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On Eigenstructure-Based Direct Multichannel
Blind Image Restoration

Hung-Ta Pai, Member, IEEE,and Alan Conrad Bovik, Fellow, IEEE

Abstract—Existing eigenstructure-based direct multichannel
blind image restoration techniques include nullspace-based and
direct deconvolver estimation techniques. The nullspace-based
approach can be formulated as an optimization problem. We show
that this formulation implies a new subspace-based approach
that uses matrix operations. This new approach has the same
advantages as the nullspace-based one but requires less compu-
tational complexity. Under some mild conditions, its complexity
is equal to that of the FFT. Furthermore, the relation among the
nullspace-based approach, the direct deconvolver estimation and
the new subspace-based approach is studied.

Index Terms—Blind deconvolution, image restoration,
nullspace, subspace.

I. INTRODUCTION

I N MANY applications such as medical imaging, radio
astronomy and remote sensing, the observed images are

degraded by distortion. Distortion may arise from, for example,
atmospheric turbulence, relative motion between an object and
the camera, an out-of-focus camera, or variations in electronic
imaging components. Restoration of the degraded images is
generally desirable for further processing or interpretation of
the images [1].

To restore the original image, a model of the original image
and a degradation model are first assumed. The original image
may also be regarded as either a deterministic or stochastic
signal. It is blurred by a linear or nonlinear process. An additive
or multiplicative noise process may be generated in the acquisi-
tion of the images. Because constraints on the degradation and
the original image vary with the application, many different
algorithms exist.

Many conventional approaches have been developed to com-
pensate for the blur function when it is known [2]. More com-
monly, however, the blur function is unknown. It is not prac-
tical to assume the availability oftraining images either. In such
cases, a model of the blur is often assumed, for instance, a linear
space-invariant filter. When the blur is unknown, the problem
is calledblind image restoration. It is a very difficult problem
since there are two unknowns, the original image and the blur
and only one equation, the blur model.
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There are two classes of approaches to blind image restora-
tion. One class identifies the blur first and then uses it to restore
the original image with one of the conventional image restora-
tion algorithms. Algorithms in this class make more assump-
tions on the original image, for instance, that the image consists
of point sources and edges. Therefore, their applications are lim-
ited. The other class simultaneously identifies the blur and re-
stores the original image. All methods in this class are either
iterative or recursive. Typically, they suffer from convergence
and/or stability problems. A review article [3] and an updated
version [4] for completeness on this topic are available. Some-
times the blur function is only partially determined, as in [5].

In some applications, several blurred versions of the same
original image are available from different blurring channels,
for instance, in short-exposure image sequences. Restoring the
original image in this scenario is calledmultichannel blind
image restoration. Two classes of multichannel blind image
restoration algorithms exist. One class includes extensions of
single-channel blind image restoration approaches [6], [7].
The algorithms in this class have the same problems, such as
convergence and stability problems, as their single-channel
counterparts [3], [4]. The other class encompasses extensions
of blind multichannel one-dimensional (1-D) signal estimation
methods.

Recently, Tonget al.[8], [9] proposed a novel algorithm to es-
timate blind 1-D communication channels. They assumed that
signals are deterministic, the channels are linear spatial invariant
(LSI) finite impulse response (FIR) functions with known length
and that the noise is additive. They oversampled the received
1-D communication signal temporally, spatially, or both tem-
porally and spatially. The oversampled signal could be mod-
eled as the output of a multichannel system driven by the same
signal. Based on the second-order statistics of the oversampled
signal, the channel was estimated using algebraic techniques. In
noise-free cases, the channels could be exactly recovered, up to
a scalar multiplier. In noisy cases, the algorithm also obtained
very promising results. The original signal was extracted by a
classical signal estimation algorithm, for instance, using Wiener
filtering based on the estimated channel.

