B. In this section, we show that each of the
eigenvalue-based solutions of the considered trust-region subproblems (7) can be presented
as

s∗ = −αg + V†p, (54)

where α is a scalar and
p = R−1

‡ U(v∗‖ + g‖).

The specific values of α and v∗‖ are determined by the norm defining the trust region and
the solution to the trust region subproblem.

Let us firstly consider the trust-region subproblem defined by the Euclidean norm. Due
to (12), we can rewrite formula (27) for a nearly-exact solution s∗ in the form (54), where
α = (δ + σ∗)−1.

Consider now the trust-region subproblem (36) defined by the norm (31). Its solution can
be represented in the form (54), where α stands for t defined by (39). Note that since the
Hessian approximations generated by the L-BFGS update are positive definite, the case
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of λi ≤ 0 in (37) is excluded. Therefore, the optimal solution to the first subproblem in
(36) is computed as v∗‖ = −Ag‖, where A ∈ Rr×r is a diagonal matrix defined as

Aii =

{
1
λi
, if |(g‖)i| ≤ λi∆,
∆
|(g‖)i| , otherwise.

When the trust region subproblem (41) is defined by the norm (32) and v∗‖ is an approxi-

mate solution to the first subproblem in (41), formula (54) holds for the same α = t.

In each of the considered three cases, the most expensive operations, 4mn, are the two
matrix-vector multiplications V T

† g and V†p. The linear systems involving the triangular
matrix R can be solved at a cost of O(m2) operations.

7.2 Model function evaluation

In Algorithm 1, the model function value is used to decide whether to accept the trial
step. Let s∗ denote a nearly-exact or exact solution to the trust-region subproblem. In
this subsection, we show how to reduce the evaluation of q(s∗) to cheap manipulations
with the available low-dimensional matrix V TV and vector V Tg. It is assumed that ‖g‖2

has also been calculated before the model function evaluation.

Consider, first, the trust-region subproblem defined by the Euclidean norm. Suppose that
s∗ is of the form (54) and satisfies (14) for σ∗ ≥ 0. Then

q(s∗) = gT s∗ − 1

2
(g + σ∗s∗)T s∗ =

1

2

(
gT s∗ − σ∗‖s∗‖2

)
(55)

=
1

2

(
−α‖g‖2 + pT (V T

† g)− σ∗‖s∗‖2
)
,

where ‖s∗‖2 is calculated by the formula

‖s∗‖2 = α2‖g‖2 − 2αpT (V T
† g) + pT (V T

† V†)p.

Thus, the most expensive operation in calculating q(s∗) is the multiplication of the matrix
V T
† V† by the vector p at a cost of O(m2) operations. Note that this does not depend on

whether the eigenvalue decomposition is used for computing s∗.

Consider now the trust-region subproblem defined by any of our shape-changing norms.
Let v∗‖ be the available solution to the first of the subproblems in (36) or (41), depending

on which norm, (31) or (32), is used. The separability of the model function (28) and
formulas (25), (38) give

q(s∗) = (g‖)
Tv∗‖ +

1

2
(v∗‖)

TΛv∗‖ +
(
t2δ/2− t

) (
‖g‖2 − ‖g‖‖2

)
.

One can see that only cheap operations with r-dimensional vectors are required for com-
puting q(s∗).

In the next subsection, we show how to exploit the uniform representation of the trust-
region solution (54) for efficiently implementing the L-BFGS update once the trial step is
accepted.
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7.3 Updating Hessian approximation

The updating of the Hessian approximation B is based on updating the matrices STS,
L and E in (52), which, in turn, is based on updating the matrix V TV . Restoring the
omitted subscript k, we note that the matrix Vk+1 is obtained from Vk by adding the new
pair {sk, yk}, provided that (49) holds, and possibly removing one of the old pairs. Hence,
the updating procedure for V T

k Vk requires computing V T
k sk and V T

k yk after computing sk.
The straightforward implementation would require 4mn operations. It is shown below
how to implement these matrix-vector products more efficiently.

