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Abstract

This paper investigates limiting spectral properties of a high-dimensional sample spatial-sign co-

variance matrix when both the dimension and the sample size grow to infinity. The underlying popula-

tion is general enough to cover the popular independent components model and the family of elliptical

distributions. The first result of the paper shows that the empirical spectral distribution of a high dimen-

sional sample spatial-sign covariance matrix converges to a generalized Marčenko-Pastur distribution.

Secondly, a new central limit theorem for a class of linear spectral statistics of the covariance matrix is

established under moment conditions.

1 Introduction

Let x1, . . . , xn be a sequence of independent and identically distributed (i.i.d.) observations from a

common population x ∈ Rp with known location vector m (mean or median). The sample spatial-sign

covariance matrix (SSCM) is by definition

Bn =
p

n

n∑

j=1

(x j −m)

‖x j −m‖
(x j −m)′

‖x j −m‖ ,

where || · || denotes the Euclidean norm of a vector. In Locantore et al. (1999) and Visuri et al. (2000),

the authors demonstrated that the SSCM is able to mitigate the impact of extreme outliers for the purpose

of robust principal components analysis. Since then, the SSCM has been widely adopted for robust sta-

tistical inference where the sample data may exhibit heavy tails, or bear tail dependence as in the case

of elliptical distributions. Recent works concerning the properties of the SSCM and its applications in-

clude Magyar and Tyler (2014), Dürre et al. (2014, 2015), Li et al. (2016), Feng et al. (2016a), Feng et al.

(2016b) and Chakraborty et al. (2017). Despite the popularity of the SSCM, asymptotic behaviors of its

eigenvalues are not fully developed when the dimension of the population p diverges to infinity along

with the sample size n, which greatly limits its application to high-dimensional data analysis.

This paper investigates the first and second order spectrum limits of sample SSCMs under the Marčenko-

Pastur asymptotic regime (Marčenko and Pastur, 1967), i.e.

n→ ∞, p = p(n)→ ∞, p/n = cn → c ∈ (0,∞),

which is commonly adopted in the literature of random matrix theory. The underlying population x

considered here has a general structure,

x = m + wA
1
2 z, (1.1)

where m ∈ Rp is the location vector, A is a p × p deterministic and positive definite matrix, w ∈ R
and z ∈ Rp are two (possibly dependent) random quantities with certain moment conditions, see (2.1)

for detailed model illustration. The generality of this model lies in that it encompasses the popular

independent components model and the family of elliptical distributions, which will be explained in

detail in Section 2.2.

The first result of the paper is a new generalized Marčenko-Pastur (MP) law for the empirical spectral

distribution (ESD) of Bn. The MP law was originally introduced in Marčenko and Pastur (1967) for
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the limiting spectrum of sample covariance matrices (SCMs), which was then refined and extended in

several works, say Yin (1986), Silverstein (1995) and Bai and Zhou (2008). With this knowledge, through

a comparison between the matrix Bn and its associated SCM Sn ,
∑n

j=1 A1/2z jz
′
j
A1/2/n, our result is

derived by showing ||Bn − Sn|| converges to zero, almost surely, under finite (4 + δ)-th moment condition

on the components of the vector z. As a by-product, one may draw the same “no eigenvalue” conclusion

for Bn as that for Sn already established in Bai and Silverstein (1998).

The second contribution of this paper is a new CLT for general linear spectral statistics (LSSs) of Bn.

CLT for LSSs of large random matrices has been actively studied in recent decades in random matrix the-

ory. Most of early works in this area concern Hermitian (symmetric) Wigner matrices. Johansson (1998)

presented a CLT for LSSs of eigenvalues given their joint density for Gaussian-type random Hermitian

matrices. Using the moment method, Sinai and Soshinikov (1998) derived a CLT for traces of analytic

functions of Wigner-type matrices and Anderson and Zeitouni (2006) obtained a CLT for a class of band

random matrices. CLT for general Wigner matrix with arbitrary entries is first derived in Bai and Yao

(2005) via Stieltjes transforms establishing the explicit formula for the mean and covariance functions of

the limiting Gaussian distribution of the LSSs. A related approach using Gaussian interpolation for both

Wigner matrices and Wishart matrices is proposed in Lytova and Pastur (2009). As for sample covari-

ance matrices, the earliest work dates back to Jonsson (1982) for Wishart matrices. The seminal paper

Bai and Silverstein (2004) established the CLT under the independent components model, which was

later extended in Pan et al. (2008) and Zheng et al. (2015). Other extensions on CLT for sample covari-

ance matrices are recently proposed in Hu et al. (2019a) and Hu et al. (2019b) for the class of elliptical

distributions.

From the technical point of view, for establishing our CLT, the structure of the sample SSCM under

study is quite different from the commonly studied random matrix models in the existing literature. Al-

though the spatial-sign (or projective) transform (x − m)/||x − m|| removes the impact from the scaling

random variable w, it does introduce, at the same time, complex non-linear correlations among the p-

coordinates of the transformed data through the normalization by ‖x −m‖. Such new correlations make

the analysis more intricate in high dimensions where p → ∞. Specifically, let us compare the situa-

tion with a sample covariance matrix Sn = n−1
∑n

j=1(x j −m)(x j −m)′ from the independent components

model (see (2.2)). Here the correlations among the coordinates of a sample vector x j have only one

source, coming from the shape matrix A. In the case of SSCM, the correlations among the coordinates

of (x j − m)/||x j − m|| can originate from both the shape matrix A and the normalization by ‖x j − m‖.
Therefore, a main task in our analysis is to find new approaches for decoupling these two sources of cor-

relation. To this end, by giving an asymptotic expansion of 1/||x j −m|| to certain order, we develop some

new lemmas concerning the covariance and stochastic order of certain quadratic forms, which turns out to

be one of the cornerstones for establishing our new CLT (see Section A.1). Another technical innovation

of the paper, compared to the classical approach in Bai and Silverstein (2004), is that we introduce a new

and more straightforward method to find the limiting mean function of LSSs, see Step 3 in the proof given

in Section 3.2.

The rest of the paper is organized as follows. Section 2 presents our main theoretical results including

both the convergence of the ESD of Bn and the CLT for its linear spectral statistics. Proofs of these

asymptotic conclusions are presented in Sections 3.1 and 3.2. Some supporting lemmas and their proofs

are relegated into the Appendix.
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2 High-dimensional theory for eigenvalues of a sample SSCM

2.1 Preliminary definitions

Let Mp be a p× p symmetric or Hermitian matrix with eigenvalues (λ j)1≤ j≤p. Its ESD is by definition

the probability measure

FMp =
1

p

p∑

j=1

δλ j
,

where δb denotes the Dirac mass at b. If the ESD sequence {FMp } has a limit when p → ∞, this limit is

referred as the limiting spectral distribution (LSD). For a probability measure G, its Stieltjes transform is

defined as

mG(z) =

∫
1

x − z
dG(x), z ∈ C+,

where C+ ≡ {z ∈ C : ℑ(z) > 0}. This definition can be extended to the whole complex plane except

the support set of G. An inversion formula of the Stieltjes transform can be found in Bai and Silverstein

(2010).

Two sequences of Rk-valued random vectors (ξn) and (ηn) are called asymptotically equal in distribu-

tion, denoted as ξn

d∼ ηn, if for any Borel set C ⊂ Rk,

P(ξn ∈ C) − P(ηn ∈ C)→ 0, n→ ∞.

2.2 Model assumptions

We consider a sequence of i.i.d. observations x1, . . . , xn generated from the model (1.1), which admit

the following stochastic representation:

x j = m + w jA
1
2 z j, j = 1, . . . , n, (2.1)

where

(i) the location vector m ∈ Rp is assumed to be known;

(ii) the scalar random variable w j is real-valued having no mass at the origin, i.e. P(w j , 0) = 1;

(iii) the matrix A ∈ Rp×p, referred as the shape matrix or scatter matrix of the population, is deter-

ministic, positive definite, and normalized as tr(A) = p for the identification in the triple product

w jA
1/2z j, since we can always move any scalar factor related to A into the scalar random variable

w j;

(iv) the vector z j = (z1 j, . . . , zp j)
′ ∈ Rp is an array of i.i.d. standardized random variables, possibly

dependent of w j.

Our main assumptions are as follows.

Assumption (a). Both the sample size n and population dimension p tend to infinity in such a way that

n→ ∞, p = p(n)→ ∞ and p/n = cn → c ∈ (0,∞).

Assumption (b). The ESD Hp of the shape matrix A has bounded support, i.e. Supp(Hp) ⊂ [a, b] for

some a, b ∈ (0,∞), and converges weakly to a probability distribution H as p→ ∞.

Assumption (c). The random variables (zi j) are i.i.d. and satisfy

E(zi j) = 0, E(z2
i j) = 1, E(z4

i j) = τ, E|zi j|4+δ < ∞,
for some δ > 0.
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Remark 2.1 Recall that in the literature on high-dimensional SCMs, the following independent com-

ponents model is routinely considered (Bai and Silverstein, 2004; Pan et al., 2008; Zheng et al., 2015;

Yao et al., 2015)

x j = m + σA
1
2 z j, (2.2)

where m,A, and z j are the same as in model (2.1) while σ is a positive constant. Clearly the model (2.2)

is a particular case of the model (2.1) where {w j} degenerate to the constant parameter σ.

Remark 2.2 The model (2.1) contains also the family of elliptical distributions. Indeed, a generalized

elliptically distributed sample x j has the form

x j = m + v jA
1
2 u j, (2.3)

where v j is a scalar random variable, u j is a random vector uniformly distributed on the unit sphere in

R
p. Let u j = z j/‖z j‖ and w j = v j/||z j||, where z j ∼ N(0, Ip), we thus have

x j = m + v jA
1
2 u j = m + w jA

1
2 z j.

Certainly the moment conditions in Assumption (c) are satisfied with τ = 3 for such standard Gaussian

random vectors {z j}. Thus the generalized elliptical distributions described by (2.3) are also special cases

of our model (2.1).

