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Abstract

A Robin type boundary condition with a sign-changing coefficient is treated.
First the associated linear elliptic eigenvalue problem is studied, where the existence
of a principal eigenvalue is discussed by use of a variational approach. Secondly the
associated semilinear elliptic boundary value problem of logistic type is studied and
the one parameter-dependent structure of positive solutions is investigated, where
results obtained are due to the construction of suitable super and subsolutions by
using the principal positive eigenfunctions of the linear eigenvalue problem.
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1 Introduction

In this paper we consider the following elliptic eigenvalue problem.⎧⎨
⎩
−∆u = λ(g(x) − cu)u in Ω,
∂u

∂n
= λh(x)u on ∂Ω.

(1.1)

Here Ω is a bounded domain of R
N , N ≥ 2, with smooth boundary ∂Ω; λ is a real

parameter; g ∈ Cθ(Ω) and h ∈ C1+θ(∂Ω), 0 < θ < 1, are Hölder continuous functions in
the closure Ω and on the boundary ∂Ω, respectively, which may be both sign-changing;
c is a nonnegative constant; and n is the unit exterior normal to ∂Ω.

From the viewpoint of population dynamics, our interest lies in positive solutions of
(1.1) for positive parameter λ. Here a classical solution to C2+θ(Ω) of (1.1) is called positive
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if it is positive in Ω, and in fact a positive solution of (1.1) is positive in Ω by virtue of the
strong maximum principle and boundary point lemma (cf. [11]). More precisely, problem
(1.1) denotes the steady state of the population density of some species, diffusing at rate
1/λ around the region Ω, and governed by the parabolic problem⎧⎪⎪⎨

⎪⎪⎩
∂u

∂t
= ∇ · (1/λ)∇u + (g(x) − cu)u in (0,∞) × Ω,

u(0, x) = u0(x) in Ω,

(1/λ)∇u · n = h(x)u on (0,∞) × ∂Ω.

Here g represents the birth or decay rate, c the crowding effect and the boundary condition
a law of the population flux with the flux rate h on the border ∂Ω. It should be emphasized
that h is indefinite, which implies that the inflow of population to the region Ω occurs at
x ∈ ∂Ω where h(x) > 0, while the outflow occurs at x ∈ ∂Ω where h(x) < 0. The usual
Neumann and Robin boundary conditions are particular cases of ours, which correspond
to the cases when h ≡ 0 and when h ≤ 0 not vanishing on the whole of ∂Ω, respectively.

By Afrouzi and Brown [2], the existence of a principal eigenvalue is discussed for the
following linear eigenvalue problem with a constant coefficient α being positive, zero or
negative, in the case when g changes sign in Ω:⎧⎨

⎩
−∆u = λg(x)u in Ω,
∂u

∂n
+ αu = 0 on ∂Ω.

Here a principal eigenvalue means an eigenvalue having an eigenfunction everywhere in
Ω. It has been already proved by Brown and Lin [5] that there exists a positive principal
eigenvalue of the Neumann problem (α = 0) if and only if

∫
Ω

g dx < 0 and g �≤ 0, and
moreover that it is unique if exists. Meanwhile, by Saut and Scheurer [12] an a priori
lower estimate is established for the unique positive principal eigenvalue of the Neumann
problem in terms of the quantity | ∫

Ω
g dx|.

In this paper we first consider the existence, uniqueness and lower estimate of positive
principal eigenvalues for (1.1) with c = 0 in the indefinite case of coefficient h, including
parameter λ in the boundary condition. Here our approach relies on variational techniques
used in [2] and [12]. As an application of results obtained for (1.1) with c = 0, we
secondly study the existence, uniqueness and limiting behavior of positive solutions of the
semilinear problem (1.1) with c > 0 for positive parameter λ via the super and subsolution
method. For other related works to ours we refer to [6, 7, 9].

The next section is devoted to the statement of our main results.

2 Main results

To comprehend positive principal eigenvalues of (1.1) with c = 0, we first in this section
consider principal eigenvalues of the following linear eigenvalue problem for an eigenvalue
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µ(λ). ⎧⎨
⎩
−∆φ = λg(x)φ + µ(λ)φ in Ω,
∂φ

∂n
= λh(x)φ on ∂Ω.

(2.1)

Now the following theorem contains the existence of principal eigenvalues of (2.1) and
their properties.