Assuming that V Tg, V TV and p have already been computed, we conclude from formula
(54) that the major computational burden in

V T
k sk = V T s = −αV Tg + V TV†p (56)

is associated with computing (V TV†) · p at a cost of 4m2 multiplications. Recalling that
yk = gk+1 − gk, we observe that

V T
k yk = V T

k gk+1 − V T
k gk (57)

is a difference between two 2m-dimensional vectors, of which V T
k gk(= V Tg) is available

and V T
k gk+1 is calculated at a cost of 2mn operations. Then at the next iteration, the

vector V T
k+1gk+1 can be obtained from V T

k gk+1 at a low cost, because these two vectors
differ only in two components.

Thus, V T
k sk and V T

k yk can be computed by formulas (56) and (57) at a cost in which 2mn
is a dominating term. This cost is associated with computing V T

k gk+1 and allows for saving
on the next iteration the same 2mn operations on computing V T

k+1gk+1.

In the next subsection, we discuss how to make the implementation of our approaches
more numerically stable.

7.4 Numerical stability

Firstly, in our numerical experiments we observed that the Gram matrix V TV updated
according to (56) and (57) was significantly more accurate if we used normalized vectors
s/‖s‖ and y/‖y‖ instead of s and y, respectively. More importantly, the columns of R
produced by the Cholesky factorization are, in this case, also of unit length. This is crucial
for establishing rank deficiency of V in the way described below. It can be easily seen
that the compact representation of B (52) takes the same form for V composed of the
normalized vectors. To avoid 2n operations, the normalized vectors are actually never
formed, but the matrix-vector multiplications involving V are preceded by multiplying
the vector by a 2m× 2m diagonal matrix whose diagonal elements are of the form 1/‖s‖,
1/‖y‖.

Secondly, at the first 2m iterations, the matrix V is rank-deficient, i.e., r = rank(V ) < 2m.
The same may hold at the subsequent iterations. To detect linear dependence of the
columns of V , we used the diagonal elements of R. In the case of normalized columns,
Rii is equal to sinψi, where ψi is the angle between the i-th column of V and the linear
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subspace, generated by the columns 1, 2, . . . , i− 1. We introduced a threshold parameter
ν ∈ (0, 1). It remains fixed for all k, and only those parts of V and R, namely, V†, R† and
R‡, which correspond to |Rii| > ν, were used for computing s∗.

7.5 Computational complexity

The cost of one iteration is estimated as follows. The Cholesky factorization of V TV ∈
R2m×2m requires O(m3) operations, or only O(m2) if it is taken into account that the new
V differs from the old one in a few columns. Computing R†WRT

† ∈ R2m×2m, where W is
the inverse of a 2m× 2m matrix, takes O(m3) operations. The eigenvalue decomposition

for R†WRT
† costs O(m3). Note that O(m3) =

(
m2

n

)
O(mn) is only a small fraction of mn

operations when m � n. Since V Tg is available from the updating of B at the previous
iteration, the main cost in (54) for calculating s∗ is associated with the matrix-vector
product V†p at a cost of 2mn operations. The Gram matrix V TV is updated by formulas
(56) and (57) at a cost of 2mn + O(m2) operations. Thus, the dominating term in the
overall cost is 4mn, which is the same as for the line-search versions of the L-BFGS.

7.6 Computing the quasi-Newton step

In our numerical experiments, we observed that, for the majority of the test problems, the
quasi-Newton step sN = −B−1g was accepted at more than 75% of iterations. If the trust
region is defined by the Euclidean norm, we can easily check if this step belongs to the
trust region without calculating sN or the eigenvalues of B. Indeed, consider the following
compact representation of the inverse Hessian approximation [11]:

B−1 = γI + [S Y ]M

[
ST

Y T

]
. (58)

Here γ = δ−1 and the symmetric matrix M ∈ R2m×2m is defined as

M =

[
T−T (E + γY TY )T−1 −γT−T

−γT−T 0

]
,

where the matrix T = STY − L is upper-triangular. Then, since Y TY and T are parts of
V TV , the norm of the quasi-Newton step can be computed as