2.3 Sample SSCM and its limiting spectral distribution

Let s(y) = I(y,0)y/||y|| be the spatial-sign function projecting the vector y onto the unit sphere. Then

the sample SSCM Bn formed by the sample {x j} can be written as

Bn =
p

n

n∑

j=1

s(x j −m)s(x j −m)′. (2.4)

Our first result is concerned with the convergence of the ESD FBn of the sample SSCM Bn.

Theorem 2.1 Suppose that Assumptions (a)-(c) hold. Then, almost surely, the empirical spectral distri-

bution FBn converges weakly to a probability distribution Fc,H, whose Stieltjes transform m = m(z) is the

unique solution to the equation

m =

∫
1

t(1 − c − czm) − z
dH(t) , z ∈ C+, (2.5)

in the set {m ∈ C : −(1 − c)/z + cm ∈ C+}.

Theorem 2.1 demonstrates that the ESD FBn converges to the generalized MP law Fc,H (Marčenko and Pastur,

1967) defined through the equation (2.5). Let Fc,H
= cFc,H

+ (1 − c)δ0 be the companion distribution of

Fc,H and m = m(z) be the Stieltjes transform of Fc,H. Then (2.5) can be rewritten as

z = − 1

m
+ c

∫
t

1 + tm
dH(t) , z ∈ C+, (2.6)

see Silverstein (1995). For procedures on numerically finding the density function of Fc,H and its support

set from (2.5) or (2.6), one is referred to Bai and Silverstein (2010). The proof of this theorem is presented

in Section 3.1.
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2.4 CLT for linear spectral statistics of Bn

In this section, we study the fluctuation of LSSs of Bn. Given a measurable function f , the LSS

associated with f and Bn is

∫
f (x)dFBn(x). (2.7)

To centralize this statistic, we need to introduce a matrix T that is closely related to the shape matrix A,

i.e.

T = A − 2

p
A2 − τ − 3

p
A

1
2 diag(A)A

1
2 +

(
2

p2
tr A2

+
τ − 3

p2
tr(A ◦ A)

)
A, (2.8)

where “ ◦ ” denotes the Hadamard product of two matrices. This matrix is actually an approximation of

the population SSCM Σ , pE(x −m)(x −m)′/||x −m||2. Under certain conditions, we have the spectral

norm ||Σ − T|| = o(p−1), see Lemma A.3. Note that for an elliptical distribution, see the model (2.3),

the population SSCM Σ and the shape matrix A share the same eigenvectors and their eigenvalues have

a one-to-one correspondence, which can be represented through certain integrals, see Dürre et al. (2016).

Our approximation is however explicit and is not restricted to elliptical distributions.

Let H̃p be the ESD of the matrix T defined in (2.8), m
0
(z) be the finite-horizon proxy for the limiting

Stieltjes transform m(z) in (2.6), i.e. the solution to

z = − 1

m
0
(z)
+ cn

∫
t

1 + tm
0
(z)

dH̃p(t) , z ∈ C+. (2.9)

This Stieltjes transform m0(z) uniquely defines a distribution, denoted by Fcn,H̃p , through

m
0
(z) = −1 − cn

z
+ cn

∫
1

x − z
dFcn,H̃p (x). (2.10)

By means of this distribution, The LSS in (2.7) can be centralized as

Gn( f ) ,

∫
f (x)dGn(x) =

∫
f (x)d[FBn(x) − Fcn,H̃p (x)].

We note that from (2.8), for the first order asymptotic of Gn( f ), one may replace the ESD H̃p of T by

the ESD Hp of A in the definition (2.9) of m
0
(z) since the two matrices share the same LSD. However,

for the second order asymptotic, the difference of T and A will contribute when the shape matrix A

is not identity. In addition, three other auxiliary quantities defined as below will also contribute to the

fluctuation of Gn( f ),

ζp =
1

p
tr[T ◦ T],

hp(z) =
1

p
tr[T

1
2 (T − zI)−1T

1
2 ◦ T],

gp(z, z̃) =
1

p
tr

[(
T

1
2 (T − zI)−1T

1
2

)
◦
(
T

1
2 (T − z̃I)−1T

1
2

)]
, (2.11)

where z and z̃ are two complex numbers in C+. These quantities depend not only on the eigenvalues of A,

but also on its eigenvectors.
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Theorem 2.2 Suppose that Assumptions (a)-(c) hold with δ = 1. Let f1, . . . , fk be k functions analytic on

an open set that includes the interval

Ic =

[
lim inf

p→∞
λT

minδ(0,1)(c)(1 −
√

c)2, lim sup
p→∞

λT
max(1 +

√
c)2

]
.

Also let

Yn = p {Gn( f1), . . . ,Gn( fk)}
be the vector of k normalized LSSs with respect to f1, . . . , fk. Then Yn is asymptotically equal in distribu-

tion to a k-dimensional Gaussian random vector ξn = (ξn1, . . . , ξnk) with mean function

E(ξn j) = −
1

2πi

∮

C1

f j(z)
[
µ1(z) + (τ − 3)µ2(z)

]
dz,

where

µ1(z) =

∫
cn(m′

0
(z)t)2dH̃p(t)

m
0
(z)(1 + m

0
(z)t)3

−
∫

2m′
0
(z)(1 + zm

0
(z))t2dH̃p(t)

(1 + m
0
(z)t)2

+

∫
(tr(A2/p)t − t2)dH̃p(t)

1 + m
0
(z)t

∫
2cnm

0
(z)m′

0
(z)tdH̃p(t)

(1 + m
0
(z)t)2

,

µ2(z) =
cnm′

0
(z)

m2
0
(z)

g′p,z

( −1

m
0
(z)
,
−1

m
0
(z)

)
+ ζp

∫
(1 + zm

0
(z))tm′

0
(z)dH̃p(t)

(1 + m
0
(z)t)2

−
(1 + zm0(z))m′

0
(z)

m2
0
(z)

h′p

( −1

m
0
(z)

)
−

∫
cnm′

0
(z)tdH̃p(t)

(1 + m
0
(z)t)2

hp

( −1

m
0
(z)

)
,

and covariance function

Cov
(
ξn j, ξnℓ

)
= − 1

4π2

∮

C1

∮

C2

f j(z) fℓ(z̃) [σ1(z, z̃) + (τ − 3)σ2(z, z̃)] dzdz̃,

where

σ1(z, z̃) =
2∂2

∂z∂z̃

[
log

m
0
(z) − m

0
(z̃)

m
0
(z)m

0
(z̃)(z − z̃)

+

(
tr(T2)

pcn

+
1

cnm
0
(z)
+

1

cnm
0
(z̃)

)

× (1 + zm0(z))(1 + z̃m0(z̃)) − zm0(z) − z̃m0(z̃) − 2

]
,

σ2(z, z̃) =
∂2

∂z∂z̃

[
cngp

( −1

m
0
(z)
,
−1

m
0
(z̃)

)
+
ζp

cn

(1 + zm
0
(z))(1 + z̃m

0
(z̃))

− (1 + zm0(z))hp

( −1

m0(z̃)

)
− (1 + z̃m0(z̃))hp

( −1

m0(z)

) ]
.

The contours C1 and C2 are non-overlapping, closed, counter-clockwise orientated in the complex plane

and enclosing the interval Ic.

Remark 2.3 Theorem 2.2 approximates the distribution of Yn by that of a Gaussian random vector

ξn. However, this approximating vector ξn may not converge in distribution, that is, the sequence of

{(ζp, hp(z), gp(z, z̃)
)} which determines the mean and covariance functions of ξn may not have a limit as

(p, n) → ∞. In addition, the convergence of Hp in Assumption (b) is not required and the convergence

of cn in Assumption (a) can be weaken to 0 < lim inf cn ≤ lim sup cn < ∞. The proof of this theorem is

presented in Section 3.2.
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Remark 2.4 Theorem 2.2 contains the CLT for LSSs of high dimensional correlation matrices when the

population mean is assumed known (Gao et al., 2017). To see this, consider the simplest case that m = 0,

w j ≡ 1 and A = Ip in (2.1), then the sample SSCM under study can be written as

Bn =
p

n

n∑

j=1

z j

‖z j‖
z′

j

‖z j‖
=

p

n

(
z1

‖z1‖
, · · · , zn

‖zn‖

) (
z1

‖z1‖
, · · · , zn

‖zn‖

)′
.

Denote its companion matrix as

B
n
=

p

n

(
z1

‖z1‖
, · · · , zn

‖zn‖

)′ (
z1

‖z1‖
, · · · , zn

‖zn‖

)
, (2.12)

which shares the same non-zero eigenvalues as Bn. Thus the result in Theorem 2.2 gives the CLT for

LSSs of B
n
. Now let’s denote the data matrix as Z = (z1, . . . , zn) = (v1, . . . , vp)′, where z j is the j-th

column ( j-th observation) and v′
j

is the j-th row ( j-th coordinate) of Z. Moreover, the table Z consists

of independent and identically distributed entries across both the rows and columns so permuting the

entries in Z will not change its distribution. The correlation matrix Rn associated with the data set Z can

be expressed as

Rn =

(
v1

‖v1‖
, · · · ,

vp

‖vp‖

)′ (
v1

‖v1‖
, · · · ,

vp

‖vp‖

)
, (2.13)

which has the same structure (up to a constant factor) as B
n

in (2.12) by interchanging the roles of p

and n. Therefore in the case of A = Ip, the CLT for LSSs of Rn is readily derived from an application of

Theorem 2.2 to the matrix B
n
.

2.5 Example

As an illustration, we exhibit the CLT for a widely used LSS which is the second moment of the

eigenvalues of Bn, denoted by

β̂2 =
1

p
tr(B2

n).

We consider the case where the population shape matrix A is diagonal. In this case, the matrix T in (2.8)

can be simplified as

T = A − τ − 1

p
A2
+
τ − 1

p2
tr A2 · A

and the three auxiliary quantities in (2.11) become

ζp =

∫
t2dH̃p(t), hp(z) =

∫
t2

t − z
dH̃p(t), gp(z, z̃) =

∫
t2

(t − z)(t − z̃)
dH̃p(t),

which are only functions of the eigenvalues of A. Let

αk,p =
1

p
tr(Tk) =

∫
tkdH̃p(t).

