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Abstract: In this short note, we define an s × smatrix Ks constructed from the Hilbert matrix Hs =
(

1
i+j−1

)s

i,j=1

and prove that it has at least one pair of complex eigenvalues when s ≥ 2. Ks is a matrix related to the AVF

collocation method, which is an energy-preserving/dissipative numerical method for ordinary differential

equations, and our result gives a matrix-theoretical proof that the method does not have large-grain paral-

lelism when its order is larger than or equal to 4.
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1 Introduction
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s×s be the Hilbert matrix of order s defined by
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= [h1 h2 · · · hs] (1)

and H<
s its shifted version:
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= [h2 h3 · · · hs+1]. (2)

In this paper, we consider a matrix Ks defined by

Ks = (H<
s )
−1Hs













1

2

. . .

s













(3)

and study whether it has complex eigenvalues or not.

This problem is related to the analysis of so-called structure-preserving numerical methods for ordi-

nary differential equations (ODEs) [1–3]. More specifically, the matrix Ks arises in the analysis of the AVF
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collocation method [4], which is a class of energy-preserving/dissipative numerical methods belonging to

continuous-stage Runge-Kuttamethods. Aswill be detailed in the next section, if Ks has only real eigenvalues

and is diagonalizable for some s, then the AVF collocation method of order 2s has large-grain parallelism,

which is a desirable property from the viewpoint of high performance computing. Actually, it is possible

to analyze this problem in a different way, by using the relationship between the AVF collocation method

and Gauss-Legendre Runge-Kutta method and exploiting the properties of the latter [5, 6]. But a more direct

analysis based on matrix theory will be desirable because such an analysis will be applicable also to some

generalizations of the AVF collocation method [7]. We therefore deal with this problem in the present paper.

The rest of this paper is structured as follows. In Section 2, we introduce the AVF collocation method

and explain how its characteristics are governed by the Hilbert matrix Hs and the matrix Ks. In Section 3, we

analyze the eigenvalues of Ks and show that it has at least one pair of complex eigenvalues for s ≥ 2. Section

4 gives some discussion and conclusion.

2 The matrices Hs and Ks and the properties of the AVF collocation

method

Let us consider the following system of ODEs:

dy

dt
= f(y), y(t0) = y0 ∈ R

N
, (4)

where

f(y) = S∇H(y), S ∈ R
N×N

, H : RN → R. (5)

It is well known that the system (4) is energy-conserving (dH/dt = 0) when S is skew-symmetric and dis-

sipative (dH/dt ≤ 0) when S is symmetric negative semidefinite [2]. If the system (4) is discretized by

general-purpose numerical integrators such as Runge-Kutta methods, however, such properties are usu-

ally lost. To resolve this problem, structure-preserving numerical integrators that preserve the energy-

conserving/dissipative property even after discretization have been actively studied [1–3]. One of the schemes

to derive such integrators in a unified manner is continuous-stage Runge-Kutta (CSRK) methods [4, 7, 8]. In

this method, one computes the numerical solution y1 at time t + h from y0 at time t by the following formula:

Yτ = y0 + h

1
∫

0

Aτ,ζ f(Yζ ) dζ , (6)

y1 = y0 + h

1
∫

0

Bτf(Yτ) dτ. (7)

Here, Aτ,ζ is a polynomial of order s in τ and order s − 1 in ζ defined by

Aτ,ζ =

[

τ
τ2

2
· · ·

τs

s

]
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, (8)

where M is an s × s matrix that defines a specific CSRK method, and Bζ = A1,ζ . By choosing Aτ,ζ in this way

and approximating the integral on the right-hand side of (6) by numerical quadrature, the integral equation

(6) is reduced to a nonlinear equation, which can be solved by, for example, the simplified Newton method.

The characteristics of a specific CSRK method is determined by the matrix M as follows (see [7] for details).