Several approaches, which followed this idea, for multi-
channel 1-D blind signal deconvolution have been proposed
to identify the channel [10]–[12]. One of them is the so-called
eigenstructure-based (ESB) method. It includes subspace [13],
[14] and least-squares [15], [16] approaches. The subspace
approach uses properties of subspaces of a special matrix con-
structed by the channel impulse responses. The least-squares
approach exploits the property of a multichannel system that
has one input and multiple outputs. In other words, the estimate
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of the input from one of the outputs should be equal to the
estimate from another output.

Based on the Bezout identity for coprime polynomials [17],
Slocket al. [13], [18] proposed an algorithm to estimate equal-
izers. The channel and the equalizer could be considered as an
analysis and synthesis filter bank. By convolving the degraded
image with the equalizer, the original image could be estimated.
In [19], using ideas similar to the least-squares approach in the
channel estimation, a direct estimation of the equalizer was pro-
posed.

By extending the least-squares approach and the algorithm
of Slocket al. to two dimensions, Harikumaret al. [20], [21]
developed an algorithm for multichannel blind image restora-
tion. The algorithm estimated the blur functions first and/or
find restoration filters (deconvolver). The original image was
restored using conventional image restoration methods or by
convolving the observed image with the restoration filter. Gi-
annakiset al. [22] proposed two algorithms at about the same
time. One algorithm is similar to the algorithm of Harikumaret
al. The other is a direct deconvolver estimation algorithm which
is an extension of the direct equalizer estimation algorithm [19].
In the noise-free case, the algorithms developed by Harikumar
et al. and Giannakiset al. can obtain the orignal image, up to
a scalar multiplier, as their 1-D counterparts. However, in the
noisy case, the obtained image suffers from noise amplification.

Instead of identifying the channel or estimating the equalizer,
an algorithm was proposed to estimate the original 1-D signal
directly in [23]. It employed the null space of a special matrix
constructed by the original signal. Another algorithm was then
proposed by exploiting the column space of the special matrix
[24]. The estimated signals of both algorithms are the same. In
[25], the variants of these two algorithms and the direct equal-
izer estimation algorithm were shown to be equivalent. In addi-
tion, these two algorithms result in better signal estimation than
the channel identification algorithms.

In [26]–[28], using the null space approach, Paiet al. pro-
posed an algorithm for direct multichannel blind image restora-
tion. This algorithm and the direct deconvolver estimation al-
gorithm aredirect multichannel blind image restoration algo-
rithmsbecause they do not require other algorithms to estimate
the original image. In the noise-free case, the original image can
be exactly restored, up to a scalar ambiguity. On the other hand,
there is no noise amplification in the noisy case.

In this paper, we first pose the restoration problem in noisy
cases using the null space as a variety of nonlinear optimiza-
tion problems with different constraints. By properly choosing
the constraints, these optimization problems can be solved using
matrix operations. Moreover, in the noise-free case, their solu-
tions are equal to the original image. We then formulate a new
constrained optimization problem for image restoration using
the column space. This new problem is similar to but different
from the one in [24]. A new algorithm using matrix operations to
solve the new problem is proposed and its implementation issues
are discussed. Secondly, we compare the new algorithm with the
direct deconvolver estimation algorithm by techniques similar
to [25]. The direct deconvolver estimation algorithm can also be
formulated as a constrained optimization problem. Using a dif-
ferent constraint and a different weighting on the object function

of the constrained optimization problem, the direct deconvolver
estimation algorithm is equal to the new algorithm.

The remainder of this paper is organized as follows. Section II
describes a model for a multichannel imaging system and de-
fines notation. In Section III, we address the different optimiza-
tion problems and propose a new algorithm. The implementa-
tion issues of the new algorithm are discussed in Section IV.
Section V derives the relation between the new algorithm and
the direct deconvolver estimation algorithm. Simulation results
using the new algorithm are reported in Section VI. Finally, we
briefly conclude our contributions in Section VII.