By the relations in (2.9) and (2.10), the centering term for the statistic β̂2 is

β2,p ,

∫
x2dFcn,H̃p (x) = α2,p + cn.
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The approximating mean and covariance of p[β̂2 − β2,p] can be figured out through the residue theorem.

For illustration, we calculate the integral corresponding to the first term in µ1(z), that is,

− 1

2πi

∮

C1

z2

∫
cn(m′

0
(z)t)2dH̃p(t)

m0(z)(1 + m0(z)t)3
dz. (2.14)

Taking derivatives with respect to z on both sides of (2.9), we obtain

m′
0
(z) =


1

m2
0
(z)
− cn

∫
t2

(1 + tm0(z))2
dH̃p(t)


−1

.

It then follows that

(2.14) =

∫
− 1

2πi

∮

C1

z2
cnm′

0
(z)t2

m0(z)(1 + m0(z)t)3
dm

0
(z)dH̃p(t)

=

∫
− 1

2πi

∮

C1

cnt2
(
zm

0
(z)

)2

m0(z)(1 + m0(z)t)3

1 − cn

∫
u2m2

0
(z)

(1 + um0(z))2
dH̃p(u)


−1

dm
0
(z)dH̃p(t)

= −
∫



cnt2
(
zm0(z)

)2

(1 + m
0
(z)t)3

1 − cn

∫
u2m2

0
(z)

(1 + um
0
(z))2

dH̃p(u)


−1 ∣∣∣∣∣

m
0
(z)=0


dH̃p(t)

= −cnα2,p.

Similar procedure can be repeated to find the values of the remaining contour integrals. As a result and

by Theorem 2.2, the distribution of p[β̂2 − β2,p] is asymptotically equivalent to the Gaussian distribution

N(µ, σ2), where the mean and variance parameters are given by

µ = −cnα2,p,

σ2
= 8cn(α3

2,p − 2α2,pα3,p + α4,p) + 4c2
nα

2
2,p + 4cn(τ − 3)(α3

2,p − 2α2,pα3,p + α4,p).

3 Proofs of the main results

This section presents the proofs of Theorem 2.1 and Theorem 2.2. In all the proofs, we assume the

location vector m = 0, otherwise, it can be directly subtracted from the sample {x j}. We will denote by K

some constants appearing in inequalities that can vary from place to place.

3.1 Proof of Theorem 2.1

Let g j = p/(z′
j
Az j) for j = 1, . . . , n, and denote

Z = (zi j), G = diag(g1, . . . , gn), Bn =
1

n
A

1
2 ZGZ′A

1
2 , Sn =

1

n
A

1
2 ZZ′A

1
2 .

Under Assumptions (a)-(c), the generalized MP law holds true for the sample covariance matrix Sn

(Silverstein, 1995). Thus it’s sufficient to show

||Bn − Sn||
a.s.−−→ 0. (3.1)

To this end, with the moment conditions in Assumption (c), we shall truncate the variables (zi j) at n2/γ for

some γ ∈ (4, 4 + δ]. Some relevant quantities are denoted as below. For i = 1, . . . , p and j = 1, . . . , n,

ẑi j = zi jI(|zi j|γ ≤ n2), ẑ j = (ẑ1 j, . . . , ẑp j)
′, ĝ j = p/(ẑ′jAẑ j),

8



Ẑ = (ẑi j), Ĝ = diag(ĝ1, . . . , ĝn), B̂n =
1

n
A

1
2 ẐĜẐ′A

1
2 , Ŝn =

1

n
A

1
2 ẐẐ′A

1
2 .

Note that for the truncated variables (ẑi j), the following results hold automatically
∣∣∣Eẑi j

∣∣∣ = o
(
n−2+2/γ

)
, E

(
ẑ2

i j

)
= 1 + o

(
n−2+4/γ

)
, E

(
ẑ4

i j

)
= τ + o(1), E|ẑi j|γ < ∞, |ẑi j|γ < n2, (3.2)

and ∑

k

2k
E

∣∣∣zi j

∣∣∣γ/2 I
(|zi j| > 22k/γ) < ∞. (3.3)

From (3.3) and similar arguments as in the proof of Lemma 5.12 in Bai and Silverstein (2010), we have

P(B̂n , Bn, i.o.) = P(̂Sn , Sn, i.o.) = 0. (3.4)

Next we will prove that for any ε > 0 and k ≥ 2,

P
(
||B̂n − Ŝn|| > ε

)
≤ Kε−k

(
n−

k
2
+1
+ n
− k(γ−4)

γ

)
. (3.5)

Notice that the spectral norm of the difference between B̂n and Ŝn can be bounded by

∥∥∥∥B̂n − Ŝn

∥∥∥∥ ≤ ||A||
||ẐẐ′||

n
max
1≤ j≤n

∣∣∣ĝ j − 1
∣∣∣ . (3.6)

From Bai and Silverstein (1998), almost surely, the spectral norm ‖ẐẐ′‖/n is bounded for all large n.

Thus, we only need to control the convergence rate of max j

∣∣∣ĝ j − 1
∣∣∣ or max j

∣∣∣1/ĝ j − 1
∣∣∣ . By Markov’s

inequality, for any ε > 0 and k ≥ 2, we have

P

(
max

j

∣∣∣∣∣∣
1

ĝ j

− 1

∣∣∣∣∣∣ > ε
)
≤np−kε−k

E

∣∣∣ẑ′1Aẑ1 − p
∣∣∣k . (3.7)

To bound the expectation in (3.7), we divide it into three parts

E|ẑ′1Aẑ1 − p|k ≤KE
∣∣∣ẑ′1Aẑ1 − z̃′1Az̃1

∣∣∣k + KE
∣∣∣z̃′1Az̃1 − Ez̃′1Az̃1

∣∣∣k + K
∣∣∣Ez̃′1Az̃1 − p

∣∣∣k .
From (3.2) and the boundedness of ||A||, the first term can be controlled by

E

∣∣∣ẑ′1Aẑ1 − z̃′1Az̃1

∣∣∣k ≤KE
∣∣∣z̃′1AEẑ1

∣∣∣k + K
∣∣∣Eẑ′1AEẑ1

∣∣∣k

≤KE
1
2

∣∣∣z̃′1z̃1

∣∣∣k
∣∣∣Eẑ′1Eẑ1

∣∣∣
k
2
+ Kn(−3+4/γ)k

≤K

[
E

∣∣∣z̃′1z̃1 − Ez̃′1z̃1

∣∣∣k +
∣∣∣Ez̃′1z̃1

∣∣∣k
] 1

2

n(−3/2+2/γ)k
+ Kn(−3+4/γ)k

≤KE
1
2

∣∣∣z̃′1z̃1 − Ez̃′1z̃1

∣∣∣k n(−3/2+2/γ)k
+ Kn(−3+4/γ)k

≤Kn−1/2+(−3/2+4/γ)k
+ Kn(−1+2/γ)k, (3.8)

where the last inequality is from Lemma A.1. Again from this lemma, the second term is bounded by

E

∣∣∣z̃′1Az̃1 − Ez̃′1Az̃1

∣∣∣k ≤ K
(
nk/2
+ nE|z̃11|2k

)
≤ K

(
nk/2
+ n−1+4k/γ

)
. (3.9)

For the third one, we have from (3.2)
∣∣∣Ez̃′1Az̃1 − p

∣∣∣k = pk |Var(ẑ11) − 1|k ≤ Kn(−1+4/γ)k. (3.10)

Collecting the results in (3.8)-(3.10) yields

E|ẑ′1Aẑ1 − p|k ≤ K
(
nk/2
+ n−1+4k/γ

)
, (3.11)

which together with (3.6) and (3.7) give the result in (3.5). Hence, the conclusion of the theorem follows

from (3.1), (3.4), and (3.5) with some large k.
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3.2 Proof of Theorem 2.2

3.2.1 Sketch of the proof

Following the truncation step in the proof of Theorem 2.1, we now centralize the truncated variables

(ẑi j). Some quantities are denoted as below.

z̃i j = ẑi j − E(ẑi j), z̃ j = (z̃1 j, . . . , z̃p j)
′, g̃ j = p/(z̃′jAz̃ j), G̃ = diag(g̃1, . . . , g̃n),

Z̃ = (z̃i j), B̃n =
1

n
A

1
2 Z̃G̃Z̃′A

1
2 , Bn =

1

n
A

1
2 Z̃ĜZ̃′A

1
2 , S̃n =

1

n
A

1
2 Z̃Z̃′A

1
2 .

Similar to the derivation of (3.5), one may show that

max
{
P
(
||B̃n − S̃n|| > ε

)
, P

(
||Bn − S̃n|| > ε

)}
≤ Kε−k

(
n−

k
2
+1
+ n
− k(γ−4)

γ

)
. (3.12)

It thus follows from Bai and Silverstein (1998) that, almost surely, lim supn ||B̂n||, lim supn ||B̃n||, and

lim supn ||Bn|| are all bounded.

