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Abstract. Let G be a mixed graph. The eigenvalues and eigenvectors of G are respectively
defined to be those of its Laplacian matrix. If G is a simple graph, [M. Fiedler: A property
of eigenvectors of nonnegative symmetric matrices and its applications to graph theory,
Czechoslovak Math. J. 25 (1975), 619–633] gave a remarkable result on the structure of the
eigenvectors of G corresponding to its second smallest eigenvalue (also called the algebraic
connectivity of G). For G being a general mixed graph with exactly one nonsingular cycle,
using Fiedler’s result, we obtain a similar result on the structure of the eigenvectors of G

corresponding to its smallest eigenvalue.
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1. Introduction

Let G = (V, E) be a mixed graph with vertex set V = V (G) = {v1, v2, . . . , vn} and

edge set E = E(G) = {e1, . . . , em}, which is obtained from an undirected graph by

orienting some of its edges. Then some edges of G have a special head and tail, while

others do not. The notion of a mixed graph generalizes both the classical approach of

orienting all edges [4] and the unoriented approach [9]. However, it should be pointed

out that mixed graphs are considered here as the underlying undirected graphs as

concerns defining degrees, paths, cycles, connectivity, etc., and have no multi-edges

or loops in this paper.
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Let e ∈ E(G). The sign of e is denoted by sgn e and defined as sgn e = 1 if e is

unoriented and sgn e = −1 otherwise. Set aij = sgn{vi, vj} if {vi, vj} ∈ E(G) and

aij = 0 otherwise. Then A(G) = [aij ] is called the adjacency matrix of G. The

incidence matrix of G is the n × m matrix M = M(G) = [mij ] whose entries are

given by mij = 1 if ej is an unoriented edge incident with vi or ej is an oriented edge

with head vi, mij = −1 if ej is an oriented edge with tail vi, and mij = 0 otherwise.

The Laplacian matrix of G is defined as L = L(G) = MMT , where MT denotes the

transpose ofM . Denote by dG(v) = d(v) the degree of the vertex v in the graph G. It

is easy to see that L(G) = D(G)+A(G), where D(G) = diag{d(v1), d(v2), . . . , d(vn)}

is a diagonal matrix.

One can find that L(G) is symmetric and positive semidefinite so that its eigenval-

ues can be arranged as follows: 0 6 λ1(G) 6 λ2(G) 6 . . . 6 λn(G). We simply say

the eigenvalues and eigenvectors of L(G) as those of G, respectively. The spectrum

of G is defined by the multi-set {λ1(G), λ2(G), . . . , λn(G)}. G is called singular (or

nonsingular) if L(G) is singular (or nonsingular).

Clearly, if G is all-oriented (i.e. all edges of G are oriented), then L(G) is the

standard Laplacian matrix which is consistent with the Laplacian matrix of a simple

graph (see [15]); and there are a lot of results involved with the relations between its

spectrum and numerous graph invariants, such as connectivity, diameter, matching

number, isoperimetric number, and expanding properties of a graph (see, e.g., [7],

[10], [15], [16]). For many properties of mixed graphs, one can refer to [2], [3], [6],

[14], [17].

Denote by ~G an all-oriented graph obtained fromG by assigning to each unoriented

edge of G an arbitrary orientation (one of the two possible directions). G is called

quasi-bipartite if it does not contain a nonsingular cycle, or equivalently, if G contains

no cycles with an odd number of unoriented edges (see [2, Lemma 1]). Note that the

signature matrix is a diagonal matrix with ±1 along its diagonal.

Lemma 1.1 ([17, Lemma 2.2]). Let G be a connected mixed graph. Then G is

singular if and only if G is quasi-bipartite.

Theorem 1.2 ([2, Theorem 4]). Let G be a mixed graph. Then G is quasi-

bipartite if and only if there exists a signature matrixD such thatDT L(G)D = L(~G).

Suppose G is connected. If G is singular (or λ1(G) = 0), then the spectrum of G is

exactly that of ~G, and the least nonzero eigenvalue ofG is equal to λ2(~G)
△

= α(~G) > 0,

which is called the algebraic connectivity of ~G by Fiedler [7]. The algebraic connec-

tivity of a simple graph has received much attention, see, e.g., [5], [15], [16] and the

references therein. Fiedler gave a remarkable result on the structure of the eigen-

vectors corresponding to the algebraic connectivity (also called Fiedler vectors) of
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a simple graph (see [8, Theorem 3.14] or Theorem 2.5 in following section). Moti-

vated by Fiedler’s result, Fiedler vectors also received much attention recently, see,

e.g., [1], [12], [13]. If G is nonsingular, then λ1(G) > 0 and few results can be found

for λ1(G) and the corresponding eigenvectors as yet. In this case, G contains at least

one nonsingular cycle.