II. PROBLEM STATEMENT

As shown in Fig. 1, the output of theth channel in an
-channel FIR LTI image system is given by

(1)

where
th observed degraded

image;
th blur function;

original image;
additive noise.

For convenience, let , , and be indexed from (
) to ( ), from ( ) to ( ),

from ( ) to ( ) and from ( ) to
( ), respectively.

In this paper, all lowercase characters are scalars. All vectors
are column vectors and denoted by boldface lowercase charac-
ters. Uppercase and boldface uppercase characters denote ma-
trices. The largest/smallest eigenvalue means the eigenvalue of
the largest/smallest magnitude. Other notation used is as fol-
lows:

transpose;
Frobenius norm;
identity matrix;

diag main diagonal of
null space of
range of (i.e., column space of ).

We also abuse notation and write to mean
a matrix whose columns form an orthonormal basis for the
null/column space of

III. SUBSPACEAPPROACHES

A. Review of the Null Space Approach

As in [26]–[28], define (see the equation at the bottom of the
next page) where and are numbers of shifts in and ,
respectively. The matrices defined above are formed to represent
the convolution operation in (1). The sizes of, and are
determined by and . Therefore, in the noise-free case

Define and . Notice
that the matrices , and are ,

and
matrices, respectively. If has full column rank by properly
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Fig. 1. Single-input multiple-output image-blur model. The blurring functions
h ; h ; . . . ; h are assumed to be LTI FIR filters.

choosing and , then . Notice that
is an

matrix. Let and be the entry of
and respectively. Define (see the equation shown at the
bottom of the next page). Notice that the matrixis an

matrix. ,
and are defined with as , and with

In the noise-free case, Thus,

(2)
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If the dimension of the null space of is equal to one, then the
original image can be exactly restored. For convenience, exact
restoration means up to a scalar ambiguity. Throughout our dis-
cussion, we assume

A1) and are known;
A2) has full column rank;
A3) dimension of the null space of is equal to one.

Several approaches can be found in [21] and [22] to determine
and . The other assumptions can be satisfied under some

mild conditions [28].

B. Formulation of Optimization Problems

In noisy cases, is an estimate of and, usually,
the matrix is an

matrix. Exact restoration is
impossible. We can estimate the original imageby solving the
following optimization problem

subject to

where and are corresponding matrices ofas is to and
, respectively. The solution of (3) is equal to the right singular

vector corresponding to the smallest singular value of. Alter-
natively, the original image can also be estimated by solving the
following optimization problem:

subject to

for and (4)

where and are the ( )th row of and , re-
spectively. The difference between (3) and (4) is the constraint.
Obviously, in the noise-free case, these two problems have the
original image as their solution. Actually, we can find the solu-
tion of (3) by solving (2). The Lagrangian of (4) is

(5)

where are called Lagrange multipliers. However, it is im-
possible to find the optimal solution of the problem because the

terms are unknown. To release the constraint in (4) by
setting (5) becomes

(6)

Therefore, we obtain another constrained optimization problem

subject to (7)

Lemma 1: Equation (7) has as the unique solution in the
noise-free case.

Proof: See Appendix A-1.
Thus, the original image can also be restored by solving (7).
On the other hand, if the matrix has full column rank, then

the column space of is equal to the column space
of in the noise-free case. In the noisy case,

is an matrix and an estimate
of . Following the same argument as above, we form the
optimization problem

subject to (8)
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C. Matrix Operations

Now, we would like to solve the optimization problems (7)
and (8). Define

...
...

...
. . .

. . .

. . .
...

. . .
. . .

. . .

where

Notice that is an matrix. Let The
next lemma implies a method to obtain the unique solution of
(7) using matrix operations.

Lemma 2: The right singular vector corresponding to the
smallest singular value of is equal to the product of the matrix

and the unique solution of (7).
Proof: See Appendix A-2.