1. If M is symmetric, the corresponding CSRK method is energy-preserving. If, in addition, M is positive

semidefinite, the method is also dissipative when applied to dissipative ODEs.
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2. If M satisfies the following equations, the corresponding CSRK method has order 2η, i.e., its local error

is O(h2η+1):
[

1

k

1

k + 1
· · ·

1

k + s − 1

]

M = e⊤k , k = 1, . . . , η, (9)

where ek is the kth column of the identity matrix of order s. Note that this is a sufficient condition.

3. If the eigenvalues of the matrix Es ∈ R
s×s defined by

Es =













1
1
2

. . .
1
s













MH<
s (10)

are all real and Es is diagonalizable, then the corresponding CSRK method has large-grain parallelism.

This means that the linear simultaneous equations of order sN to be solved at each time step is decom-

posed into s independent linear simultaneous equations of order N each.

If we set M = H−1
s , the condition (9) is satisfied for k = 1, 2, . . . , s and the resulting CSRK method has order

2s. This is called the AVF collocation method [4]. This method is energy-preserving since Hs (and therefore

H−1
s ) is symmetric and also dissipative since Hs (and therefore H

−1
s ) is positive definite. So, it is of interest to

know whether the matrix Es = diag(1, 12 , . . . ,
1
s )H

−1
s H<

s has all real eigenvalues, since then the method also

has the desirable property of large-grain parallelism.

Actually, it is known that the matrix Es corresponding to the AVF collocationmethod has complex eigen-

values for s ≥ 2, because it is similar to the Es matrix of Gauss-Legendre Runge-Kutta method and the latter is

known to have atmost one real eigenvalue [6]. However, this is an indirect proof and amore direct proof based

on matrix theory is desirable, since such a proof could be extended to modifications of the AVF collocation

method, for which the matrixM is a slight perturbation of H−1
s . In the next section, we study the existence of

complex eigenvalues of Ks = E−1s = (H<
s )
−1Hsdiag(1, 2, . . . , s) based purely on matrix theory.

3 The eigenvalues of Ks

3.1 The entries of (H<

s
)−1Hs

To study the eigenvalues of Ks, we first calculate the entries of (H
<
s )
−1Hs using the properties of the Hilbert

matrix. Since the 2nd, 3rd, . . ., sth columns of Hs is the 1st, 2nd, . . ., (s − 1)th columns of H<
s , respectively,

it is clear that the ith column of (H<
s )
−1Hs is ei−1 for 2 ≤ i ≤ s. Now, let the 1st column of (H<

s )
−1Hs be b =

[b1, b2, . . . , bs]
⊤. Then, since b is the solution of the linear simultaneous equation

H<
sb = h1, (11)

we have from Cramer’s formula,

bi =
|h2 h3 · · · hi h1 hi+2 hi+3 · · · , hs+1|

|H<
s |

= (−1)i−1
|h1 h2 h3 · · · hi hi+2 hi+3 · · · , hs+1|

|H<
s |

(i = 1, 2, . . . , s). (12)

Note that the numerator of the last expression is the determinant of amatrix obtained by deleting the (s+1)th

rowand the (i+1)th columnofHs+1,while thedenominator is thedeterminant of amatrix obtainedbydeleting

the (s + 1)th row and the 1st column of Hs+1. Hence, the numerator and the denominator are the (s + 1, i + 1)

and (s + 1, i) cofactors of Hs+1, respectively, and can be written as

|h1 h2 h3 · · · hi hi+2 hi+3 · · · , hs+1| = (H−1
s+1)i+1,s+1 · |Hs+1| · (−1)

(i+1)+(s+1)
, (13)
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|H<
s | = (H−1

s+1)1,s+1 · |Hs+1| · (−1)
1+(s+1)

. (14)

By inserting these expressions into (12) and using the formula for the inverse of the Hilbert matrix [9]:

(H−1
N )m,n =

(−1)m+n

m + n − 1
·

(n + N − 1)!(m + N − 1)!