‖sN‖2 = γ2‖g‖2 + 2γ(V Tg)TMV Tg + ‖VMV Tg‖2. (59)

The operations that involve the matrix M can be efficiently implemented as described
in [11, 29]. Formula (59) requires only O(m2) operations because V Tg and ‖g‖ have
already been computed. If ‖sN‖ ≤ ∆, the representation (58) of B−1 allows for directly
computing sN without any extra matrix factorizations. The dominating term in the cost
of this operation is 4mn. The factorizations considered above are used only when the
quasi-Newton step is rejected and it is then required to solve the trust-region subproblem.
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When sN is used as a trial step, the saving techniques discussed in Sections 7.2 and 7.3
can be applied as follows. The uniform representation (54) holds for sN with V† replaced
by V , and

α = γ and p = −MV Tg.

This allows for evaluating the model function in a cheap way by formula (55), where
σ∗ = 0. Moreover, V T sN can be computed by formula (56), which saves 2mn operations.

Note that if ‖sN‖ ≤ ∆ in the Euclidean norm, then, by Lemma 1, sN belongs to the trust
region defined by any of our new norms. This permits us to use formula (59) for checking
if sN is guaranteed to belong to the trust region in the corresponding norm.

8 Alternative limited memory trust-region approaches,

improved versions

In this section, we describe in more detail some of those approaches mentioned in Section 1,
which combine limited memory and trust-region techniques, namely, the algorithms pro-
posed in [10, 29]. They both use the L-BFGS approximation and the Euclidean norm. We
propose below improved versions of these algorithms. They do not require the eigenvalue
decomposition. The purpose of developing the improved versions was to compare them
with our eigenvalue-based algorithms. A comparative study is performed in Section 9.

8.1 Nearly-exact trust-region algorithm

A nearly-exact trust-region algorithm was proposed by Burke et al. [10]. It does not
formally fall into the conventional trust-region scheme, because at each iteration, the full
quasi-Newton step is always computed at a cost of 4mn operations like in [11] and used as
a trial step independently of its length. If it is rejected, the authors exploit the Sherman-
Morrison-Woodbury formula and obtain the following representation:

(B + σI)−1 = (δ + σ)−1
(
I − V

(
(δ + σ)−1W−1 + V TV

)−1
V T
)
.

Furthermore, by exploiting a special structure of W for the BFGS update (52), a triangular
factorization of a 2m × 2m matrix (δ + σ)−1W−1 + V TV is computed using Cholesky
factorizations of two m×m matrices. This allows for efficiently implementing Newton’s
iterations in solving (13), which, in turn, requires solving in u,w ∈ R2m the following
system of linear equations:{ (

(δ + σ)W−1 + V TV
)
u = V Tg(

(δ + σ)W−1 + V TV
)
w = W−1u

. (60)

Then, a new trial step

s∗ = −(δ + σ∗)−1
(
g − V

(
(δ + σ∗)W−1 + V TV

)−1
V Tg

)
(61)

is computed at an additional cost of 2mn+O(m3) operations. The authors proposed also
to either update STS and L after each successful iteration at a cost of 2mn operations or,
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alternatively, compute, if necessary, these matrices at 2m2n operations only. Thus, the
worst case complexity of one iteration is 6mn+O(m2) or 2m2n+ 2mn+O(m3).

We improve the outlined algorithm as follows. The full quasi-Newton step sN is not
computed first, but only ‖sN‖ by formula (59) at a cost of 2mn+O(m2) operations, which
allows to check if sN ∈ Ω. Then only one matrix-vector multiplication of the additional
cost 2mn is required to compute the trial step, independently on whether it is the full
quasi-Newton step. The matrices STS and L are updated after each successful iteration
at a cost of O(m2) operations as it was proposed in Section 7.3, because formula (61) can
be presented in the form (54) with V† replaced by V , and

α = (δ + σ∗)−1 and p = (δ + σ∗)−1
(
(δ + σ∗)W−1 + V TV

)−1
V Tg.

The cost of the model function evaluation is estimated in Section 7.2 as O(m2). The
proposed modifications allow us to reduce the cost of one iteration to 4mn+O(m3) oper-
ations.