In other words, the product of the matrix and the right
singular vector corresponding to the smallest singular value of

is equal to the unique solution of (7).
Lemma 3: Equation (8) has as the unique solution in the

noise-free case.

Proof: See Appendix A-3.
Let be the entry of and (see the equa-

tion shown at the bottom of the page). Notice that ,
and are defined similar to , and . The matrix
is an matrix. Let .

Lemma 4: The right singular vector corresponding to the
largest singular value of is equal to the product of the ma-
trix and the unique solution of (8).

Proof: See Appendix A-4.
In other words, the product of the matrix and the right

singular vector corresponding to the largest singular value of
is equal to the unique solution of (8).

IV. I MPLEMENTATION

A. Two Algorithms

Based on the derivation in the section above, two algorithms
for direct multichannel blind image restoration are summarized
as follows. The first algorithm exploits the null space of the
matrix of the blurred images.

1) Construct from the blurred images.
2) Estimate the null space of from the null space

of .
3) Construct the matrix from the orthonormal basis

of estimated .
4) Obtain the matrix by multiplying with the diagonal

matrix .
5) Find the product of and the right singular vector cor-

responding to the smallest singular value of.
The product is the restored image. The second algorithm is

based on the column space of

1) Construct from the blurred images.
2) Estimate the column space of from the column

space of .
3) Construct the matrix from the orthonormal basis

of estimated .
4) Obtain the matrix by multiplying with the diagonal

matrix .
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5) Find the product of and the right singular vector cor-
responding to the largest singular value of.

Again, the product is the restored image.
In the noise-free case, both algorithms exactly restore the

original image, up to a scalar ambiguity. In practice, the noise
terms in (1) cannot be ignored. Define

...
...

...
...

...
...

...
...

Therefore

Generally, because and
when there is noise, exact restoration of the original image is
impossible. The bases and are estimated from and

. The results of both algorithms are the least-
squares estimates of the original image. In fact, the results are
the same as shown in the following lemma.

Lemma 5: The right singular vector corresponding to the
smallest singular value of is equal to the right singular vector
corresponding to the largest singular value of

Proof: From the definition of and is
a unitary matrix. That is

As a result

(9)

Recalling that and are constructed from and re-
spectively, we obtain

based on (9). Therefore

Assume theeigenvalue decompositionof equals
where is a unitary matrix and is a diagonal matrix. Because

is positive semidefinite, all of its eigenvalues are nonneg-
ative [29]. Then

Since is a unitary matrix and is a diagonal matrix,
the eigenvalue decomposition of equals
Thus, the eigenvector corresponding to the smallest eigenvalue
of equals the eigenvector corresponding to the largest
eigenvalue of

Remarks 1:Since is also positive semidefinite, all
of its eigenvalues are nonnegative. Therefore, all eigenvalues
of and are less than or equal to one. In fact, the
smallest eigenvalue of and the largest eigenvalue of

are zero and one, respectively, in the noise-free case
because of the unique solution of (7).

B. Computational Complexity

Define

We useLAPACK [30] to do matrix operations. The bases
and are and matrices respectively. We
assume that there is noise throughout the rest of this section.

TheQR decomposition[31] is used to estimate and .
Table I shows the computational complexities of these two al-
gorithms using the QR decomposition in Step 2. Notice that one
flop and oneword are, respectively, equal to one floating point
operation and the number of bytes required for a floating point
number. When , the computational complexity of the
second algorithm is lower than the first one.

The matrices and constructed in Step 3 of these two
algorithms are and , respectively. The
storage requirements for explicitly storing these two matrices
are huge. In addition, the computational costs of Step 5 of both
algorithms are unacceptable because of the required operations
on the huge matrices.