Let FBn , FB̂n , FBn , and FB̃n be the ESDs of the matrices Bn, B̂n, Bn, and B̃n, respectively. Then, for

each function f j(x), we have from (3.4)

p

∣∣∣∣∣
∫

f j(x)dFBn −
∫

f j(x)dFB̂n

∣∣∣∣∣
a.s.−−→ 0. (3.13)

By Corollary A.37 in Bai and Silverstein (2010), it holds that

p

∣∣∣∣∣
∫

f j(x)dFB̂n −
∫

f j(x)dFBn

∣∣∣∣∣ ≤K j

p∑

k=1

∣∣∣∣λB̂n

k
− λBn

k

∣∣∣∣ (3.14)

≤2K j

[
cn tr A

1
2

(
Ẑ − Z̃

)
Ĝ

(
Ẑ − Z̃

)′
A

1
2

(
||B̂n|| + ||Bn||

)]1/2
.

where K j is an upper bound on | f ′
j
(x)| and λB

k
denotes the k-th largest eigenvalue of the matrix B. By (3.2)

and (3.7), one may get

∣∣∣∣tr A
1
2

(
Ẑ − Z̃

)
Ĝ

(
Ẑ − Z̃

)′
A

1
2

∣∣∣∣ ≤ ||A||max
j
|ĝ j| tr(EẐEẐ′)

a.s.−−→ 0,

and thus (3.14) is oa.s.(1). Moreover, from (3.7) and (3.8), applying Markov’s inequality, we have also

p

∣∣∣∣∣
∫

f j(x)dFBn −
∫

f j(x)dFB̃n

∣∣∣∣∣ ≤K j p||Bn − B̃n||

≤K j p||A|| ·
∥∥∥∥∥

1

n
Z̃Z̃′

∥∥∥∥∥ max
j
|ĝ j − g̃ j|

a.s.−−→ 0. (3.15)

Collecting (3.13), (3.14), and (3.15), we get

p

∣∣∣∣∣
∫

f j(x)dFBn −
∫

f j(x)dFB̃n

∣∣∣∣∣
a.s.−−→ 0. (3.16)

Therefore, it is sufficient to prove the theorem by replacing the matrix Bn with its truncated and centralized

version B̃n, or equivalently, we assume

E(z11) = 0, E(z2
11) = 1, E(z4

11) = τ + o(1), E(|z11|γ) < ∞, max
i, j
|zi j|γ < n2, (3.17)
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with γ = 5 for the proof of the theorem. Note that we assume E(z2
11

) = 1 without rescaling (z̃i j) since the

sample spatial-sign vectors {A1/2z j/‖A1/2z j‖} are all self-normalized.

Next we define a rectangular contour enclosing the interval Ic = [sl, sr],

sl = lim inf
p→∞

λT
min(1 −

√
c)2I(0,1)(c) and sr = lim sup

p→∞
λT

max(1 +
√

c)2, (3.18)

and thus enclosing all supports of the LSDs {Fcn,H̃p }. Choosing two numbers xl < xr such that [sl, sr] ⊂
(xl, xr) and letting v0 > 0 be arbitrary, then the contour can be described as

C = {x ± iv0 : x ∈ [xl, xr]} ∪ {x + iv : x ∈ {xr, xl}, v ∈ [−v0, v0]}.
Denote

mn(z) =

∫
1

x − z
dFBn(x), m0(z) =

∫
1

x − z
dFcn,H̃p (x), m

n
(z) = −1 − cn

z
+ cnmn(z),

We then define a random process on C as

Mn(z) = p[mn(z) − m0(z)] = n[m
n
(z) − m

0
(z)], z ∈ C,

where m
0
(z) is defined in (2.10). From Cauchy’s integral formula, for any k analytic functions ( fℓ) and

complex numbers (aℓ), we have

k∑

ℓ=1

paℓ

∫
fℓ(x)dGn(x) = −

k∑

ℓ=1

aℓ

2πi

∮

C
fℓ(z)Mn(z)dz

when all sample eigenvalues fall in the interval (xl, xr), which holds with probability 1 − o(n−s) for any

s > 0. That is,

P(||Bn|| > xr) = o(n−s) and P(λ
Bn

min
< xl) = o(n−s), ∀s > 0, (3.19)

which follows from (3.12) and a similar conclusion for Sn (Bai and Silverstein, 2004). In order to deal

with the small probability event where some eigenvalues are outside the interval (xl, xr) in finite dimen-

sional situations, Bai and Silverstein (2004) suggested truncating Mn(z) as, for z = x + iv ∈ C,

M̂n(z) =



Mn(z) z ∈ Cn,

Mn(x + in−1εn) x ∈ {xl, xr} and v ∈ [0, n−1εn],

Mn(x − in−1εn) x ∈ {xl, xr} and v ∈ [−n−1εn, 0],

where Cn = {x ± iv0 : x ∈ [xl, xr]} ∪ {x ± iv : x ∈ {xl, xr}, v ∈ [n−1εn, v0]}, a regularized version of C
excluding a small segment near the real line, and the positive sequence (εn) decreases to zero satisfying

εn > n−a for some a ∈ (0, 1). From this and (3.19), one may thus find
∮

C
fℓ(z)Mn(z)dz =

∮

C
fℓ(z)M̂n(z)dz + op(1),

for every ℓ ∈ {1, . . . , k}. Hence, the proof of Theorem 2.2 can be completed by verifying the convergence

of M̂n(z) on C as stated in the following lemma.

Lemma 3.1 In addition to Assumptions (a)-(c), suppose that the conditions in (3.17) hold with γ = 5.

We have

M̂n(z)
d
= M0(z) + op(1), z ∈ C,

where the random process M0(z) is a two-dimensional Gaussian process. The mean function is

EM0(z) = µ1(z) + (τ − 3)µ2(z), (3.20)

and the covariance function is

Cov(M0(z),M0(z̃)) = σ1(z, z̃) + (τ − 3)σ2(z, z̃).
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3.2.2 Proof of Lemma 3.1

Some quantities are listed below which will be used frequently throughout this proof.

s j = s(x j), r j =

√
p/ns j, Σ = nEr1r′1,

D(z) = Bn − zI, D j(z) = D(z) − r jr
′
j, Di j(z) = D(z) − rir

′
i − r jr

′
j, (i , j),

ε j(z) = r′jD
−1
j (z)r j −

1

n
trΣD−1

j (z), γ j(z) = r′jD
−1
j (z)r j −

1

n
E trΣD−1

j (z),

δ j(z) = r′jD
−2
j (z)r j −

1

n
trΣD−2

j (z),

β j(z) =
1

1 + r′
j
D−1

j
(z)r j

, β jk(z) =
1

1 + r′
j
D−1

k j
(z)r j

,

β̄ j(z) =
1

1 + n−1 trΣD−1
j

(z)
, β̄ jk(z) =

1

1 + n−1 trΣD−1
k j

(z)
,

bn(z) =
1

1 + n−1E trΣD−1
j

(z)
, b̄n(z) =

1

1 + n−1E trΣD−1
k j

(z)
.

Note that by Lemma A.3, the matrix Σ and T defined in (3.17) are asymptotically equivalent and the last

six quantities are bounded in absolute value by |z|/v for any z = u+ iv ∈ C+. Now we split M̂n(z) into two

parts as

M̂n(z) =p[mn(z) − Emn(z)] + p[Emn(z) − m0(z)]

:=M(1)
n (z) + M(2)

n (z).

Hence, the convergence of M̂n(z) can be obtained through the following three steps.

Step 1: Finite dimensional convergence of M
(1)
n (z). Let z1, . . . , zq be any q complex numbers on Cn,

this step approximates joint distribution of

[
M(1)

n (z1), . . . ,M(1)
n (zq)

]
(3.21)

through martingale CLT (Billingsley, 2008). Beyond the techniques used in Bai and Silverstein

(2004), a particularly important problem is to find new approaches to deal with the non-linear cor-

relation structure among the entries of s(x j). And such non-linear correlation is actually introduced

by the spatial-sign transform of the data, to be precise, the norm ‖x j‖ that appears in the denom-

inator of s(x j). To this end, by giving an asymptotic expansion of s(x j), we develop Lemma A.2

concerning the covariance of certain quadratic forms, which turns out to be one of the cornerstones

for establishing our new CLT.

Step 2: Tightness of M
(1)
n (z) on Cn. We illustrate in this step the basic idea for proving the tightness.

As shown in (3.19), the probability of extreme eigenvalues falling outside the contour C can be

well controlled. By virtue of this and Lemma A.4, the tightness can be obtained following similar

arguments in Bai and Silverstein (2004).

Step 3: Convergence of M
(2)
n (z). In this final step, we approximate the quantity M

(2)
n (z). In parallel

with Step 1, dealing with the nonlinear effects as shown in Lemma A.2 is the main focus in this

part. As will be seen, such nonlinear effects will contribute several new terms to the mean of ξn.

Step 1: Finite dimensional convergence of M
(1)
n (z) in distribution.
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Let E0(·) denote expectation and E j(·) denote conditional expectation with respect to the σ-field gen-

erated by r1, . . . , r j, j = 1, . . . , n. From the martingale decomposition and the identity

D−1(z) − D−1
j (z) = −D−1

j (z)r jr
′
jD
−1
j (z)β j(z), (3.22)

we get

M(1)
n (z) =

n∑

j=1

(E j − E j−1) tr
[
D−1(z) − D−1

j (z)
]

=

n∑

j=1

(E j − E j−1)
d log(β j(z)/β̄ j(z))

dz
,

=
d

dz

n∑

j=1

(E j − E j−1) log[1 − β̄ j(z)ε j(z) + β̄ j(z)β j(z)ε2
j(z)], (3.23)

where the last equality is from the identity β j(z) = β̄ j(z) − β̄2
j
(z)ε j(z) + β̄2

j
(z)β j(z)ε2

j
(z). From Lemma A.4

and the boundedness of β j(z) and β̄ j(z), we have

E

∣∣∣∣∣
n∑

j=1

(E j − E j−1)β̄ j(z)β j(z)ε2
j(z)

∣∣∣∣∣
2

≤ KnE
∣∣∣ε j(z)

∣∣∣4 → 0.

Thus applying Taylor’s expansion to the log function in (3.23), one may conclude

M(1)
n (z) = − d

dz

n∑

j=1

(E j − E j−1)β̄ j(z)ε j(z) + op(1)

= − d

dz

n∑

j=1

E jβ̄ j(z)ε j(z) + op(1).

Therefore, we turn to consider the martingale difference sequence

Yn j(z) :=
d

dz
E jβ̄ j(z)ε j(z), j = 1, . . . , n.