8.2 Inexact trust-region algorithm

The ways of solving trust-region subproblems considered so far in this paper were either
exact or nearly-exact. In this subsection, we consider inexact algorithms proposed by
Kaufman in [29], where the trust-region subproblem is approximately solved with the help
of the double-dogleg approach [15]. At each iteration of the algorithms, the Hessian and its
inverse are simultaneously approximated using the L-BFGS updates. Techniques, similar
to those presented in Section 7.3 are applied. The main feature of these algorithms is
that the parameter δ is fixed, either for a series of iterations followed by a restart, or for
all iterations. Here the restart means removing all stored pairs {si, yi}. The reason for
fixing δ is related to author’s intention to avoid computational complexity above O(m2)
in manipulations with small matrices. As it was mentioned in [29], the performance of
the algorithms is very sensitive to the choice of δ. In the line-search L-BFGS algorithms,
the parameter δ is adjusted after each iteration, which is aimed at estimating the size
of the true Hessian along the most recent search direction. This explains why a good
approximation of the Hessian matrix in [29] requires larger values of m than in the case
of the line-search L-BFGS.

We propose here the following algorithm based on the double-dogleg approach with δ
changing at each iteration. It combines our saving techniques with some of those used
in [29]. The Gram matrix V TV is updated like in Section 7.3. In accordance with the
double-dogleg approach, an approximate solution to the trust-region subproblem is found
by minimizing the model function along a piecewise linear path that begins in s = 0, ends
in the quasi-Newton step and has two knots. One of them is the Cauchy point

sC = −min

(
‖g‖2

gTBg
,

∆

‖g‖

)
g ≡ −µg.

The other knot is the point τsN on the quasi-Newton direction, where τ ∈ (0, 1) is such
that q(τsN) < q(sC) and ‖τsN‖ > ‖sC‖. Since q(s) and ‖s‖ are monotonically decreasing
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and increasing, respectively, along the double-dogleg path, the minimizer of q(s) on the
feasible segment of the path is the endpoint of the segment. Thus,

s =


sN , if ‖sN‖ ≤ ∆,
(∆/‖sN‖)sN , if ‖τsN‖ ≤ ∆ < ‖sN‖,
sC + θ(τsN − sC), otherwise,

(62)

where θ ∈ [0, 1) is such that ‖s‖ = ∆. In our implementation, we used

τ = 0.2 + 0.8‖g‖4/
(
(gTB−1g)(gTBg)

)
,

as suggested in [15].

At each iteration, we first compute the full quasi-Newton step using (58) and its norm by
(59). If this step belongs to the trust region, it is then used as a trial point. Otherwise,
the Cauchy point and τ are computed, which requires O(m) operations for calculating

gTB−1g = γ‖g‖2 + (V Tg)T (MV Tg),

where the 2m-dimensional vectors V Tg and MV Tg have already been computed for sN .
The additional O(m3) operations are required for calculating

gTBg = δ‖g‖2 + (V Tg)TW (V Tg),

where W is the inverse of a 2m× 2m matrix. Note that in our implementation the
multiplication of the matrix W by the vector V Tg is done as in [11]. This cannot be
implemented at a cost of O(m2) operations like in [29], because δ is updated by formula
(53) after each successful iteration. Note that θ in (62) can be computed at a cost of O(1)
operations. To show this, denote ŝ = τsN − sC . Then

θ =
β

ψ +
√
ψ2 + ‖ŝ‖2β

,

where β = ∆2 − ‖sC‖2 and ψ = ŝT sC . Observing that

‖sC‖ = µ‖g‖ = min

(
‖g‖3

gTBg
,∆

)
,

ψ = τsTNsC − ‖sC‖2 = τµgTB−1g − ‖sC‖2,

‖ŝ‖2 = τ 2‖sN‖2 − 2τsTCsN + ‖sC‖2 = τ 2‖sN‖2 − 2ψ − ‖sC‖2,

one can see that the computation of θ involves just a few scalar operations.