Rather, we use thepower method[31] to implement Steps 4
and 5. This method computes the eigenvector corresponding to
the largest eigenvalue of without explicitly constructing
the matrices and . The eigenvector actually is the right
singular vector corresponding to the largest singular value of

From Remark I, the largest eigenvalue of is less than or
equal to one. As a result, this method computes the eigenvector
corresponding to the largest eigenvalue of without ex-
plicitly constructing the matrices and . The eigen-
vector actually is the right singular vector corresponding to the
smallest singular value of . Table II shows the computational
complexities of these two algorithms in Steps 4 and 5. Again,
when , the computational complexity of the second
algorithm is lower than the first one. Notice that the computa-
tional cost in Table II is estimated based on each iteration of
the power method. The number of iterations is dependent on the
ratio between the largest and the second largest singular values
of the matrices and In simulations, the number
of iterations is typically around 70.

From Tables I and II, because in practice is greater than
the computational complexity of the first algorithm is greater

than the second one. When we have more blurred versions of
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TABLE I
COMPUTATIONAL COMPLEXITIES OF STEP 2

IN THE FIRST AND SECONDALGORITHMS USING THEQR DECOMPOSITION

TABLE II
COMPUTATIONAL COMPLEXITIES OFSTEPS4 AND 5 IN THE FIRST AND SECOND

ALGORITHMS USING THE POWER METHOD

Fig. 2. Original infrared images of an M60 tank: 80� 200 tank image.

the original image, and can be smaller, thus lowering the
complexity. If , the computational complexity of
the second algorithm is close to the FFT complexity,
Furthermore, Lemma 5 shows that the results of both algorithms
are the same. Thus, we will use the second algorithm for discus-
sion in the following sections.

V. CONNECTIONS TO THERESTORATION

FILTER ESTIMATION ALGORITHM

The connection between the least-squares and the subspace
approaches to blind channel estimation was established in [32].
In [25], the relation between the direct least-squares approach
[19] to the blind multichannel equalizer identification and the
subspace intersection method to the blind multichannel signal
estimation [24] was studied. In this section, we compare the
second algorithm in the last section with the algorithm proposed
by Giannakiset al.based on the idea in [25].

Let

: QR decomposition

where Q: matrix with
orthonormal columns and: upper triangular
matrix is a base of that is, a basis estimate of

In Step 5 of the second algorithm, the right singular vector
corresponding to the largest singular value ofcan be

written as follows:

arg (10)

Fig. 3. Four 5� 7 blur functions.

Define an vector to be the left
singular vector corresponding to the largest singular value of
Therefore, In other words

z
z

z

z z
z z. (11)

Let be the estimated basis of . Define (see the
first equation shown at the bottom of the next page) where
is defined as in Section III-A. Thus

Let Because

we obtain

z z

where

...
...

...
. . .

. . .

blocks
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Therefore, from (11)

(12)

That is, in (10) is equal to . The restored image
obtained from the second algorithm is equal to As a
result, can be regarded as a vector of the restoration filters.

In [22], from (1), Giannakiset al. seek to find restoration
filters , such that

(13)

where is a shifted version of that is
. As a result

(14)

Therefore, (see the second equation shown at the bottom of the
page). Define and (see the equation shown at
the bottom of the next page). Notice that the first zero block row
in the definition of has enough rows such that has

rows. In the noise-free case, we can find
the unique solution for

(15)

...

columns
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. . .

. . .

columns
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columns
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blocks
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That is, every pair of outputs of the restoration filters corre-
sponding to the same pixel in the original image must have the
same value. For example, the first column ofcorresponds

. The product of and the first column is the difference
between two restoration filters for . The difference must
be zero. Notice that there may be several columns ofcorre-
sponding to the same pixel of the original image.