Theorem 2.1. Assume that either g(x) �≤ 0 in Ω, or h(x) �≤ 0 on ∂Ω. Then the following
three assertions hold true:

(1) For any λ ∈ R there exists a unique principal eigenvalue µ1(λ) of (2.1), characterized
variationally as follows.

µ1(λ) = inf

{∫
Ω

|∇u|2 dx − λ

∫
Ω

gu2 dx − λ

∫
∂Ω

hu2 dσ : u ∈ W 1,2(Ω),

∫
Ω

u2 dx = 1

}
.

(2.2)

Here dσ denotes the surface element of ∂Ω.

(2) Mapping λ 	→ µ1(λ) is concave and satisfies µ1(λ) → −∞ as λ → ∞.

(3) The unique principal eigenvalue µ1(λ) has a local maximum (i.e. global maximum)
if
∫

Ω
g dx +

∫
∂Ω

h dσ ≤ 0. Moreover, this is unique and the sign of the unique global
maximum point is equal to that of −(

∫
Ω

g dx +
∫

∂Ω
h dσ), if it exists.

Remark 2.1. Having in mind µ1(0) = 0, it follows from assertions (2) and (3) of the
theorem that if

∫
Ω

g dx +
∫

∂Ω
h dσ < 0, then there exists a unique positive principal

eigenvalue λ1(g, h) of (1.1) with c = 0, meaning µ1(λ1(g, h)) = 0, while no positive
principal eigenvalue otherwise.

Now, let c1 and c2 be constants, respectively, due to the Poincaré inequality (cf. [8, p.
164])

‖w‖L2(Ω) ≤ c1‖∇w‖L2(Ω), ∀w ∈
{

w ∈ W 1,2(Ω) :

∫
Ω

w dx = 0

}
, (2.3)

and the continuous imbedding (cf. [1])

‖u‖L2(∂Ω) ≤ c2‖u‖W 1,2(Ω), ∀u ∈ W 1,2(Ω). (2.4)

The following theorem gives the variational characterization of the unique positive prin-
cipal eigenvalue λ1(g, h) of (1.1) with c = 0, as well as its a priori lower bound in terms
of the quantity | ∫

Ω
g dx +

∫
∂Ω

h dσ|.
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Theorem 2.2. Under the assumption of Theorem 2.1, problem (1.1) with c = 0 has a
unique positive principal eigenvalue λ1(g, h) if and only if

∫
Ω

g dx +
∫

∂Ω
h dσ < 0, and it

is characterized by the formula

λ1(g, h) = inf

{ ∫
Ω
|∇u|2 dx∫

Ω
gu2 dx +

∫
∂Ω

hu2 dσ
: u ∈ W 1,2(Ω),

∫
Ω

gu2 dx +

∫
∂Ω

hu2 dσ > 0

}
,

(2.5)

and is estimated below by some constant C(c1, c2) > 0, depending only on the constants
c1 and c2, as follows.

λ1(g, h) ≥ C(c1, c2)

(
‖g+‖C(Ω) + ‖h+‖C(∂Ω) +

‖g‖2
L2(Ω) + ‖h‖2

L2(∂Ω)

| ∫
Ω

g dx +
∫

∂Ω
h dσ|

)−1

=: λ(g, h), (2.6)

where f+ = max(f, 0) for a continuous function f .

Remark 2.2. We see in (2.6) that λ(gj, hj) → 0 as
∫

Ω
gj dx+

∫
∂Ω

hj dσ ↗ 0 if ‖gj‖2
L2(Ω) +

‖hj‖2
L2(∂Ω) is bounded below by a positive constant, as an example.

Finally we study the semilinear problem (1.1) with c > 0. The following theorem
contains the existence, uniqueness and nonexistence of positive solutions.