For estimating the cost of computing the double-dogleg solution, consider separately the
two cases depending on whether the trial step was accepted at the previous iteration, or
not. In the former case, the major computational burden in finding s by formula (62) is
related to computing the quasi-Newton step sN at a cost of 4mn operations. Otherwise,
the new trial step requires only O(n) operations, because sN is available and sC is updated
for the new ∆ at this cost.
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According to (62), the double-dogleg solution is a linear combination of the gradient and
the quasi-Newton step, i.e., s = α1g + α2sN , where α1, α2 are scalars. Then the model
function in the trial point is computed by the formula

q(α1g + α2sN) = α1‖g‖2 − α2g
TB−1g + (α1g + α2sN)TB(α1g + α2sN)/2

= α1‖g‖2 − α2g
TB−1g + (α2

1g
TBg − 2α1α2‖g‖2 + α2

2g
TB−1g)/2

= (α1 − α1α2)‖g‖2 − (α2 − α2
2/2)gTB−1g + (α2

1/2)gTBTg

at a cost of O(1) operations.

As it was shown in Section 7.6, the representation (54) holds for the quasi-Newton step
sN . The same obviously refers to the second alternative in formula (62). In the case of
the third alternative in (62), representation (54) holds with V† replaced by V , and

α = (1− θ)µ+ θτγ and p = −θτMV Tg.

This allows for applying the saving techniques presented in Sections 7.2 and 7.3. Therefore,
the worst case complexity of one iteration of our inexact algorithm is 4mn + O(m3). It
is the same as for the proposed above exact and nearly-exact algorithms. However, the
actual computational burden related to the term O(m3) and required for implementing
the product W · (V Tg) in accordance with [11] is lower for our double-dogleg algorithm
because it comes from one Cholesky factorization of a smaller m×m matrix. Moreover, if
in our algorithm the trial step is rejected, the calculation of the next trial step requires, as
mentioned earlier, only O(n) operations, whereas the same requires at least 2mn operations
in the other algorithms proposed above.

9 Numerical tests

The developed here limited memory trust-region algorithms were implemented in matlab
R2011b. The numerical experiments were performed on a Linux machine HP Compaq 8100
Elite with 4 GB RAM and quad-core processor Intel Core i5-650 (3,20 GHz).

All our implementations of the trust-region approach were based on Algorithm 1 whose
parameters were chosen as δ0 = 1, τ1 = 0, τ2 = 0.25, τ3 = 0.75, c1 = 0.25, c2 = 0.5,
c3 = 0.8, c4 = 2. The very first trial step was obtained by a backtracking line search
along the steepest descent direction, where the trial step-size was increased or decreased
by factor two. For a fairer comparison with line-search algorithms, the number of accepted
trial steps was counted as the number of iterations. In such a case, each iteration requires
at most two gradient evaluations (see below for details). To take into account the numerical
errors in computing ρk, we adopted the techniques discussed in [14, 28] by setting ρk = 1
whenever

|f(xk + sk)− f(xk)| ≤ 10−11 · |f(xk)|. (63)

This precaution may result in a small deterioration of the objective function value, but it
helps to prevent from stopping because of too small trust region. The most recent pair
{sk, yk} was not stored if

sTk yk ≤ 10−8 · ‖sk‖ · ‖yk‖.
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The stopping criterion in Algorithm 1 was

‖gk‖ ≤ 10−5 ·max (1, ‖x‖) .

We also terminated algorithm and considered it failed when the trust-region radius was
below 10−15 or the number of iterations exceeded 100000.

Algorithms were evaluated on 62 large-scale (1000 ≤ n ≤ 10000) CUTEr test problems
[27] with their default parameters. The average run time of algorithm on each problem was
calculated on the base of 10 runs. The following problems were excluded from the men-
tioned set: PENALTY2, SBRYBND, SCOSINE, SCURLY10, SCURLY20, SCURLY30,
because all tested algorithms failed; CHAINWOO, because the algorithms converged to
local minima with different objective function values; FLETCBV2, because it satisfied the
stopping criterion in the starting point; FMINSURF, because we failed to decode it.