In the noisy case, there is no solution for (15). All pairs of
outputs are different. We would like to minimize the summa-
tion of the squares of all differences. The left singular vector
corresponding to the smallest singular value ofcould be an
estimate of the vector of the restoration filters. That is

(16)

Here, we use aquadratic constrainton the restoration filters.
Define (see equation shown at the bottom of the next page)

where are defined as in Section III-B. Let
That is, we put different weights on different columns of
The columns corresponding to the same pixel have the same
weight. If the number of columns corresponding to the same
pixel is larger, the weight is smaller. Furthermore, rather than
using the quadratic constraint on the restoration filters, we
choose a quadratic constraint on the restored image, that is,

. A vector of different restoration filters can
be found as follows:

(17)
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In the noise-free case, from (15) and (16). There-
fore, since , where

. From the definitions of and ,
we obtain the following relation:

Thus

Therefore, in (17) is equal to in (12). That is, if we put
different weights on the columns of and use as
the constraint in the algorithm of Giannakiset al. , the restored
image is the same as the one using the second algorithm.

VI. COMPUTERSIMULATIONS

In Section IV, we proposed two multichannel blind image
restoration algorithms based on the developments in Section III.
The relation between these two algorithms and their connection
to the direct restoration filter estimation algorithm were derived.
The implementation issues and limitations of these two algo-
rithms were also studied. In this chapter, we conduct computer
simulations to demonstrate the second algorithm.

In all the simulations, we use zero-mean white additive
Gaussian noise. Recalling that are noise terms and

are blurred images at spatial position ( ), the
signal-to-noise ratio (SNR) is given by

SNR dB

The images we use to conduct the simulations are given in Fig. 2.

Fig. 4. Blurred images in the noisy cases: (a) SNR= 10 dB, (b) SNR =

40 dB and (c) SNR= 60 dB.

First, we use the four blurs shown in Fig. 3 to obtain the
blurred images in each case. Every blur function is a Gaussian
filter with perturbation randomly generated with normal distri-
bution. The noise is added and the SNR is 10, 40, and 60 dB for
each case. We choose and .

...
...

. . .
.. .

. . .

. . .
...

. . .
. . .

. . .
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Fig. 5. Restored images in the different noisy cases: (a) SNR= 10 dB, (b)
SNR= 40 dB and (c) SNR= 60 dB.

Fig. 4 shows one of the noisy blurred images in each case. The
restored images are given in Fig. 5. We can see that the higher
the SNR is, the clearer the restored image is. Furthermore, no
noise amplification appears in the low SNR cases. The restored
images in the low SNR cases are just as unclear as the blurred
image since solving the optimization problem tends to smooth
the noise in the low SNR cases and this smoothing causes the
image blurred.

Second, we use four 1 1 blur functions to obtain four
“blurred” images. That is, each of these blurred images is equal
to the original image, up to a scalar multiple. The noise is then
added to the blurred images with SNR dB One of the
noisy blurred images is shown in Fig. 6(a). Fig. 6(b) and (c)
are the restored images obtained by the second algorithm and
averaging these four noisy blurred images respectively. These
two restored images are quite similar. Again, there is no noise
amplification using the second algorithm.

VII. CONCLUSION

We solved a nullspace-based multichannel blind image
restoration problem using matrix operations before. Actually,
this problem can be regarded as an constrained optimization
problem. By using different constraints, different optimization

Fig. 6. (a) One of the noisy images “blurred” by a scalar, where SNR= 10 dB,
(b) the restored image using the second algorithm, and (c) the restored image
by averaging the noisy images.

problems are formulated. One of them can also be solved by
matrix operations. A different nullspace-based multichannel
blind image restoration algorithm is obtained.

The formulation of the different optimization problems im-
plies a new column-space-based algorithm. The restored images
by this new algorithm and by the different nullspace-based one
are the same. This new algorithm has the same advantage as the
nullspace-based one, such as exact restoration and no noise am-
plification. Furthermore, the new algorithm requires less com-
putational complexity than the nullspace-based one. Actually,
under some mild conditions, the complexity of this new algo-
rithm is equal to FFT complexity.