Theorem 2.3. Assume that either g(x) �≤ 0 in Ω, or h(x) �≤ 0 on ∂Ω. Then there exists
a unique positive solution uλ of (1.1) with c > 0 for each λ > λ1(g, h), meanwhile no
positive solution for any 0 < λ ≤ λ1(g, h). Here it is understood that λ1(g, h) = 0 when∫

Ω
g dx +

∫
∂Ω

h dσ ≥ 0. Moreover we have the a priori upper bound

‖uλ‖L3(Ω) ≤ c−1

(
−µ1(λ)

λ

)
|Ω|1/3, ∀λ > λ1(g, h), (2.7)

and the limiting behavior

lim
λ↓λ1(g,h)

uλ =
max{∫

Ω
g dx +

∫
∂Ω

h dσ, 0}
c|Ω| in C2(Ω). (2.8)

Remark 2.3. The corresponding results to those of Theorem 2.3 can be established if
the constant coefficient c is replaced by a Hölder continuous function c ∈ Cθ(Ω) satisfying
c(x) > 0 in Ω.

Sections 3, 4 and 5 are devoted to the proofs of Theorems 2.1, 2.2 and 2.3, respectively.

3 Proof of Theorem 2.1

The proof of Theorem 2.1 is due to a variational argument by Smoller [13, Chap. 11]. We
consider the minimizer of the functional

Sλ =

{∫
Ω

|∇u|2 dx − λ

∫
Ω

gu2 dx − λ

∫
∂Ω

hu2 dσ : u ∈ W 1,2(Ω),

∫
Ω

u2 dx = 1

}
.

We first prove the following lemma.
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Lemma 3.1. Sλ is bounded below.

Proof. The following result is crucial ([2, Lemma 1]).

Proposition 3.1. For any ε > 0 there exists a constant C(ε) > 0 such that∫
∂Ω

u2 dσ ≤ ε

∫
Ω

|∇u|2 dx + C(ε)

∫
Ω

u2 dx, ∀u ∈ W 1,2(Ω).

From Proposition 3.1 it follows that if
∫

Ω
u2 dx = 1, then we have∣∣∣∣λ

∫
∂Ω

hu2 dσ

∣∣∣∣ ≤ |λ|ε‖h‖C(∂Ω)

∫
Ω

|∇u|2 dx + |λ|C(ε)‖h‖C(∂Ω).

Hence we have∫
Ω

|∇u|2 dx − λ

∫
Ω

gu2 dx − λ

∫
∂Ω

hu2 dσ

≥ (1 − |λ|ε‖h‖C(∂Ω))

∫
Ω

|∇u|2 dx − |λ|‖g‖C(Ω) − |λ|C(ε)‖h‖C(∂Ω).

Lemma 3.1 is verified if ε has been already taken so small that |λ|ε‖h‖C(∂Ω) < 1.

In the same manner as in [13, Theorem 11.10], the infimum of Sλ is attained by some
nonnegative function φ1(λ), which is of class C2+θ(Ω) by elliptic regularity (cf. [8]). By
the maximum principle and boundary point lemma, we have φ1(λ) > 0 in Ω, so that
formula (2.2) is proved in the same manner as in [13, Theorem 11.4]. For the uniqueness
result we use a contradiction argument. We assume to the contrary that µ (�= µ1(λ)) is
a principal eigenvalue of (2.1) whose eigenfunction φ is positive in Ω, then it follows by
integration by parts that

∫
Ω

φφ1(λ) dx = 0, a contradiction. Hence the assertion (1) has
been verified.

For a fixed u ∈ W 1,2(Ω) the mapping

λ 	−→
∫

Ω

|∇u|2 dx − λ

∫
Ω

gu2 dx − λ

∫
∂Ω

hu2 dσ

is affine and so concave, so that the infimum is also concave. It is possible to choose a
nontrivial function û ∈ C1(Ω) satisfying

∫
Ω

û2 dx = 1, such that û is strictly positive in
{x ∈ ∂Ω : h(x) > 0} whose support is contained in a very thin tubular neighborhood of
∂Ω if h �≤ 0 on ∂Ω, or that its support is compact in {x ∈ Ω : g(x) > 0} if g �≤ 0 in Ω.
Then we have

µ1(λ) ≤
∫

Ω

|∇û|2 dx − λ

∫
Ω

gû2 dx − λ

∫
∂Ω

hû2 dσ −→ −∞ as λ → ∞.

The assertion (2) has been verified.

Finally we verify the assertion (3). We note⎧⎨
⎩
−∆φ1(λ) = λgφ1(λ) + µ1(λ)φ1(λ) in Ω,
∂φ1(λ)

∂n
= λhφ1(λ) on ∂Ω.