The Lyapunov condition for this sequence is guaranteed by the fact that

n∑

j=1

E

∣∣∣Yn j(z)
∣∣∣4 =

n∑

j=1

E

∣∣∣∣∣∣E j

(
δ j(z)β̄ j(z) − ε j(z)β̄2

j(z)
1

n
trΣD−2

j (z)

)∣∣∣∣∣∣
4

≤ K

n∑

j=1

( |z|4E|δ j(z)|4
v4

+
|z|8 p4

E|ε j(z)|4
v16n4

)
→ 0,

where the convergence is from Lemma A.4.

We next consider the sum σn(z, z̃) ,
∑n

j=1 E j−1

[
Yn j(z)Yn j(z̃)

]
, for z , z̃ ∈ {z1, . . . , zw}. Notice that

E|β̄ j(z) − bn(z)| ≤ K

n
E

∣∣∣trΣD−1
j (z) − E trΣD−1

j

∣∣∣→ 0 and bn(z) + zm
0
(z)→ 0, (3.24)

which follow from Bai and Silverstein (2004) and Lemma A.3, and thus we have

σn(z, z̃) =
∂2

∂z∂z̃
zz̃m

0
(z)m

0
(z̃)

n∑

j=1

E j−1

(
E jε j(z)E jε j(z̃)

)
+ op(1).
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Moreover, applying Lemma A.2 to the above conditional expectations, one may get

zz̃m
0
(z)m

0
(z̃)

n∑

j=1

E j−1

(
E jε j(z)E jε j(z̃)

)

=2T1 +
2

p
tr(T2)T2 − 2T3 − 2T4 + (τ − 3)(T5 + T6 − T7 − T8) + o(1),

where

T1 =
zz̃m

0
(z)m

0
(z̃)

n2

n∑

j=1

tr
[
E jTD−1

j (z)E jTD−1
j (z̃)

]
,

T2 =
zz̃m

0
(z)m

0
(z̃)

pn2

n∑

j=1

tr
[
E jTD−1

j (z)
]

tr
[
E jTD−1

j (z̃)
]
,

T3 =
zz̃m

0
(z)m

0
(z̃)

pn2

n∑

j=1

tr
[
E jT

2D−1
j (z)

]
tr

[
E jTD−1

j (z̃)
]
,

T4 =
zz̃m

0
(z)m

0
(z̃)

pn2

n∑

j=1

tr
[
E jTD−1

j (z)
]

tr
[
E jT

2D−1
j (z̃)

]
,

T5 =
zz̃m

0
(z)m

0
(z̃)

n2

n∑

j=1

tr
[
E j(T

1
2 D−1

j (z)T
1
2 ) ◦ E j(T

1
2 D−1

j (z̃)T
1
2 )
]
,

T6 =
zz̃m

0
(z)m

0
(z̃)

p2n2

n∑

j=1

tr
[
E jTD−1

j (z)
]

tr
[
E jTD−1

j (z̃)
]

tr [T ◦ T] ,

T7 =
zz̃m

0
(z)m

0
(z̃)

pn2

n∑

j=1

tr
[
E jTD−1

j (z)
]

tr
[
E j(T

1
2 D−1

j (z̃)T
1
2 ) ◦ T

]
,

T8 =
zz̃m

0
(z)m

0
(z̃)

pn2

n∑

j=1

tr
[
E j(T

1
2 D−1

j (z)T
1
2 ) ◦ T

]
tr

[
E jTD−1

j (z̃)
]
.

Following similar steps as in Bai and Silverstein (2004) and Hu et al. (2019a), applying Lemma A.3 and

Lemma A.4, we obtain

T1 = log
m

0
(z) − m

0
(z̃)

m
0
(z)m

0
(z̃)(z − z̃)

+ op(1),

T2 =
T6

ζp

= cn

∫
tm

0
(z)dH̃p(t)

1 + tm
0
(z)

∫
tm

0
(z̃)dH̃p(t)

1 + tm
0
(z̃)
+ op(1)

=
[1 + zm0(z)][1 + z̃m0(z̃)]

cn

+ op(1).

Notice that statistics T3 and T4 will reduce to T2 if T2 is replaced with T. By this, we have

T3 = cn

∫
t2m

0
(z)dH̃p(t)

1 + tm0(z)

∫
tm

0
(z̃)dH̃p(t)

1 + tm0(z̃)
+ op(1)

=

[
1 −

1 + zm
0
(z)

cnm
0
(z)

]
[1 + z̃m

0
(z̃)] + op(1),
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T4 = cn

∫
tm

0
(z)dH̃p(t)

1 + tm
0
(z)

∫
t2m

0
(z̃)dH̃p(t)

1 + tm
0
(z̃)

+ op(1)

=

[
1 −

1 + z̃m0(z̃)

cnm0(z̃)

]
[1 + zm

0
(z)] + op(1).

For the terms T5, T7, and T8, following similar procedure as in Pan et al. (2008) for proving their Theorem

1.4, using Lemma A.3, Lemma A.4, and Theorem 2.1, one may get

T5 =
1

n
tr

[
(T

1
2 (m−1

0
(z)I + T)−1T

1
2 ) ◦ (T

1
2 (m−1

0
(z̃)I + T)−1T

1
2 )
]
+ op(1)

= cngp

( −1

m0(z)
,
−1

m0(z̃)

)
+ op(1),

T7 =
1

pn
tr

[
T(m−1

0
(z)I + T)−1

]
tr

[
(T

1
2 (m−1

0
(z̃)I + T)−1T

1
2 ) ◦ T

]
+ op(1)

= hp

( −1

m
0
(z̃)

)
[1 + zm

0
(z)] + op(1),

T8 =
1

pn
tr

[
(T

1
2 (m−1

0 (z)I + T)−1T
1
2 ) ◦ T

]
tr

[
T(m−1

0 (z̃)I + T)−1
]
+ op(1)

= hp

( −1

m0(z)

)
[1 + z̃m0(z̃)] + op(1).

Collecting the above results we get

(3.21)
d
=

[
M

(1)

0
(z1), . . . ,M

(1)

0
(zq)

]
+ op(1),

where [M
(1)

0
(z1), . . . ,M

(1)

0
(zq)] is a q-dimensional zero-mean Gaussian random vector with covariance

function

Cov[M
(1)

0
(z),M

(1)

0
(z̃)] = σ1(z, z̃) + (τ − 3)σ2(z, z̃).

Step 2: Tightness of M
(1)
n (z). The tightness can be established by verifying the moment condition

(12.51) of Billingsley (1968):

sup
n,z1,z2∈Cn

E|M(1)
n (z1) − M

(1)
n (z2)|2

|z1 − z2|2
< ∞. (3.25)

By (3.19) and arguments in Bai and Silverstein (2004), the moments of D−1(z), D−1
j

(z) and D−1
i j

(z) are

uniformly bounded in n and z ∈ Cn, that is, for any positive k,

max{E||D−1(z)||k,E||D−1
j (z)||k,E||D−1

i j (z)||k} ≤ K. (3.26)

By such boundedness, the inequality in Lemma A.4 can be extended to

∣∣∣∣∣∣∣
E

a(v)

k∏

l=1

(
r′Bl(v)r − 1

n
trΣBl(v)

)

∣∣∣∣∣∣∣
≤ Kn−1−k(γ−4)/γ, k ≥ 2. (3.27)

The matrices Bl(v) in (3.27) are independent of r and

max{|a(v)|, ||Bl(v)||} ≤ K
[
1 + psI

(
||Bn|| ≥ xr or λB̃

min ≤ xl

)]
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for some positive s, where B̃ denotes Bn =
∑

r jr
′
j
, B j =

∑
k, j rkr′

k
, or Bi j =

∑
k,i, j rkr′

k
. Finally, following

similar procedure as in Section 3 of Bai and Silverstein (2004), and applying Lemma A.3, Lemma A.4

together with (3.19), (3.26), and (3.27), one may verify (3.25). The details are thus omitted.

Step 3: Convergence of M
(2)
n (z). To finish the proof, it is enough to show that the sequence of M

(2)
n (z)

is bounded and equicontinuous, and is equal to the mean function (3.20) asymptotically. The boundedness

and equicontinuity can be verified following the arguments in Bai and Silverstein (2004). We next pro-

pose a novel method to approximate M
(2)
n (z), which is quite different from the idea in Bai and Silverstein

(2004). This new procedure is more straightforward and easier to follow. Before the proof, we first list

some results that will be used in this part:

sup
z∈Cn

E|ε j(z)|k ≤ Kn−1−k(γ−4)/γ, sup
z∈Cn

E|γ j(z)|k ≤ Kn−1−k(γ−4)/γ, (3.28)

sup
n,z∈Cn

|bn(z) + zm0(z)| → 0, sup
n,z∈Cn

||zI − bn(z)Σ||−1 < ∞, (3.29)

sup
n,z∈Cn

E| tr D−1(z)M − E tr D−1(z)M|2 ≤ K||M||2, (3.30)

where k ≥ 2 and M is a nonrandom p × p matrix. These results can be verified step by step following the

discussions in Bai and Silverstein (2004) and we omit the details.

Writing V(z) = zI − bn(z)Σ, we decompose M
(2)
n (z) in two ways:

M(2)
n (z) = [pEmn(z) + tr V−1(z)] − [tr V−1(z) + pm0(z)] := S n(z) − Tn(z),

M(2)
n (z) = [nEm

n
(z) + nbn(z)/z] − [nbn(z)/z + nm

0
(z)] := S

n
(z) − T

n
(z).

Notice that by Lemma A.3,

Tn(z) = p

∫
dH̃p(t)

z − bn(z)t
− p

∫
dH̃p(t)

z + zm
0
(z)t
+ o(1)

= p
[
bn(z) + zm

0
(z)

] ∫ tdH̃p(t)

(z − bn(z)t)(z + zm
0
(z)t)

+ o(1)

= cnT
n
(z)

∫
tdH̃p(t)

(z − bn(z)t)(1 + m
0
(z)t)

+ o(1).