One of the features of CUTEr is that it is computationally faster to make simultaneous
evaluation of function and gradient in one call instead of two separate calls. In Algorithm 1,
the function is evaluated in all trial points, while the gradient is evaluated in accepted trial
points only. We observed that, for the majority of the test problems, the quasi-Newton
step was accepted at more than 75% of iterations. Then we decided to simultaneously
evaluate f(x) and ∇f(x) in one call whenever the quasi-Newton step belongs to the trust
region, independently on whether the corresponding trial point is subsequently accepted.

We used performance profiles [16] to compare algorithms. This is done as follows. For
each problem p and solver s, denote

tp,s = the result gained in solving problem p by solver s,

which can be, e.g., the CPU time, the number of iterations, or the number of function
evaluations. The performance ratio is defined as

πp,s =
tp,s

min
l
tp,l
.

For each solver, we plot the distribution function of a performance metric

ρs(τ) =
1

np
card{p : πp.s ≤ τ},

where np is the total number of test problems. For given τ > 1, the function ρs(τ) returns
the portion of problems that solver s could solve within a factor τ of the best result.

We shall refer to the trust-region algorithm based on the shape-changing norm (31) as
EIG(∞, 2). We used it as a reference algorithm for comparing with other algorithms,
because EIG(∞, 2) was one of the most successful. We studied its performance for the
parameter valuesm = 5, 10 and 15, which means storing at most 5, 10 and 15 pairs {sk, yk},
respectively. We performed numerical experiments for various values of the threshold
parameter ν introduced in Section 7.4 for establishing rank-deficiency of V . Since the best
results were obtained for ν = 10−7, we used this value in our algorithms. In some test
problems, we observed that computing V T

k sk according to (56) could lead to numerical
errors in V T

k Vk. To easily identify such cases we computed a relative error in sTk−1sk, and if
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the error was larger than 10−4, a restart was applied meaning to store only the latest pair
{sk, yk}. This test was implemented in all our eigenvalue-based trust-region algorithms.
An alternative could be to recompute V T

k Vk but it is computationally more expensive, and
in our experiments, it did not sufficiently decrease the number of iterations.
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Figure 1: Performance profile for EIG(∞, 2) for m = 5, 10, 15.

In Figure 1a one can see that the memory size m = 15 corresponds to the fewest number
of iterations. This is a typical behavior of limited memory algorithms, because larger
memory allows for using more complete information about the Hessian matrix, carried by
the pairs {sk, yk}, which tends to decrease the number of iterations. On the other hand,
each iteration becomes computationally more expensive. For each test problem there exists
its own best value of m that reflects a tradeoff. Figure 1b shows that the fastest for the
most of the test problems was the case of m = 5. A similar behavior was demonstrated by
the trust-region algorithms based on the Euclidean norm and shape-changing norm (32).
This motivates the use of m = 5 in our numerical experiments.

We implemented in matlab three versions of the line-search L-BFGS. Two of them use
the Moré-Thuente line search [32] implemented in matlab by Dianne O’Leary [35] with
the same line-search parameter values as in [30]. The difference is in computing the search
direction, which is based either on the two-loop recursion [30, 33] or on the compact repre-
sentation of the inverse Hessian approximation [11] presented by formula (58). These two
line-search versions have the same theoretical properties, namely, they generate identical
iterates and have the same computational complexity, 2mn. Nevertheless, owing to the
efficient matrix operations in matlab, the former version was faster.

In the third version, the search direction is computed with the use of the compact repre-
sentation. We adapted here Algorithm 1 to make a fairer comparison with our trust-region
algorithms under the same choice of parameter values. The trial step in this version is ob-
tained by minimizing the same model function along the quasi-Newton direction bounded
by the trust region. Like in our trust-region algorithms, it is accepted whenever (63)
holds, which makes the line search non-monotone. This version of L-BFGS was superior

27



to the other two line-search versions in every respect. The success can be explained as
follows. In comparison to the Wolve conditions, it required less number of function and
gradient evaluations for satisfying the acceptance conditions of Algorithm 1. Furthermore,
the aforementioned possible non-monotonicity due to (63) made the third version more
robust. We shall refer to it as L-BFGS. Only this version is involved in our comparative
study of the implemented algorithms.
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Figure 2: Performance profile for EIG(∞, 2) and L-BFGS.