In this paper, we mainly discuss the eigenvectors of a mixed graph G with exactly

one nonsingular cycle; and by Fiedler’s result on a simple graph, we obtain a similar

result on the structure of the eigenvectors of G corresponding to its least eigenvalue.

2. Main result

Let G = (V, E) be a mixed graph with V = {v1, v2, . . . , vn}, and let x =

(x1, x2, . . . , xn) ∈ Rn be a nonzero vector. It will be convenient to adopt the fol-

lowing terminology from [8]: x is said to give a valuation of the vertices of V , that

is, with vertex vi of V we associate the value xi, i.e., x(vi) = xi. Then λ is an

eigenvalue of G with the corresponding eigenvector x = (x1, x2, . . . , xn) if and only

if

(2.1) [λ − d(vi)]x(vi) =
∑

e={vi,vj}∈E

(sgn e)x(vj), i = 1, 2, . . . , n.

Let D be a signature matrix of order n. Then DT L(G)D is the Laplacian matrix

of a graph with the same underlying graph as that of G. So each signature matrix of

order n gives a re-sign of the edges of G (that is, some oriented edges of G may turn

to be unoriented and vice versa), and preserves the spectrum and the singularity of

each cycle of G. We now use the notation DG to denote the graph obtained from G

by a re-sign under the signature D, and assume that the label of the vertices of DG

is the same as that of G.

Recall that a connected graph is called 2-connected if it has no points of artic-

ulation (or cutpoints). Let G be a connected graph. A block of G is a maximal

2-connected subgraph; or equivalently, the blocks of G are the subgraphs induced by

the edges in a single equivalent class, given via the following relation: any two edge

are equivalent if and only if there is a cycle in the graph containing both the edges

(see also [8]).

Denote by G m
n the class of connected mixed graphs on n vertices containing exactly

one nonsingular cycle with that cycle on m vertices. Since any cycle of a graph must

be contained in one of its blocks, each graph G ∈ G m
n has the following property:

It contains exactly one nonsingular block with that block containing exactly one

nonsingular cycle. We claim that the block containing exactly one nonsingular cycle

is exactly that nonsingular cycle.
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Lemma 2.1. Let G be a 2-connected mixed graph on n vertices containing exactly

one nonsingular cycle. Then G is exactly that nonsingular cycle.

P r o o f. Let C be the nonsingular cycle of G on m vertices. If m = n, then no

edges except those of C join two vertices of the cycle. Otherwise, C is split into two

cycles C1 and C2 with a common edge. By definition, one of C1 and C2 is nonsingular

and the other is singular. Then G has at least two nonsingular cycles.

If m < n, there exists a vertex u out of the cycle C joining some vertex v of C

by an edge, as G is connected. Since G is also 2-connected, G − v is connected, and

contains a path P which joins u and some vertex w (w 6= v) of C and contains no

vertices of C except w. Let P1, P2 be two different paths on the cycle C which join v

and w. Then we obtain two cycles containing the vertices u, v and those of P : C1

having also vertices of P1, C2 having also vertices of P2. By definition, among C1

and C2 there must exist a nonsingular cycle. Hence G has at least two nonsingular

cycles. The result follows by the above discussion. �

Cm

vm−1

vmv1

v2

vi vi+1

Gm−1

GmG1

G2

Gi Gi+1

Figure 2.1. Cm has exactly one unoriented edge {vi, vi+1}; Gi is connected and all-oriented,
and has exactly one common vertex vi with Cm for i = 1, 2, . . . , m.

Theorem 2.2. Let G ∈ G m
n with vertex set V = {v1, v2, . . . , vn}, where

v1, v2, . . . , vm are the vertices of its nonsingular cycle. Then there exists a signature

matrix D such that DG is obtained from a nonsingular cycle Cm on m vertices with

exactly one unoriented edge by appending a connected all-oriented graph Gi on ni

(ni > 1) vertices to the vertex vi of Cm with vi identifying some vertex of Gi for each

i = 1, 2, . . . , m, i.e., DG is the graph as in Fig. 2.1, where n1 + n2 + . . . + nm = n.