((n − 1)!)2(N − n)!((m − 1)!)2(N − m)!
, (15)

we have

bi = −
(H−1

s+1)i+1,s+1
(H−1

s+1)1,s+1

= −

(−1)(i+1)+(s+1)

i + s + 1
·
(2s + 1)!(s + i + 1)!

(s!)2(i!)2(s − i)!

(−1)1+(s+1)

s + 1
·
(2s + 1)!(s + 1)!

(s!)2s!

= (−1)i+1
(s + i)!

(i!)2(s − i)!
(i = 1, 2, . . . , s). (16)

Thus, we have succeeded in computing all the entries of (H<
s )
−1Hs.

3.2 Existence of complex eigenvalues

Now, let us apply a similarity transformation Cs = DKsD
−1 to KS using a diagonal matrix D =

diag(1!, 2!, . . . , s!). Then we obtain

Cs =

















c1 1

c2 1
...

. . .

cs−1 1

cs

















, (17)

where

ci = i!bi = (−1)i+1
(s + i)!

i!(s − i)!
(i = 1, 2, . . . , s). (18)

Since Cs is a companion matrix, its characteristic polynomial is given as

Ps(x) = |xIs − Cs| =

s
∑

i=0

cs−ix
i
. (19)

Note that while the expression (18) for ci was derived for i = 1, 2, . . . , s, it is valid also for c0, because sub-

stituting i = 0 into (18) gives c0 = 1, which is the correct coefficient of xs in the characteristic polynomial.

To study the reality of the roots of Ps(x) = 0, we use the following lemma due to Newton [10].

Lemma 3.1 (Newton). Assume that n ≥ 2 and let P(x) =
∑n

i=0 nCi aix
i. Then, for all the roots of the nth order

algebraic equation P(x) = 0 to be real, the following inequalities must hold:

a2i ≥ ai−1ai+1 (1 ≤ i < n). (20)

In our case, the coefficients ai in the lemma are given as

ai =
cs−i
sCi

= (−1)s−i+1
(2s − i)!

i!(s − i)!
·
i!(s − i)!

s!
· = (−1)s−i+1

(2s − i)!

s!
(i = 1, 2, . . . , s). (21)

Hence,

a2i
ai−1ai+1

=
((2s − i)!)2

(s!)2
·

s!

(2s − i + 1)!
·

s!

(2s − i − 1)
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=
((2s − i))2

(2s − i + 1)!(2s − i − 1)!

=
((2s − i))2

(2s − i + 1)(2s − i)! ·
(2s − i)!

2s − i

=
2s − i

2s − i + 1
< 1 (1 ≤ i < s), (22)

which shows that the inequality (20) does not hold for any i.

Thus, we arrive at the following theorem.

Theorem 3.2. The matrix Ks = (H<
s )
−1diag(1, 2, . . . , s) has at least one pair of complex eigenvalues for s ≥ 2.

This translates into the following corollary on the AVF collocation method.

Corollary 3.3. The AVF collocation method does not have large-grain parallelism when s ≥ 2.

4 Discussion

To prove the existence of a complex root of Ps(x) = 0 using Newton’s lemma, it is sufficient to show that

(20) fails to hold for at least one of 1 ≤ i < s. In our case, however, (20) fails to hold for all of 1 ≤ i < s.

Thus, it would not be so easy to modify Ks so that (20) holds for all 1 ≤ i < s by introducing only small

number of parameters into M. On the other hand, the ratio of a2i /(ai−1ai+1) = (2s − i)/(2s − i + 1) is

very close to 1. This suggests that Ks is very close to a matrix with all real eigenvalues¹. Accordingly, it is

still an open question whether we can modify Hs so that Ks has all real eigenvalues while retaining the

energy-preservation/dissipative properties and the order conditions. Our analysis given in this paper should

be a useful guideline in pursuing the research in this direction.
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