(3.1)
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Differentiate (3.1) with respect to λ and we have⎧⎨
⎩
−∆φ′

1(λ) = gφ1(λ) + λgφ′
1(λ) + µ′

1(λ)φ1(λ) + µ1(λ)φ′
1(λ) in Ω,

∂φ′
1(λ)

∂n
= hφ1(λ) + λhφ′

1(λ) on ∂Ω.
(3.2)

By integration by parts, we see∫
Ω

{−∆φ1(λ)φ′
1(λ) + φ1(λ)∆φ′

1(λ)} dx =

∫
∂Ω

{
−∂φ1(λ)

∂n
φ′

1(λ) + φ1(λ)
∂φ′

1(λ)

∂n

}
dσ.

Substitute (3.1) and (3.2) into the equality and we derive

µ′
1(λ) = −

∫
Ω

gφ1(λ)2 dx +
∫

∂Ω
hφ1(λ)2 dσ∫

Ω
φ1(λ)2 dx

. (3.3)

By definition we note that φ1(0) is a positive constant. Hence assertion (3.3) implies

µ′
1(0) = −

∫
Ω

g dx +
∫

∂Ω
h dσ

|Ω| . (3.4)

From (3.3) we find that λ0 is a critical point of µ1(λ), that is, µ′
1(λ0) = 0 if and

only if
∫

Ω
gφ1(λ0)

2 dx +
∫

∂Ω
hφ1(λ0)

2 dσ = 0. In fact, combining the assertion (2) and
(3.4) ensures the existence of a critical point if

∫
Ω

g dx +
∫

∂Ω
h dσ ≤ 0. Moreover the

uniqueness can be obtained in the following manner. Let λ0 be a critical point of µ1(λ),
that is,

∫
Ω

gφ1(λ0)
2 dx +

∫
∂Ω

hφ1(λ0)
2 dσ = 0. Here the positive eigenfunction φ1(λ0) is

normalized as
∫

Ω
φ1(λ0)

2 dx = 1. Then, thanks to the concavity of µ1(λ), it suffices to
prove that µ1(λ) < µ1(λ0) for λ �= λ0. Note that µ1(λ0) =

∫
Ω
|∇φ1(λ0)|2 dx. By definition

we see, for any λ �= λ0,

µ1(λ) ≤
∫

Ω

|∇φ1(λ0)|2 dx − λ

∫
Ω

gφ1(λ0)
2 dx − λ

∫
∂Ω

hφ1(λ0)
2 dσ

=

∫
Ω

|∇φ1(λ0)|2 dx = µ1(λ0).

If we assume for a contradiction that there exists a λ1 �= λ0 such that µ1(λ1) = µ1(λ0),
then φ1(λ0) attains the infimum of Sλ1 , and it follows that⎧⎨

⎩
−∆φ1(λ0) = λ1gφ1(λ0) + µ1(λ1)φ1(λ0) in Ω,
∂φ1(λ0)

∂n
= λ1hφ1(λ0) on ∂Ω.

Meanwhile, we know⎧⎨
⎩
−∆φ1(λ0) = λ0gφ1(λ0) + µ1(λ0)φ1(λ0) in Ω,
∂φ1(λ0)

∂n
= λ0hφ1(λ0) on ∂Ω.
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From the assumption that µ1(λ1) = µ1(λ0), it follows that

(λ1 − λ0)gφ1(λ0) = 0 in Ω, and (λ1 − λ0)hφ1(λ0) = 0 on ∂Ω.

Since φ1(λ0) > 0 in Ω, it follows that g ≡ 0 in Ω and h ≡ 0 on ∂Ω, a contradiction. The
uniqueness has been verified. Finally it is clear from (3.4) that the sign of the unique
global maximum point coincides with that of −(

∫
Ω

g dx+
∫

∂Ω
h dσ). The assertion (3) has

been verified.

The proof of Theorem 2.1 is now complete.

4 Proof of Theorem 2.2

In this section we prove Theorem 2.2. First we verify that the infimum (2.5) is well-defined
by a positive constant. The following lemma is crucial.

Lemma 4.1. Let
∫

Ω
g dx +

∫
∂Ω

h dσ < 0. Then there exists a constant c0 > 0 such that,∫
Ω
|∇u|2 dx ≥ c0 if u ∈ W 1,2(Ω) satisfies that

∫
Ω

u2 dx +
∫

∂Ω
u2 dσ = 1 and

∫
Ω

gu2 dx +∫
∂Ω

hu2 dσ > 0.