Another eigenstructure-based direct multichannel blind
image restoration algorithm is direct deconvolver estimation.
We also formulate it as an optimization problem. We then make
a connection between it and the new algorithm. By using a
different constraint and putting some weighting on the objective
function of the optimization problem, the direct deconvolver
estimation approach is equivalent to the new algorithm.

We have thoroughly studied eigenstructure-based techniques
for direct multichannel blind image restoration. The LTI FIR
model was used and the size of the blur channels are assumed
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in these techniques. These limitations should be removed in the
future. Further, we should move to solve nonlinear and/or non-
time-invariant problems.

APPENDIX

PROOFS OFLEMMAS IN SECTION III

In this section, is an image. and are the corre-
sponding matrices ofas is to and , respectively. Further-
more, is the th row of .

A. Proof of Lemma 1

If is a solution of (7), then

subject to

That is

This implies that

for and

Therefore, the null space of must include ,
which means that . From [26], ,
where is a nonzero scalar.

B. Proof of Lemma 2

Let

...
...

.. .
. . .

. . .

. . .
...

. . .
. . .

. . .

Notice that the matrix is an
matrix. Since

the null vector of is the unique solution of the following op-
timization problem

given (18)

Let for and
(18) can be rewritten as

given (19)

Comparing (19) with (7), the solutions of these two optimization
problems are the same. As a result, the product ofand the
null vector of is the same as the solution of (7).

C. Proof of Lemma 3

For any

for (20)

If is a solution of (8), then

From (20), this implies

Therefore, for
and This means that .
From [26], , where is a nonzero scalar.

D. Proof of Lemma 4

The definitions of and are the same as in
Lemma 2. Since

the right singular vector corresponding to the largest singular
value of is the unique solution of the following optimization
problem:

given

(21)
Using the definition of , (21) can be rewritten as

given (22)

Comparing (22) with (8), the solutions of these two optimization
problems are the same. As a result, the product ofand the
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right singular vector corresponding to the largest singular value
of is the same as the solution of (8).
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[16] M. İ. Gürelli and C. L. Nikias, “EVAM : An eigenvector-based algorithm
for multichannel blind deconvolution of input colored signals,”IEEE
Trans. Signal Processing, vol. 43, pp. 134–149, Jan. 1995.

[17] C. A. Berenstein, R. Gay, A. Vidras, and A. Yger,Residue Currents and
Bezout Identities. Berlin, Germany: Birkhäuser Verlag, 1993.

[18] D. T. M. Slock and C. B. Papadias, “Further results on blind identifica-
tion and equalization of multiple FIR channels,” inProc. IEEE Int. Conf.
Acoust., Speech, Signal Processing, vol. 3, Detroit, MI, May 1995, pp.
1964–1967.

[19] D. Gesbert, P. Duhamel, and S. Mayrargue, “On-line blind multichannel
equalization based on mutually referenced filters,”IEEE Trans. Signal
Processing, vol. 45, pp. 2307–2317, Sept. 1997.

[20] G. Harikumar and Y. Bresler, “Exact image deconvolution from multiple
FIR blurs,” IEEE Trans. Image Processing, vol. 8, pp. 846–862, June
1999.

[21] , “Perfect blind restoration of images blurred by multiple filters:
Theory and efficient algorithms,”IEEE Trans. Image Processing, vol.
8, pp. 202–219, Feb. 1999.

[22] G. B. Giannakis and R. W. Heath Jr, “Blind identification of multi-
channel FIR blur and perfect image restoration,”IEEE Trans. Image
Processing, vol. 9, pp. 1877–1896, Nov. 2000.

[23] H. Liu and G. Xu, “Closed-form blind symbol estimation in digital com-
munications,”IEEE Trans. Signal Processing, vol. 43, pp. 2714–2723,
Nov. 1995.

[24] A. J. van der Veen, S. Talwar, and A. Paulraj, “A subspace approach
to blind space-time signal processing for wireless communication sys-
tems,”IEEE Trans. Signal Processing, vol. 45, pp. 173–190, Jan. 1997.