P r o o f. By Lemma 2.1, the graph G has the structure as in Fig. 2.1. Let

e = {vi, vi+1} be an unoriented edge of the nonsingular cycle of G. Then G − e is

quasi-bipartite by definition. By Theorem 1.2, there exists a signature matrix D
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such that D(G − e) is all-oriented. Since G is nonsingular, DG is the graph as in

Fig. 2.1. �

Lemma 2.3. Let G be a mixed graph of order n and let e be an (oriented or

unoriented) edge of G. Then

λ1(G − e) 6 λ1(G) 6 . . . 6 λn−1(G) 6 λn(G − e) 6 λn(G).

P r o o f. The matrices N(G) = M(G)T M(G) and L(G) = M(G)M(G)T have

the same nonzero eigenvalues, so the same holds for N(G − e) and L(G − e). Since

N(G−e) is a principal submatrix of N(G), the result follows by the Courant-Fischer

Theorem (see [11, Theorem 4.3.15]). �

Lemma 2.4. Let G ∈ G m
n be a graph on vertices v1, v2, . . . , vn as in Fig. 2.1.

Let H be a copy of G in which we only replace the label vi by ui for each i =

1, 2, . . . , n. Let e = {vi, vi+1} and e′ = {ui, ui+1}. Let W be an all-oriented graph

on 2n vertices obtained from the union (G − e) ∪ (H − e′) by inserting two oriented

edges {vi, ui+1}, {vi+1, ui}. Order the vertices of W as v1, v2, . . . , vn, u1, u2, . . . , un.

Then

λ1(G) = α(W ),

and if x ∈ Rn is an eigenvector of G corresponding to λ1(G), then (x,−x) ∈ R2n is

an eigenvector of W corresponding to α(W ).

P r o o f. Let x ∈ Rn be an eigenvector of G corresponding to λ1(G). Then,

by (2.1), (x,−x) ∈ R2n is an eigenvector of W corresponding to the same eigen-

value λ1(G). Since W is all-oriented and connected,

λ1(G) > α(W )(= λ2(W )) > 0.

We assert that λ1(G) = α(W ). Let (y, z) ∈ R2n be a Fiedler vector of W , i.e., the

eigenvector of W corresponding to α(W ), where y ∈ Rn , z ∈ Rn . One can find that

(z, y) is also a Fiedler vector of W by (2.1). If y 6= z, then (y − z, z − y) is a Fiedler

vector of W . Hence y − z is an eigenvector of G corresponding to the eigenvalue

α(W ) by (2.1), and α(W ) > λ1(G). If y = z, then, also by (2.1), y is an eigenvector

of ~G corresponding to the eigenvalue α(W ). Note that the edge {vi, vi+1} of ~G is

oriented and is now denoted by ~e, and ~G − ~e = G − e. By Lemma 2.3,

α(W ) > α(~G) > α(~G − ~e) = α(G − e) > λ1(G).

So in both cases we have α(W ) > λ1(G). Hence λ1(G) = α(W ), and (x,−x) is a

Fiedler vector of W . �
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Lemma 2.4 establishes a relation between the least eigenvalue (and the corre-

sponding eigenvectors) of a mixed graph on n vertices with exactly one nonsingular

cycle and the algebraic connectivity (and respectively, the Fiedler vectors) of a sim-

ple graph on 2n vertices. We now introduce the remarkable result of Fiedler on the

structure of Fiedler vectors of a simple (or all-oriented) graph.

Theorem 2.5 ([8, Theorem 3.14]). Let G be a connected simple graph, and let

y be a Fiedler vector of G which gives a valuation of the vertices of G. Then exactly

one of the following cases occurs:

Case A: There is a single block B0 in G which contains both positively and nega-

tively valuated vertices. Each other block has either vertices with positive valuation

only, or vertices with negative valuation only, or vertices with zero valuation only.

Every path P which contains at most two points of articulation in each block, which

starts in B0 and contains just one vertex v in B0, has the property that the values

at points of articulation contained in P form either an increasing, or decreasing, or a

zero sequence along this path according to whether y(v) > 0, y(v) < 0, or y(v) = 0;

in the last case all vertices in P have value zero.

Case B : No block of G contains both positively and negatively valuated vertices.