Proof. For a contradiction we assume that a sequence {un} ⊂ W 1,2(Ω) can be chosen such
that ∫

Ω

u2
n dx +

∫
∂Ω

u2
n dσ = 1,∫

Ω

gu2
n dx +

∫
∂Ω

hu2
n dσ > 0,∫

Ω

|∇un|2 dx ≤ 1

n
.

It follows that un is bounded in W 1,2(Ω). Since the imbedding W 1,2(Ω) ⊂ L2(Ω) is
compact, we can take a subsequence of {un}, still denoted by {un}, such that un → û in
L2(Ω) for some û ∈ L2(Ω). Moreover we see

‖un − um‖2
W 1,2(Ω) =

∫
Ω

|un − um|2 dx +

∫
Ω

|∇(un − um)|2 dx

≤
∫

Ω

|un − um|2 dx + 2

(
1

n
+

1

m

)
−→ 0, n, m → ∞.

By the completeness of W 1,2(Ω) it follows that un → û in W 1,2(Ω), and hence that∫
Ω

|∇û|2 dx = lim
n→∞

∫
Ω

|∇un|2 dx = 0,∫
Ω

û2 dx +

∫
∂Ω

û2 dσ = lim
n→∞

(∫
Ω

u2
n dx +

∫
∂Ω

u2
n dσ

)
= 1.
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This implies that û is a nonzero constant, so that∫
Ω

gû2 dx +

∫
∂Ω

hû2 dσ = û2

(∫
Ω

g dx +

∫
∂Ω

h dσ

)
< 0.

However, since we see∫
Ω

gu2
n dx +

∫
∂Ω

hu2
n dσ −→

∫
Ω

gû2 dx +

∫
∂Ω

hû2 dσ, n → ∞,

we conclude that n large enough implies
∫

Ω
gu2

n dx+
∫

∂Ω
hu2

n dσ < 0, a contradiction. The
proof of Lemma 4.1 is complete.

Lemma 4.1 shows that the infimum (2.5) is positive. Indeed, let u ∈ W 1,2(Ω) be such
that

∫
Ω

gu2 dx +
∫

∂Ω
hu2 dσ > 0. Then, for some δ > 0 the function v = δu verifies that∫

Ω
v2 dx +

∫
∂Ω

v2 dσ = 1, and that∫
Ω
|∇u|2 dx∫

Ω
gu2 dx +

∫
∂Ω

hu2 dσ
=

∫
Ω
|∇v|2 dx∫

Ω
gv2 dx +

∫
∂Ω

hv2 dσ
≥ c0

‖g+‖C(Ω) + ‖h+‖C(∂Ω)

> 0. (4.1)

Let λ∗ be a positive constant given by the infimum (2.5). To establish formula (2.5) it
suffices to show that µ1(λ∗) = 0 in view of Remark 2.1. Let u ∈ W 1,2(Ω). If

∫
Ω

gu2 dx +∫
∂Ω

hu2 dσ > 0, then by the definition of λ∗ we find∫
Ω

|∇u|2 dx − λ∗

∫
Ω

gu2 dx − λ∗

∫
∂Ω

hu2 dσ ≥ 0. (4.2)

From the fact λ∗ > 0, assertion (4.2) also holds true even if
∫

Ω
gu2 dx +

∫
∂Ω

hu2 dσ ≤ 0.
By definition it follows that µ1(λ∗) ≥ 0.

On the other hand, it is derived from (2.5) that there exists a sequence {un} ⊂ W 1,2(Ω)
such that ∫

Ω

gu2
n dx +

∫
∂Ω

hu2
n dσ > 0,∫

Ω

u2
n dx = 1, (4.3)(

1 +
1

n

)
λ∗ ≥

∫
Ω
|∇un|2 dx∫

Ω
gu2

n dx +
∫

∂Ω
hu2

n dσ
. (4.4)

The choice (4.3) is in fact possible by arguing in the same way as in (4.1). Thanks to
Proposition 3.1, for any ε > 0 there exists a constant C(ε) > 0 such that∫

∂Ω

hu2
n dσ ≤ ‖h+‖C(∂Ω)

∫
∂Ω

u2
n dσ

≤ ε‖h+‖C(∂Ω)

∫
Ω

|∇un|2 dx + C(ε)‖h+‖C(∂Ω)

∫
Ω

u2
n dx. (4.5)
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By (4.3) and (4.5), assertion (4.4) implies

(1 − 2λ∗ε‖h+‖C(∂Ω))

∫
Ω

|∇un|2 dx ≤ 2λ∗(‖g+‖C(Ω) + C(ε)‖h+‖C(∂Ω)).