[25] D. Gesbert, A. J. van der Veen, and A. Paulraj, “On the equivalence of
blind equalizers based on the MRE and subspace intersections,”IEEE
Trans. Signal Processing, vol. 47, pp. 856–859, Mar. 1999.

[26] H. T. Pai and A. C. Bovik, “Exact multichannel blind image restoration,”
Signal Processing Lett., vol. 4, pp. 217–220, Aug. 1997.

[27] H. T. Pai, A. C. Bovik, and B. L. Evans, “Multichannel blind image
restoration,”Elektrik, vol. 5, no. 1, pp. 79–97, 1998.

[28] H. T. Pai, J. W. Havlicek, and A. C. Bovik, “Generically sufficient con-
ditions for exact multichannel blind image restoration,” inProc. IEEE
Int. Conf. Acoust., Speech, Signal Processing, vol. 2, Seattle, WA, Oct.
1998, pp. 2861–2864.

[29] G. Strang,Linear Algebra and its Applications, 3 ed. San Diego, CA:
Harcourt Brace Jovanovich, 1988.

[30] E. Andersion, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D.
Sorensen,LAPACK Users’ Guide, 2 ed. Philadelphia, PA: SIAM,
1995.

[31] D. S. Watkins,Fundamentals of Matrix Computations. New York:
Wiley, 1991.

[32] H. H. Zeng and L. Tong, “Connections between the least-squares and the
subspace approaches to blind channel estimation,”IEEE Trans. Signal
Processing, vol. 44, pp. 1993–1996, June 1996.

Hung-Ta Pai (M’99) was born in Taichung, Taiwan,
R.O.C., in 1970. He received the B.S. degree from
National Tsing Hua University, Taiwan, in 1992 and
the M.S. and Ph.D. degrees from the University of
Texas at Austin in 1996 and 1999, respectively, all in
electrical engineering.

From 1992 to 1994, he served as an Officer in the
Army. Since 1999, he has been a Senior Engineer at
Silicon Integrated Systems Corp., Taiwan. His inter-
ests include digital signal processing and digital com-
munications.

Alan Conrad Bovik (S’80–M’81–SM’89–F’96) re-
ceived the B.S., M.S., and Ph.D. degrees in electrical
and computer engineering in 1980, 1982, and 1984,
respectively, all from the University of Illinois, Ur-
bana-Champaign.

He is currently the Robert Parker Centennial
Endowed Professor in the Department of Electrical
and Computer Engineering, University of Texas
at Austin. During the Spring of 1992, he held a
visiting position in the Division of Applied Sciences,

Harvard University, Cambridge, MA. His current research interests include
digital video, image processing, computer vision, wavelets, three-dimensional
microscopy, and computational aspects of biological visual perception. He has
published more than 300 technical articles in these areas and holds two U.S.
patents. He is the editor/author of theHandbook of Image and Video Processing
(New York: Academic, 2000).

Dr. Bovik was named Distinguished Lecturer of the IEEE Signal Processing
Society in 2000, received the IEEE Signal Processing Society Meritorious Ser-
vice Award in 1998, the IEEE Third Millennium Medal in 2000, the University
of Texas Engineering Foundation Halliburton Award, and is a two-time Honor-
able Mention winner of the International Pattern Recognition Society Award for
Outstanding Contribution (1988 and 1993). He has been involved in numerous
professional society activities, including his current ones: Editor-in-Chief of the
IEEE TRANSACTIONS ONIMAGE PROCESSINGand Editorial Board Member of
the PROCEEDINGS OF THEIEEE. He also serves on the editorial boards of sev-
eral other technical journals. He was the Founding General Chairman of the1st
IEEE International Conference on Image Processing, held in Austin in 1994.
He is a registered Professional Engineer in the State of Texas and is a frequent
consultant to industry and academic institutions.