As one can see in Figure 2a, algorithm EIG(∞, 2) demonstrated a good performance
in terms of the number of iterations. In contrast to L-BFGS, it was able to solve all
the test problems, which says in favor of its robustness and better numerical stability.
The performance profiles for the number of gradient evaluations were almost identical to
those for the number of iterations. Note that, owing to the automatic differentiation, the
gradients are efficiently calculated in the CUTEr. This means that if the calculation of
gradients were much more time consuming, the performance profiles for the CPU time
would more closely resemble those in Figure 2a.

We observed that, for each CUTEr test problem, the step-size one was used for, at least,
60% of iterations of L-BFGS. To demonstrate the advantage of the trust-region framework
over the line search, we selected all those test problems (10 in total), where the step-size
one was rejected by L-BFGS in, at least, 30% of iterations. At each of these iterations,
the line-search procedure computed function values more than once. The corresponding
performance profiles are given in Figure 3 (the only figure where the profiles are presented
for the reduced set of problems). Algorithm L-BFGS failed on one of these problems, and
it was obviously less effective than EIG(∞, 2) on the rest of them, both in terms of the
number of iterations and the CPU time.

Our numerical experiments indicate that algorithm EIG(∞, 2) is, at least, competing
with L-BFGS. It is natural to expect that EIG(∞, 2) will be dominating in those of the
problems originating from simulation-based applications and industry, where the cost of
function and gradient evaluations is much more expensive than computing a trial step.
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Figure 3: Performance profile for EIG(∞, 2) and L-BFGS on problems with the step-size
one rejected in, at least, 30% of iterations.

We compared EIG(∞, 2) also with some other eigenvalue-based limited memory trust-
region algorithms. In one of them, the trust region is defined by the Euclidean norm, and
the other algorithm uses the shape-changing norm (32). We refer to them as EIG-MS
and EIG-MS(2,2), respectively. In EIG-MS, the trust-region subproblem is solved by the
Moré-Sorenson approach. We used the same approach in EIG-MS(2,2) for solving the first
subproblem in (41) defined by the Euclidean norm in a lower-dimensional space. Notice
that since BFGS updates generate positive definite Hessian approximation, the hard case
is impossible. In all our experiments, the tolerance of solving (13) was defined by the
inequality ∣∣∣‖s‖ −∆

∣∣∣ ≤ ∆ · 10−1,

which almost always required to perform from one to three Newton iterations (19). We
observed also that the higher accuracy was usually increasing the total computational time
without any noticeable improvement in the number of iterations.

Figure 4 shows that EIG(∞, 2) and EIG-MS(2,2) were able to solve all the test problems,
whereas EIG-MS(2,2) failed on one of them. Algorithm EIG(∞, 2) often required the
same or even fewer number of iterations than the other two algorithms. The behavior of
EIG-MS(2,2) was very similar to EIG-MS, which can be explained as follows.

In our numerical experiments with L-BFGS updates, we observed that

‖g⊥‖ � ‖g‖‖ ≈ ‖g‖. (64)

Our intuition about this property is presented in the next paragraph. For s that solves
the trust region subproblem, (64) results in ‖P T

⊥s‖ � ‖P T
‖ s‖, i.e., the component of s

that belongs to the subspace defined by P⊥ is often vanishing, and therefore, the shape-
changing norm (32) of s is approximately the same as its Euclidean norm. This is expected
to result, for the double-dogleg approach, in approximately the same number of iterations
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Figure 4: Performance profile for EIG(∞, 2), EIG-MS and EIG-MS(2,2).

in the case of the two norms, because the Cauchy vectors are approximately the same for
these norms. However, it is unclear how to make the computational cost of one iteration
for the norm (32) lower than for the Euclidean norm in Rn. This is the reason why our
combination of the double-dogleg approach with the norm (32) was nor successful.