Here it has been used that 1 + (1/n) ≤ 2. Taking ε > 0 so small that

1 − 2λ∗ε‖h+‖C(∂Ω) >
1

2
,

we have ∫
Ω

|∇un|2 dx ≤ 4λ∗
(
‖g+‖C(Ω) + C(ε)‖h+‖C(∂Ω)

)
< ∞.

Combining this assertion and (4.3) shows that un is bounded in W 1,2(Ω), and thus that also
in L2(∂Ω) by virtue of the continuous imbedding W 1,2(Ω) ⊂ L2(∂Ω). By the boundedness,
assertion (4.4) implies∫

Ω

|∇un|2 dx − λ∗

∫
Ω

gu2
n dx − λ∗

∫
∂Ω

hu2
n dσ

≤ λ∗
n

(∫
Ω

gu2
n dx +

∫
∂Ω

hu2
n dσ

)

≤ λ∗
n

(
‖g+‖C(Ω) + ‖h+‖C(∂Ω)

∫
∂Ω

u2
n dσ

)
−→ 0, n → ∞.

This means µ1(λ∗) ≤ 0 and hence we conclude µ1(λ∗) = 0.

Next we prove (2.6). Let X = W 2,2(Ω), and let us introduce the operator P : X →
W = {u ∈ X :

∫
Ω

u dx = 0}, defined as

Pu = u − 1

|Ω|
∫

Ω

u dx,

which produce the unique decomposition X = R ⊕ W . Let Y = L2(Ω), and let us
introduce the operator Q : Y → {v ∈ Y :

∫
Ω

v dx = 0}, defined as

Q[v] = v −
∫

Ω
v dx∫

Ω
g dx +

∫
∂Ω

h dσ

(
g +

1

|Ω|
∫

∂Ω

h dσ

)
, v ∈ Y.

It is easy to see that operator Q also produce the unique decomposition Y = Q[Y ]⊕ (1−
Q)[Y ].

Now let us take a solution u ∈ C2+θ(Ω) of (1.1) with c = 0 for λ > 0. Then Green’s
formula shows

Q[−∆u] = −∆w +
λ
∫

∂Ω
h(α + w) dσ∫

Ω
g dx +

∫
∂Ω

h dσ

(
g +

1

|Ω|
∫

∂Ω

h dσ

)
,

where u = α + w for some α ∈ R and w ∈ W uniquely determined. Since

Q[λgu] = λg(α + w) − λ
∫

Ω
g(α + w) dx∫

Ω
g dx +

∫
∂Ω

h dσ

(
g +

1

|Ω|
∫

∂Ω

h dσ

)
,
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it follows that

− ∆w +
λ
∫

∂Ω
h(α + w) dσ∫

Ω
g dx +

∫
∂Ω

h dσ

(
g +

1

|Ω|
∫

∂Ω

h dσ

)

= λg(α + w) − λ
∫

Ω
g(α + w) dx∫

Ω
g dx +

∫
∂Ω

h dσ

(
g +

1

|Ω|
∫

∂Ω

h dσ

)
. (4.6)

Multiplying (4.6) by w and integrating by parts, we have∫
Ω

|∇w|2 dx =

∫
∂Ω

∂w

∂n
w dσ + λ

∫
Ω

g(α + w)w dx

− λ
∫
Ω

gw dx∫
Ω

g dx +
∫

∂Ω
h dσ

(∫
Ω

g(α + w) dx +

∫
∂Ω

h(α + w) dσ

)
,

from the fact that
∫

Ω
w dx = 0. It follows that∫

Ω

|∇w|2 dx = λ

∫
∂Ω

h(α + w)w dσ + λ

∫
Ω

gw2 dx

− λ
∫

Ω
gw dx∫

Ω
g dx +

∫
∂Ω

h dσ

(∫
Ω

gw dx +

∫
∂Ω

hw dσ

)
. (4.7)