There exists a unique vertex w which has value zero and is adjacent to a vertex

with a non-zero value. This vertex is a point of articulation. Each block contains

(with the exception of w) either vertices with positive valuation only, or vertices with

negative valuation only, or vertices with zero valuation only. Every path P which

contains at most two points of articulation in each block and which starts at w has

the property that the values at its points of articulation either increase, in which

case all values of vertices of P are (with the exception of w) positive, or decrease,

in which case all values of vertices of P are (with the exception of w) negative, or

all values of the vertices of P are zero. Every path containing both positively and

negatively valuated vertices passes through w.

We now give an analog of Fiedler’s result for a connected mixed graph with exactly

one nonsingular cycle.

Theorem 2.6. Let G ∈ G m
n be a graph on vertices v1, v2, . . . , vn as in Fig. 2.1.

Let x ∈ Rn be an eigenvector of G corresponding to its least eigenvalue λ1(G), which

gives a valuation of the vertices of G. Then there exists a nonsingular block B0 (just

the cycle Cm) of G which contains non-zero valuated vertices; each other block has

either vertices with positive valuation only, or vertices with negative valuation only,

or vertices with zero valuation only; every path P which contains at most two points

of articulation in each block, which starts in B0 and contains just one vertex v in B0,

has the property that the values at points of articulation contained in P form either
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an increasing, or decreasing, or zero sequence along this path according to whether

x(v) > 0, x(v) < 0, or x(v) = 0; in the last case all vertices in P have value zero.

P r o o f. Let W be the graph on 2n vertices which is obtained from G as in

Lemma 2.4, and let C′
2m be the cycle of W on 2m vertices

v1, v2, . . . , vi, ui+1, ui+2, . . . , um, u1, u2, . . . , ui, vi+1, vi+2, . . . , vm.

By Lemma 2.4, ξ = (x,−x) ∈ R2n is a Fiedler vector of W . Let ξ give a valuation

of the vertices of W .

Assume that the values of the vertices on the cycle Cm of G are all zero. So are

the values of those on the cycle C′
2m of W . If W belongs to case A of Theorem 2.5,

then the single block of W with both positively and negatively valuated vertices

is contained in some Gk or Hk, where Hk, as a copy of Gk, is a subgraph of H

appending to the vertex uk. Without loss of generality, let this single block be

contained in Gk. Then by virtue of the structures of W and ξ, Hk also contains a

block with both positively and negatively valuated vertices which is a contradiction.

If W belongs to case B of Theorem 2.5, there is a unique vertex which has value zero

and is adjacent to a non-zero valuated vertex (must be in some Gk or Hk), which

also yields a contradiction by a similar argument.

By the above discussion, the cycle Cm of G contains non-zero valuated vertices.

Then it follows from the structures of W and ξ that the corresponding cycle C′
2m

of W contains both positively and negatively valuated vertices. Hence W belongs to

case A of Theorem 2.5. The result follows by Theorem 2.5. �

Example. We give an illustration of Theorem 2.6 as follows. Consider the graph

G ∈ G 4
12 as in Fig. 2.2. By Mathematica, the least eigenvalue λ1(G) ≈ 0.093, and the

corresponding eigenvector is listed on the vertices of the graph below with approxi-

mate value.

−5.327 −4.832 −3.888 −2.907 2.907 3.888 4.832 5.327

−3.563 3.563
−1 1

Fig. 2.2.

Theorem 2.7. Let G be a mixed graph consisting of singular blocks B1, B2, . . . ,

Bk and nonsingular blocks Bk+1, Bk+2, . . . , Bm. Then there exists a signature ma-

trix D such that DG is the graph with DB1,
DB2, . . . ,

DBk all-oriented.

P r o o f. Let G′ be the graph obtained from G by orienting all unoriented edges

of the blocks Bk+1, Bk+2, . . . , Bm. Then all blocks ofG
′ are singular, and so is G′. By
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Theorem 1.2, there exists a signature matrix D such that DG′ = ~G′, an all-oriented

graph. Noting that each nonsingular block of G contains no edges of singular blocks,

we conclude that DG is a graph such that DB1,
DB2, . . . ,

DBk are all-oriented. �

By Theorem 2.7, to discuss the eigenspaces of mixed graphs, it is enough to deal

with graphs with all singular blocks all-oriented. A problem naturally arises whether

Theorem 2.6 also holds for the mixed graph containing exactly one nonsingular block

with two or more nonsingular cycles, or the mixed graph containing two or more

nonsingular blocks? If not, what can we say for these graphs? These are still open

problems.
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