From this and the convergence in (3.29), we have

M
(2)
n (z) − S n(z)

M
(2)
n (z) − S

n
(z)
=

Tn(z)

T
n
(z)
=

cn

z

∫
tdH̃p(t)

(1 + m0(z)t)2
+ o(1). (3.31)

Our next task is to study the convergence of S n(z) and S
n
(z). For simplicity of notation, we sup-

press the expression z in the sequel when it is served as independent variables of some functions. All

expressions and convergence statements hold uniformly for z ∈ Cn.

We first simplify the expression of S n. Using the identity r′
j
D−1
= r′

j
D−1

j
β j, we have

S n = E tr(D−1
+ V−1) = E tr

V
−1


n∑

j=1

r jr
′
j − bnΣ

 D−1



= nEβ1r′1D−1
1 V−1r1 − bnE trΣD−1V−1. (3.32)

From (3.22) and β1 = bn − bnβ1γ1,

E tr V−1
Σ(D−1

1 − D−1) = E tr V−1
ΣD−1

1 r1r′1D−1
1 β1
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= bnE(1 − β1γ1)r′1D−1
1 V−1

ΣD−1
1 r1,

where |Eβ1γ1r′
1
D−1

1
V−1
ΣD−1

1
r1| ≤ Kn−1/2. From this and (3.32), we get

S n = nEβ1r′1D−1
1 V−1r1 − bnE trΣD−1

1 V−1
+

1

n
b2

nE tr D−1
1 V−1

ΣD−1
1 Σ + o(1).

Then plugging β1 = bn − b2
nγ1 + b3

nγ
2
1
− β1b3

nγ
3
1

into the first term in the above equation, we obtain

nEβ1r′1D−1
1 V−1r1 = bnE tr D−1

1 V−1
Σ − nb2

nEγ1r′1D−1
1 V−1r1

+ nb3
nEγ

2
1r′1D−1

1 V−1r1 − nb3
nEβ1γ

3
1r′1D−1

1 V−1r1.

Note that, from (3.27), (3.28), and (3.30),

Eγ1r′1D−1
1 V−1r1 = E

[
r′1D−1

1 r1 −
1

n
tr D−1

1 Σ

] [
r′1D−1

1 V−1r1

− 1

n
tr D−1

1 V−1
Σ

]
+

1

n2
Cov(tr D−1

1 Σ, tr D−1
1 V−1

Σ)

= E

[
r′1D−1

1 r1 −
1

n
tr D−1

1 Σ

] [
r′1D−1

1 V−1r1

− 1

n
tr D−1

1 V−1
Σ

]
+ o

(
1

n

)
,

Eγ2
1r′1D−1

1 V−1r1 = Eγ
2
1

[
r′1D−1

1 V−1r1 −
1

n
tr D−1

1 V−1
Σ

]

+
1

n
Cov(γ2

1, tr D−1
1 V−1

Σ) +
1

n
Eγ2

1E tr D−1
1 V−1

Σ

=
1

n
Eγ2

1E tr D−1
1 V−1

Σ + o

(
1

n

)
,

Eβ1γ
3
1r′1D−1

1 V−1r1 = o

(
1

n

)
.

We thus arrive at

S n = −nb2
nE

[
r′1D−1

1 r1 −
1

n
tr D−1

1 Σ

] [
r′1D−1

1 V−1r1 −
1

n
tr D−1

1 V−1
Σ

]

+ b3
nEγ

2
1E tr D−1

1 V−1
Σ +

1

n
b2

nE tr D−1
1 V−1

ΣD−1
1 Σ + o(1).

On the other hand, by the identity r′
j
D−1
= r′

j
D−1

j
β j, we have

p + z tr D−1
= tr(BnD−1) =

n∑

j=1

β jr
′
jD
−1
j r j = n −

n∑

j=1

β j,

which implies nzm
n
= −∑n

j=1 β j. From this, together with β1 = bn − b2
nγ1 + b3

nγ
2
1
− β1b3

nγ
3
1

and (3.27), we

get

S
n
= −n

z
E (β1 − bn) = −n

z
b3

nEγ
2
1 + o(1).
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Applying Lemma A.2 to the simplified S n and S
n
, and then replacing D j with D in the derived results

yield

S n = −
b2

n

n

[
E tr D−1TD−1V−1T +

2

p

(
1

n
tr T2
E tr TD−1 tr TD−1V−1

− E tr T2D−1 tr TD−1V−1 − E tr TD−1 tr T2D−1V−1
)]

+
2b3

n

n2

[
E tr D−1TD−1T +

1

p

(
1

n
tr T2
E tr TD−1 tr TD−1 − 2E tr T2D−1 tr TD−1

)]

· E tr D−1V−1T − (τ − 3)b2
n

n

[
E tr[(T

1
2 D−1T

1
2 ) ◦ (T

1
2 D−1V−1T

1
2 )]

+
1

p2
E tr(D−1T) tr(D−1V−1T) tr[T ◦ T]

− 1

p
E tr(D−1T) tr[(T

1
2 D−1V−1T

1
2 ) ◦ T] − 1

p
E tr(D−1V−1T) tr[(T

1
2 D−1T

1
2 ) ◦ T]

]

+
(τ − 3)b3

n

n2

[
E tr[(T

1
2 D−1T

1
2 ) ◦ (T

1
2 D−1T

1
2 )] +

1

p2
Etr2(D−1T) tr[T ◦ T]

− 2

p
E tr(D−1T) tr[(T

1
2 D−1T

1
2 ) ◦ T]

]
ED−1V−1T + o(1),

S
n
=
−2b3

n

zn

[
E tr D−1TD−1T +

1

p

(
1

p
tr T2
E tr TD−1 tr TD−1 − 2E tr T2D−1 tr TD−1

)]

− (τ − 3)b3
n

zn

[
E tr[(T

1
2 D−1T

1
2 ) ◦ (T

1
2 D−1T

1
2 )] +

1

p2
Etr2(D−1T) tr[T ◦ T]

− 2

p
E tr(D−1T) tr[(T

1
2 D−1T

1
2 ) ◦ T]

]
+ o(1).

To study the convergence of S n and S
n
, we need to figure out the difference between D−1 and V−1.

Write

D−1
+ V−1

= bnR̃1 + R̃2 + R̃3, (3.33)

where

R̃1 =

n∑

j=1

V−1(r jr
′
j − n−1

Σ)D−1
j , R̃2 =

n∑

j=1

V−1r jr
′
jD
−1
j (β j − bn),

R̃3 =
1

n

n∑

j=1

bnV−1
Σ(D−1

j − D−1).

From Bai and Silverstein (2004) we have, for any p × p matrix M,

|E tr R̃2M| ≤ n1/2K(E||M||4)1/4 and | tr R̃3M| ≤ K(E||M||2)1/2 (3.34)

and, for nonrandom matrix M,

|E tr R̃1M| ≤ n1/2K||M||. (3.35)

Taking a step further, for M nonrandom, we write

tr R̃1ΣD−1M = R̃11 + R̃12 + R̃13, (3.36)
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where

R̃11 = tr

n∑

j=1

V−1r jr
′
jD
−1
j Σ(D−1 − D−1

j )M,

R̃12 = tr

n∑

j=1

V−1(r jr
′
j − n−1

Σ)D−1
j ΣD−1

j M,

R̃13 = −
1

n
tr

n∑

j=1

V−1
ΣD−1

j Σ(D−1 − D−1
j )M.

It’s clear that ER̃12 = 0 and moreover, using (3.26), (3.27) and (3.30), we get

|ER̃13| ≤ K||M||, (3.37)

ER̃11 = −nEβ1r1D−1
1 ΣD−1

1 r1r′1D−1
1 MV−1r1

= −bnn−1
E(tr D−1

1 ΣD−1
1 T)(tr D−1

1 MV−1
Σ) + o(1)

= −bnn−1
E(tr D−1

ΣD−1
Σ)(tr D−1MV−1

Σ) + o(1)

= −bnn−1
E(tr D−1

ΣD−1
Σ)E(tr D−1MV−1

Σ) + o(1). (3.38)

Applying (3.24), (3.33)-(3.38), and Lemma A.3, one may approximate each components of S n and

S
n
. Specifically, we have

1

n
E tr D−1Tk

= −
∫

cntkdH̃p(t)

z(1 + m0t)
+ o(1),

1

n
E tr D−1V−1Tk

= −
∫

cntkdH̃p(t)

z2(1 + m0t)2
+ o(1),

1

n
E tr D−1TD−1T

= − 1

n
E tr V−1TD−1T − b2

n

n2
E tr D−1TD−1TE tr V−1TD−1T + o(1)

= − 1

n
E tr V−1TD−1T

[
1 +

b2
n

n
E tr V−1TD−1T

]−1

+ o(1),

=

∫
cnt2dH̃p(t)

z2(1 + m0t)2

1 −
∫

cnm2
0
t2dH̃p(t)

(1 + m0t)2


−1

+ o(1),

1

n
E tr D−1TD−1V−1T

= − 1

n
E tr V−1TD−1V−1T

[
1 +

b2
n

n
E tr D−1TD−1T

]
+ o(1)

= − 1

n
E tr V−1TD−1V−1T

[
1 +

b2
n

n
E tr V−1TD−1T

]−1

+ o(1),

=

∫
cnt2dH̃p(t)

z3(1 + m
0
t)3

[
1 −

∫
cnm2

0
t2dH̃p(t)

(1 + m
0
t)2

]−1

+ o(1).

Combining the above results, we obtain

Tn/T n
=

∫
cntdH̃p(t)

z(1 + m
0
t)2
+ o(1),
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S n − S
n
Tn/T n

= −
∫

cnm2
0
t2dH̃p(t)

z(1 + m
0
t)3

[
1 −

∫
cnm2

0
t2dH̃p(t)

(1 + m
0
t)2

]−1

−
2cnm2

0

z

[ ∫ (α2t − t2)dH̃p(t)

1 + m
0
t

∫
tdH̃p(t)

(1 + m
0
t)2
−

∫
tdH̃p(t)

1 + m
0
t

∫
t2dH̃p(t)

(1 + m
0
t)2

]

− cn(τ − 3)

{
1

zm
0

g′p,z

(−1

m
0

,
−1

m
0

)
+ ζp

∫
tm

0
dH̃p(t)

1 + m
0
t

∫
tm

0
dH̃p(t)

z(1 + m
0
t)2

−

∫

tdH̃p(t)

z(1 + m
0
t)

h′p

(−1

m
0

)
+

∫
tm

0
dH̃p(t)

z(1 + m
0
t)2

hp

(−1

m
0

)
}
+ o(1).