We note that by Green’s formula, i.e.
∫

Ω
∆w dx =

∫
∂Ω

∂w
∂n dσ,

α = −
∫

Ω
gw dx +

∫
∂Ω

hw dσ∫
Ω

g dx +
∫

∂Ω
h dσ

. (4.8)

Substituting (4.8) into (4.7), it follows that

∫
Ω

|∇w|2 dx = λ

∫
Ω

gw2 dx + λ

∫
∂Ω

hw2 dσ − λ
(∫

Ω
gw dx +

∫
∂Ω

hw dσ
)2∫

Ω
g dx +

∫
∂Ω

h dσ
. (4.9)

By use of (2.3) and (2.4), we obtain∫
Ω

gw2 dx ≤ c2
1‖g+‖C(Ω)‖∇w‖2

L2(Ω),∫
∂Ω

hw2 dσ ≤ c2
2(1 + c2

1)‖h+‖C(∂Ω)‖∇w‖2
L2(Ω),(∫

Ω

gw dx +

∫
∂Ω

hw dσ

)2

≤ 2(c2
1‖g‖2

L2(Ω) + c2
2(1 + c2

1)‖h‖2
L2(∂Ω))‖∇w‖2

L2(Ω).

Combining (4.9) and these estimates, we have some constant c3 > 0, depending only on
c1 and c2, such that{

1 − λc3

(
‖g+‖C(Ω) + ‖h+‖C(∂Ω) +

‖g‖2
L2(Ω) + ‖h‖2

L2(∂Ω)

| ∫
Ω

g dx +
∫

∂Ω
h dσ|

)}
‖∇w‖2

L2(Ω) ≤ 0.
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If we take λ such that

0 < λ ≤
{

c3

(
‖g+‖C(Ω) + ‖h+‖C(∂Ω) +

‖g‖2
L2(Ω) + ‖h‖2

L2(∂Ω)

| ∫
Ω

g dx +
∫

∂Ω
h dσ|

)}−1

, (4.10)

then
∫

Ω
|∇w|2 dx = 0, so that w = 0 since w ∈ W .

On the other hand, we see

(1 − Q)[−∆u] = −λ
∫

∂Ω
h(α + w) dσ∫

Ω
g dx +

∫
∂Ω

h dσ

(
g +

1

|Ω|
∫

∂Ω

h dσ

)
,

(1 − Q)[λgu] =
λ
∫

Ω
g(α + w) dx∫

Ω
g dx +

∫
∂Ω

h dσ

(
g +

1

|Ω|
∫

∂Ω

h dσ

)
.

If λ is in the case (4.10), then from the fact w = 0 it follows that

λα

(
g +

1

|Ω|
∫

∂Ω

h dσ

)
= 0, (4.11)

where we note ∫
Ω

(
g +

1

|Ω|
∫

∂Ω

h dσ

)
dx =

∫
Ω

g dx +

∫
∂Ω

h dσ < 0.

This means that g + (1/|Ω|) ∫
∂Ω

h dσ �≡ 0, and hence α = 0 from (4.11). To sum up, we
obtain u = α + w = 0. This assertion ensures that (4.10) implies (2.6), since λ1(g, h) is
minimal among the positive eigenvalues of (1.1) with c = 0 by virtue of (2.5). The proof
of Theorem 2.2 is now complete.

5 Proof of Theorem 2.3

This section is devoted to the proof of Theorem 2.3. For the existence it is essential
to construct suitable super and subsolutions of (1.1) with c > 0 by using the principal
positive eigenfunction φ1(λ) of (2.1) corresponding to the principal eigenvalue µ1(λ). Here
φ1(λ) is normalized as ‖φ1(λ)‖C(Ω) = 1.