One of the possible explanations why (64) is typical for L-BFGS originates from its rela-
tionship with CG. Recall that, in the case of quadratic f(x), the first m iterates generated
by L-BFGS with exact line search are identical to those generated by CG. Furthermore,
CG has the property that gk belongs to the subspace spanned by the columns of Sk and
Yk, i.e., g⊥ = 0. The numerical experiments show that L-BFGS inherits this property in
an approximate form when f(x) is not quadratic.

We implemented also our own version of the limited memory trust-region algorithm by
Burke et al. [10]. This version was presented in Section 8.1, and it will be referred to as
BWX-MS. It has much better performance than its original version. We compare it with
EIG(∞, 2). Note that BWX-MS requires two Cholesky factorizations of m ×m matrices
for solving (60) at each Newton’s iteration (19) (see [10]). Algorithm EIG(∞, 2) requires
one Cholesky factorization of a (2m)× (2m) matrix and one eigenvalue decomposition for
a matrix of the same size, but in contrast to BWX-MS, this is to be done only once when
xk+1 6= xk, and this is not required to be done for a decreased trust-region radius when the
trial point is rejected. This explains why the performance profile demonstrated in Figure 5
is obviously better for our eigenvalue-based approach than for our improved version of the
one proposed in [10]. In our numerical experiments, the advantage in performance was
getting more significant when a higher accuracy of solving the trust region subproblem
was set. Algorithm EIG(∞, 2) is particularly more efficient than BWX-MS in problems
where the trial step is often rejected.

It should be mentioned here an alternative approach developed by Erway and Marcia
[18, 19, 20] for solving the trust-region subproblem for the L-BFGS updates. The available
version of their implementation [20], called MSS, was far less efficient in our numerical
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Figure 5: Performance profile for EIG(∞, 2) and BWX-MS.

experiments than EIG(∞, 2).

We implemented the original version of the double-dogleg algorithm proposed in [29] and
outlined in Section 8.2. This inexact limited-memory trust-region algorithm failed on 12
of the CUTEr problems, and it was far less efficient than EIG(∞, 2) on the rest of the
problems.

We implemented also our own version of the double-dogleg approach presented in Sec-
tion 8.2. We refer to it as D-DOGL. The performance profiles for D-DOGL and EIG(∞, 2)
are presented in Figure 6. It shows that D-DOGL generally required more iterations than
EIG(∞, 2), because the trust-region subproblem was solved to a low accuracy. However,
it was often faster unless it took significantly more iterations to converge. This algorithm
does not require eigenvalue decomposition of B and when the trial step is rejected, com-
putes the new one only at a cost of O(n) operations. We should note that, as it was
observed earlier, e.g., in [17], the CUTEr collection of large-scale test problems is better
suited for applying inexact trust-region algorithms like D-DOGL. But such algorithms are
not well suited for problems where a higher accuracy of solving trust-region subproblem
is required for a better total computational time and robustness.

An alternative approach to approximately solving trust-region subproblem is related to the
truncated conjugate gradients [38]. We applied it to solving the first subproblem in (41).
Since this CG-based algorithm produces approximate solutions, the number of external
iterations was, in general, larger than in the case of the algorithms producing exact or
nearly-exact solutions to the trust-region subproblem. The cost of one iteration was not
low enough to compete in computational time with the fastest implementations considered
in this section.
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Figure 6: Performance profile for EIG(∞, 2) and D-DOGL.

10 Conclusions

We have developed efficient combinations of limited memory and trust-region techniques.
The numerical experiments indicate that our limited memory trust-region algorithms are
competitive with the line-search versions of the L-BFGS method. Our eigenvalue-based
approach, originally presented in [9] and further developed in the earlier version of this
paper [7], has already been successfully used in [2, 21, 22].

The future aim is to extend our approaches to limited memory SR1 and multipoint sym-
metric secant approximations. In case of indefinite matrix, we are going to exploit the
useful information about negative curvature directions along which the objective function
is expected to decrease most rapidly.

Furthermore, the proposed here computationally efficient techniques, including the implicit
eigenvalue decomposition, could be considered for improving the performance of limited
memory algorithms used, e.g., for solving constrained and bound constrained optimization
problems.
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