Therefore, from (3.31) and the identities

[
1 −

∫
cntdH̃p(t)

z(1 + m
0
t)2

]−1

= −zm
0

[
1 −

∫
cnm2

0
t2dH̃p(t)

(1 + m
0
t)2

]−1

= −
zm′

0

m
0

,

we obtain

M(2)
n (z) =

S n − S
n
Tn/T n

1 − Tn/T n

= µ1(z) + (τ − 3)µ2(z) + o(1).

The proof is complete.

A Additional lemmas

In this Appendix, we present some lemmas and their proofs, which will be used in the proof of our

main theorems.

A.1 Lemmas

Lemma A.1 (Lemma 2.7 in Bai and Silverstein (1998)) For z = (z1, . . . , zp)′ i.i.d. standardized en-

tries, C p × p matrix (complex) we have for any k ≥ 2

E

∣∣∣z′Cz − tr C
∣∣∣k ≤ K

[(
E|z1|4 tr CC∗

) k
2
+ E|z1|2k tr (CC∗)

k
2

]
,

where K is a constant depending only on k.

Lemma A.2 Suppose that Assumptions (a)-(c) and (3.17) hold. Let z = (z1, . . . , zp)′ be a random vector

with i.i.d. standardized entries, r =
√

p/nA1/2z/||A1/2z||, and Σ = nErr′. Then for any p × p complex

matrices C and C̃ with bounded spectral norms,

n2
E

(
r′Cr − 1

n
trΣC

) (
r′C̃r − 1

n
trΣC̃

)

= tr TCTC̃ + tr TCTC̃′ +
2

p2
tr T2 tr TC tr TC̃ − 2

p
tr T2C tr TC̃ − 2

p
tr TC tr T2C̃

+ (τ − 3)

{
tr[(T

1
2 CT

1
2 ) ◦ (T

1
2 C̃T

1
2 )] +

1

p2
tr CT tr C̃T tr[T ◦ T]

− 1

p
tr CT tr[(T

1
2 C̃T

1
2 ) ◦ T] − 1

p
tr C̃T tr[(T

1
2 CT

1
2 ) ◦ T]

}
+ o(p).
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Lemma A.3 Suppose that Assumptions (a)-(c) and (3.17) hold with γ = 5. We have

||Σ − T|| = o(p−1),

where Σ is defined in Lemma A.2 and T is given in (2.8).

Lemma A.4 Under the assumptions in Lemma A.2, for any k ≥ 2,

E

∣∣∣∣∣r
′Cr − 1

n
trΣC

∣∣∣∣∣
k

≤ Kn−k
[
E|z1|2k tr(CΣ)k

+

(
E|z1|4 tr(CΣ)2

) k
2
+ ‖CΣ‖k

(
p

k
2E

k
2 |z1|4 + pE|z1|2k

)]

≤ K

(
n−

k
2 + n

−1− k(γ−4)

γ

)
. (A.1)

where K is a constant depending only on k.

A.2 Proof of Lemma A.2

Denote W = A
1
2 CA

1
2 , U = A

1
2 C̃A

1
2 , and s = z′Az/p. We consider the product of the quadratic form

n2r′Crr′C̃r = z′Wzz′Uz/s2. From Lemma A.1, the fact tr A = p, and the conditions in (3.17), it holds

that

E|s − 1|k ≤ K

(
p−

k
2 + p

−1− k(γ−4)

γ

)
, k ≥ 2. (A.2)

By the identity
1

s2
= 2 − s2

+ (1 − s2)2
+ s−2(1 − s2)3

and the inequality

E(z′Wzz′Uz)(s−2(1 − s2)3) ≤ K p2
E|1 − s|3 = o(p),

we have

Er′Crr′C̃r = E(z′Wzz′Uz)
(
6 − 8s + 3s2

)
+ o(p). (A.3)

Therefore, the main task in the following is to derive the limits for the three termsEz′Wzz′Uz, Ez′Wzz′Uzs

and Ez′Wzz′Uzs2 up to the order O(p).

For the first term Ez′Wzz′Uz, we have

Ez′Wzz′Uz = E
∑

i, j,k,ℓ

ziz jzkzℓWi jUkℓ.

Since all the p components zi are independent and standardized, with mean zero, variance one and finite

fourth moment, the terms that will contribute are the ones with their indexes either can be glued together

or divided into two groups, i.e. i = j = k = ℓ, or i = j , k = ℓ, or i = k , j = ℓ or i = ℓ , j = k. All the

four cases together gives

Ez′Wzz′Uz = tr W tr U + tr WU + tr W′U + (τ − 3)
∑

i

WiiUii + o(p). (A.4)

For the second term Ez′Wzz′Uzs, we have

Ez′Wzz′Uzs =
1

p
E

∑

i, j,k,ℓ,s,u

ziz jzkzℓzszuWi jUkℓAsu. (A.5)
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The terms that will contribute up to order O(p) are in
∑

(2) and
∑

(3), where the index (·) denotes the

number of distinct integers in the set {i, j, k, ℓ, s, u}. It can be checked that the following three cases

should be counted in
∑

(2) (all have the form of the product of two traces)

case 1: i = j , k = ℓ = s = u,

case 2: k = ℓ , i = j = s = u,

case 3: s = u , i = j = k = ℓ,

while in
∑

(3) the following four cases should be taken into account,

case 1: k = s , ℓ = u , i = j and k = u , ℓ = s , i = j,

case 2: i = s , j = u , k = ℓ and i = u , j = s , k = ℓ,

case 3: i = ℓ , j = k , s = u and i = k , j = ℓ , s = u,

case 4: i = j , k = ℓ , s = u.

Combining the contribution of each cases in
∑

(2) and
∑

(3), we have

case 1 =
τ + o(1)

p

∑

i,k

WiiUkkAkk +
2

p

∑

i,k,ℓ

WiiUkℓAℓk

=
τ − 2

p

∑

i,k

WiiUkkAkk +
2

p

∑

i,k

Wii(UA)kk + o(p)

=
τ − 2

p
tr W

∑

k

UkkAkk +
2

p
tr W tr(UA) + o(p),

case 2 =
τ + o(1)

p

∑

i,k

WiiUkkAii +
2

p

∑

i, j,k

Wi jUkkA ji

=
τ − 2

p

∑

i,k

WiiAiiUkk +
2

p

∑

i,k

Ukk(WA)ii + o(p)

=
τ − 2

p
tr U

∑

i

WiiAii +
2

p
tr U tr(WA) + o(p),

case 3 =
τ + o(1)

p

∑

s,i

WiiUiiAss +
1

p

∑

i, j,s

Wi jU jiAss +
1

p

∑

i, j,s

Wi jU
∗
jiAss

=
τ − 2

p

∑

s,i

WiiUiiAss +
1

p

∑

i,s

Ass(WU)ii +
1

p

∑

i,s

Ass(WU∗)ii + o(p)

=
τ − 2

p
tr A

∑

i

WiiUii +
1

p
tr A tr(WU) +

1

p
tr A tr(WU∗) + o(p),

case 4 =
1

p

∑

i,k,s

WiiUkkAss

=
1

p
tr W tr U tr A − 1

p
tr A

∑

i

WiiUii −
1

p
tr U

∑

i

WiiAii

− 1

p
tr W

∑

i

AiiUii + o(p),

which further gives

Ez′Wzz′Uzs = case 1 + case 2 + case 3 + case 4 + o(p)

=
1

p
tr W tr U tr A +

2

p
tr W tr(UA) +

2

p
tr U tr(WA)
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+
1

p
tr A tr(WU) +

1

p
tr A tr(WU∗) +

τ − 3

p
tr W

∑

k

UkkAkk

+
τ − 3

p
tr U

∑

i

WiiAii +
τ − 3

p
tr A

∑

i

WiiUii + o(p). (A.6)

Finally, for the third term Ez′Wzz′Uzs2, we have

Ez′Wzz′Uzs2
=

1

p2
E

∑

i, j,k,ℓ,s,u,m,b

ziz jzkzℓzszuzmzbWi jUkℓAsuAmb.

The terms that will make the main contribution up to order O(p) are in
∑

(3) and
∑

(4). For example, when

considering
∑

(1), we have

∑

(1)

= E

∑

i

1

p2
z8

i WiiUiiA
2
ii = O(p1−4(γ−4)/γ) = o(p)

by using the assumptions in (3.17). Similar technique can be applied for dealing with the terms in
∑

(2)

and get the o(p) bound, thus can be neglected. For terms in
∑

(3) and
∑

(4), we list in the following all the

cases that should be counted, which are all up to order O(p). For
∑

(3), we have six cases

case 1: i = j , k = ℓ , s = u = m = b,

case 2: i = j = s = u , k = ℓ , m = b,

case 3: i = j = m = b , k = ℓ , s = u,

case 4: k = ℓ = m = b , i = j , s = u,

case 5: i = j = k = ℓ , s = u , m = b,

case 6: k = ℓ = s = u , i = j , m = b,

while in
∑

(4), we have seven cases

case 1: i = j , k = ℓ , u = m , s = b and i = j , k = ℓ , s = m , u = b,

case 2: i = s , j = u , k = ℓ , m = b and i = u , j = s , k = ℓ , m = b,

case 3: i = m , j = b , u = s , k = ℓ ang i = b , j = m , k = ℓ , s = u,

case 4: k = m , ℓ = b , i = j , s = u and k = b , ℓ = m , i = j , s = u,

case 5: i = k , j = ℓ , s = u , m = b and i = ℓ , j = k , s = u , m = b,

case 6: k = s , ℓ = u , i = j , m = b and k = u , ℓ = s , i = j , m = b,

case 7: i = j , k = ℓ , s = u , m = b.