Now we recall that φ1(λ) > 0 in Ω, and that µ1(λ) < 0 for λ > λ1(g, h) from Theorem
2.1. For λ > λ1(g, h) and ε > 0, direct calculations give us that

−∆(εφ1(λ)) − λ(g − cεφ1(λ))εφ1(λ) = λεφ1(λ)

(
µ1(λ)

λ
+ cεφ1(λ)

)
⎧⎪⎪⎨
⎪⎪⎩

≤ λεφ1(λ)

(
µ1(λ)

λ
+ cε

)
in Ω,

≥ λεφ1(λ)

(
µ1(λ)

λ
+ cεmin

Ω
φ1(λ)

)
in Ω.
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This verifies the assertion that

1

c

(
−µ1(λ)

λ

)
φ1(λ),

1

c minΩ φ1(λ)

(
−µ1(λ)

λ

)
φ1(λ)

are a subsolution and a supersolution of (1.1) with c > 0, respectively. By the super and
subsolution method (see [3], [10]), there exists a positive solution u ∈ C2+θ(Ω) of (1.1)
with c > 0 such that

1

c

(
−µ1(λ)

λ

)
φ1(λ) ≤ u ≤ 1

c minΩ φ1(λ)

(
−µ1(λ)

λ

)
φ1(λ) in Ω. (5.1)

The uniqueness of positive solutions is a direct consequence of [10, Theorem 4.6.3].

Next we use the generalized Picone identity to verify (2.7), following the line of ar-
guments in Berestycki, Capuzzo-Dolcetta and Nirenberg [4]. By integration by parts we
have, for the unique positive solution u,∫

Ω

(
u

φ1(λ)

) N∑
j=1

∂

∂xj

(
φ1(λ)2 ∂

∂xj

(
u

φ1(λ)

))
dx

= −
∫

Ω

φ1(λ)2

∣∣∣∣∇
(

u

φ1(λ)

)∣∣∣∣
2

dx +

∫
∂Ω

u

φ1(λ)

(
∂u

∂n
φ1(λ) − u

∂φ1(λ)

∂n

)
dσ

= −
∫

Ω

φ1(λ)2

∣∣∣∣∇
(

u

φ1(λ)

)∣∣∣∣
2

dx ≤ 0.

By a direct calculation, we have∫
Ω

(
u

φ1(λ)

) N∑
j=1

∂

∂xj

(
φ1(λ)2 ∂

∂xj

(
u

φ1(λ)

))
dx = λc

∫
Ω

u3 dx + µ1(λ)

∫
Ω

u2 dx.

It follows that

λc

∫
Ω

u3 dx + µ1(λ)

∫
Ω

u2 dx ≤ 0. (5.2)

By Hölder’s inequality, we obtain∫
Ω

u3 dx ≤ c−1

(
−µ1(λ)

λ

)∫
Ω

u2 dx ≤ c−1

(
−µ1(λ)

λ

)(∫
Ω

u3 dx

)2/3

|Ω|1/3,

which implies (2.7).

The consideration of the limiting behavior (2.8) is based on the combination of (5.1)
and elliptic regularity arguments. In fact, by elliptic regularity, it follows that

φ1(λ) −→ 1 in C2(Ω) as λ → 0. (5.3)

From (3.4) we deduce

−µ1(λ)

λ
−→ −µ′

1(0) =

∫
Ω

g dx +
∫

∂Ω
h dσ

|Ω| as λ → 0. (5.4)

12



Hence if
∫

Ω
g dx +

∫
∂Ω

h dσ ≥ 0, then (5.1), (5.3) and (5.4) provide us with the assertion
that as λ ↓ 0,

uλ(x) −→
∫

Ω
g dx +

∫
∂Ω

h dσ

c|Ω| for each x ∈ Ω. (5.5)

Since we see from (5.1), (5.3) and (5.4) that uλ is bounded in C(Ω) near λ = 0, it follows
from (5.5) that, by elliptic regularity,

uλ −→
∫

Ω
g dx +

∫
∂Ω

h dσ

c|Ω| in C2(Ω) as λ ↓ 0.

If
∫

Ω
g dx +

∫
∂Ω

h dσ < 0, then −µ1(λ)/λ → 0 as λ → λ1(g, h) since µ1(λ1(g, h)) = 0.
Therefore, by the same argument as above, (5.1) gives us that

uλ −→ 0 in C2(Ω) as λ ↓ λ1(g, h).

Finally, to verify the nonexistence result, we have only to recall from Theorem 2.1 that
µ1(λ) ≥ 0 for 0 < λ ≤ λ1(g, h) when

∫
Ω

g dx +
∫

∂Ω
h dσ < 0. In fact, if there exists a

positive solution u of (1.1) with c > 0 for some 0 < λ ≤ λ1(g, h), then this is contradictory
for (5.2). The proof of Theorem 2.3 is now complete.
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