Combining the above, we have

case 1 =
2

p2

∑

i,k,m,s

WiiUkkAmsAms +
τ + o(1)

p2

∑

i,k,s

WiiUkkA2
ss

=
2

p2

∑

i,k,s

WiiUkk(AA)ss +
τ − 2

p2

∑

i,k,s

WiiUkkA2
ss + o(p)

=
2

p2
tr A2 tr W tr U +

τ − 2

p2
tr W tr U

∑

s

A2
ss + o(p),

case 2 =
2

p2

∑

i, j,k,m

Wi jUkkAi jAmm +
τ + o(1)

p2

∑

i,k,m

WiiUkkAiiAmm

=
2

p2

∑

i,k,m

(WA)iiUkkAmm +
τ − 2

p2

∑

i,k,m

WiiUkkAiiAmm + o(p)

=
2

p2
tr(WA) tr U tr A +

τ − 2

p2
tr U tr A

∑

i

WiiAii + o(p),
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case 3 = case 2,

case 4 =
2

p2

∑

k,ℓ,i,s

WiiUkℓAssAkℓ +
τ

p2

∑

k,i,s

WiiUkkAkkAss

=
2

p2

∑

k,i,s

(UA)kkWiiAss +
τ − 2

p2

∑

k,i,s

WiiUkkAssAkk + o(p)

=
2

p2
tr(UA) tr W tr A +

τ − 2

p2
tr W tr A

∑

k

UkkAkk + o(p),

case 5 =
1

p2

∑

i, j,s,m

Wi jUi jAssAmm +
1

p2

∑

i, j,s,m

Wi jU jiAssAmm

+
τ

p2

∑

i,s,m

WiiUiiAssAmm

=
1

p2

∑

i,s,m

(WU)iiAssAmm +
1

p2

∑

i,s,m

(WU∗)iiAssAmm

+
τ − 2

p2

∑

i,s,m

WiiUiiAssAmm + o(p)

=
1

p2
tr(WU)(tr A)2

+
1

p2
tr(WU∗)(tr A)2

+
τ − 2

p2
(tr A)2

∑

i

WiiUii + o(p),

case 6 = case 4,

case 7 =
1

p2

∑

i,k,s,m

WiiUkkAssAmm

=
1

p2
tr W tr U(tr A)2 − 1

p2
tr W tr U

∑

s

A2
ss −

2

p2
tr W tr A

∑

s

AssUss

− 1

p2
(tr A)2

∑

i

WiiUii −
2

p2
tr U tr A

∑

i

WiiAii + o(p),

which finally leads to

E(z′Wzz′Uz)s2

=
1

p2
tr W tr U(tr A)2

+
2

p2
tr A2 tr W tr U +

4

p2
tr(WA) tr U tr A

+
4

p2
tr(UA) tr W tr A +

1

p2
tr(WU)(tr A)2

+
1

p2
tr(WU∗)(tr A)2

+
τ − 3

p2
tr W tr U

∑

s

A2
ss +

2τ − 6

p2
tr U tr A

∑

i

WiiAii

+
2τ − 6

p2
tr W tr A

∑

k

UkkAkk +
τ − 3

p2
(tr A)2

∑

i

WiiUii + o(p). (A.7)

Collecting (A.3), (A.4), (A.6), and (A.7), we have

n2
Er′Crr′C̃r

= (τ − 3)
∑

i

WiiUii + tr W tr U + tr(WU) + tr(W′U)

+
6

p2
tr A2 tr W tr U − 4

p
tr(WA) tr U − 4

p
tr(UA) tr W
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+
3(τ − 3)

p2
tr W tr U

∑

s

A2
ss −

2(τ − 3)

p
tr W

∑

k

UkkAkk

− 2(τ − 3)

p
tr U

∑

i

WiiAii + o(p). (A.8)

On the other hand, using the identity

1

s
= 2 − s + (1 − s)2

+ s−1(1 − s)3

and the inequality (A.2), we can derive

nEr′Cr = E
1

s
z′Wz = Ez′Wz

(
3 − 3s + s2

)
+ o(1). (A.9)

It is trivial to have

Ez′Wz = tr W (A.10)

and by applying (A.4) and (A.6) again,

Ez′Wzs =
τ − 3

p

∑

i

WiiAii + tr W +
1

p
tr(WA) +

1

p
tr(W∗A), (A.11)

Ez′Wzs2
= tr W +

2

p2
tr W tr(A2) +

4

p
tr(WA) +

2(τ − 3)

p

∑

i

WiiAii (A.12)

+
τ − 3

p2
tr W

∑

i

A2
ii + o(1).

Collecting (A.9)-(A.12) leads to

nEr′Cr = tr W +
τ − 3

p2
tr W

∑

i

A2
ii +

2

p2
tr W tr A2 − τ − 3

p

∑

i

WiiAii

− 2

p
tr(WA) + o(1). (A.13)

Therefore, combining (A.8)-(A.13), we have reached

n2
E

(
r′Cr − 1

n
trΣC

) (
r′C̃r − 1

n
trΣC̃

)
(A.14)

=n2
Er′Crr′C̃r − n2

Er′CrEr′C̃r

= tr[(W′
+W)U] +

2

p2
tr A2 tr W tr U − 2

p
tr(WA) tr U

− 2

p
tr(UA) tr W + (τ − 3) tr(W ◦U) +

τ − 3

p2
tr W tr U tr(A ◦ A)

− τ − 3

p
tr W tr(U ◦ A) − τ − 3

p
tr U tr(W ◦ A) + o(p).

The proof is then complete by replacing all the matrix A with T.
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A.3 Proof of Lemma A.3

Using the identity

1

s
= 2 − s + (1 − s)2

+ s−1(1 − s)3

we have

Σ = E
1

s
A

1
2 zz′A

1
2 = EA

1
2 zz′A

1
2

(
2 − s + (1 − s)2

+ s−1(1 − s)3
)
, (A.15)

where s = z′Az/p. First we show that

∥∥∥∥EA
1
2 zz′A

1
2 s−1(1 − s)3

∥∥∥∥ = o(p−1). (A.16)

Define an event A =
{|s − 1| > 1/2

}
then, by Markov’s inequality and (A.2), we have P(A) = o(n−s) for

any s > 0. Therefore,

∥∥∥∥EA
1
2 zz′A

1
2 s−1(1 − s)3

∥∥∥∥ ≤ K
∥∥∥∥Ezz′s−1(1 − s)3I(A)

∥∥∥∥ + K
∥∥∥∥Ezz′s−1(1 − s)3I(Ac)

∥∥∥∥

≤ K
∥∥∥∥Ezz′|1 − s|3

∥∥∥∥ + o(n−s).

Applying Hölder’s inequality and (A.2), we have

∥∥∥∥Ezz′|1 − s|3
∥∥∥∥ = max

α∈Rp ,‖α‖=1
Eα′zz′α|1 − s|3 ≤ max

α∈Rp ,‖α‖=1
E

∣∣∣z′αα′z − 1
∣∣∣
∣∣∣1 − s

∣∣∣3 + E
∣∣∣1 − s

∣∣∣3

≤ max
α∈Rp ,‖α‖=1

E
1
2

∣∣∣z′αα′z − 1
∣∣∣2E 1

2

∣∣∣1 − s
∣∣∣6 + o(p−1),

which is o(p−1) from (A.2) and the fact E|z′αα′z − 1|2 = O(1). Therefore, (A.16) is verified, which

together with (A.15) give

Σ = EA
1
2 zz′A

1
2

(
2 − s + (1 − s)2

)
+ o(p−1) = A

1
2

[
Ezz′

(
3 − 3s + s2

)]
A

1
2 + o(p−1), (A.17)

where (and in the following) the “o(p−1)” is in terms of spectral norm.

Next, we deal with the terms Ezz′s and Ezz′s2. For Ezz′s, we have its (i, j)-th entry given by

[Ezz′s](i, j) =
1

p
Eziz j

∑

k,ℓ

zkzℓAkℓ =


1
p
Ai j +

1
p
A ji i , j

1 + 1
p

(
τ − 1 + o(1)

)
Aii i = j

,

which gives

Ezz′s = Ip +
2

p
A +

1

p

(
τ − 3 + o(1)

)
diag(A)

and

EA
1
2 zz′A

1
2 s = A +

2

p
A2
+

1

p

(
τ − 3

)
A

1
2 diag(A)A

1
2 + o(p−1). (A.18)

For the term Ezz′s2, similar to the derivation of (A.5), we have its (i, j)-th entry is given by

[Ezz′s2](i, j) =
1

p2
Eziz j

∑

k,ℓ,s,u

zkzℓzszuAkℓAsu
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=


4
p
Ai j − 4

p2 AiiAi j − 4
p2 Ai jA j j + o(p−2) i , j

1
p2

(
τ − 3

)∑
k A2

kk
+

2
p
(τ − 1)Aii +

2
p2 tr A2

+ 1 + o(p−1) i = j
.

Therefore, we get

Ezz′s2
=

4

p
A +

1

p2
(τ − 3) tr(A ◦ A)Ip + Ip +

2

p
(τ − 3)diag(A) +

2

p2
tr A2 · Ip + o(p−1),

which further gives that

EA
1
2 zz′A

1
2 s2
=

4

p
A2
+

1

p2
(τ − 3) tr(A ◦ A)A + A +

2

p
(τ − 3)A

1
2 diag(A)A

1
2 +

2

p2
tr A2 · A + o(p−1).

(A.19)

Collecting (A.17), (A.18), and (A.19), we obtain

Σ = A − τ − 3

p
Adiag(A)A′ − 2

p
A2
+

(
τ − 3

p2
tr(A ◦A) +

2

p2
tr A2

)
A + o(p−1).

The proof is thus complete.

A.4 Proof of Lemma A.4

This lemma can be obtained from similar arguments for the proof of Lemma 6 in Morales-Jimenez et al.

(2019). We omit the details.
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