ON EINSTEIN METRICS

YOSIO MUTŌ

Let us consider a compact orientable C^{∞} manifold M. If a C^{∞} Riemannian metric g is given on M, we get a Riemannian manifold (M, g). Let us consider the set of Riemannian metrics g on M such that

$$\int_{M} dV = 1 ,$$

where dV is the volume element of (M, g). We denote this set by $\mathcal{M}(M)$. Consider the integral

$$I(g) = \int_{M} K dV ,$$

where K is the scalar curvature of (M, g). It is well known that a critical point \bar{g} of I(g) in $\mathcal{M}(M)$ is an Einstein metric. A question then arises that whether a given Einstein metric gives a minimum of I(g) or not. It has been established by M. Berger [1] that there exists some Einstein metric (on some C^{∞} manifold) for which both I(g) and I(g) have nonfinite indices.

The purpose of the present paper is to prove the following main theorem.

Theorem. Let I(g) be the integral as defined above. Then the index of I(g) and also the index of -I(g) are positive at each critical point.

In the last paragraph some suggestion is given about the index.

1. Infinitesimal deformations of a Riemannian metric from an Einstein metric

In the following we use local coordinates, and a tensor is expressed in its components with respect to the natural frame. Thus K_{kji}^h means the curvature tensor

$$K_{kji}^{h} = \partial_{k} \begin{Bmatrix} h \\ ji \end{Bmatrix} - \partial_{j} \begin{Bmatrix} h \\ ki \end{Bmatrix} + \begin{Bmatrix} h \\ kl \end{Bmatrix} \begin{Bmatrix} l \\ ji \end{Bmatrix} - \begin{Bmatrix} h \\ jl \end{Bmatrix} \begin{Bmatrix} l \\ ki \end{Bmatrix},$$

where $\begin{cases} h \\ ji \end{cases}$ is the Christoffel symbol of the metric g. The Ricci tensor and the scalar curvature are respectively given by

Communicated by K. Yano, May 24, 1973.

$$K_{ii} = K_{tii}^{t}$$
, $K = K_{ji}g^{ji} = K^{ji}g_{ji}$.

When we take a C^{∞} curve g(t) in $\mathcal{M}(M)$, we get several tensor fields defined by

$$D_{ji} = rac{\partial}{\partial t} g_{ji} \;, \qquad D_{i}{}^{h} = D_{ik} g^{kh} \;, \qquad D^{ih} = D_{kj} g^{ki} g^{jh} \;, \ D_{ji}{}^{h} = rac{1}{2} (arVert_{j} D_{i}{}^{h} + arVert_{i} D_{j}{}^{h} - arVert^{h} D_{ji}) \;, \qquad D_{kji}{}^{h} = arVert_{k} D_{ji}{}^{h} - arVert_{j} D_{ki}{}^{h} \;,$$

where Γ means the covariant differentiation with respect to the metric g(t). Then we get

$$\frac{\partial}{\partial t}K_{kji}^{h}=D_{kji}^{h},$$

and consequently

$$\frac{d}{dt}I(g(t)) = \int_{M} \left[D_{kji}{}^{k}g^{ji} - K^{ji}D_{ji} + \frac{1}{2}Kg^{ji}D_{ji} \right] dV .$$

Since any divergence vanishes by integration, we immediately obtain

(1.1)
$$\frac{d}{dt}I(g(t)) = \int_{M} \left(-K^{ji} + \frac{1}{2}Kg^{ji}\right)D_{ji}dV.$$

On the other hand D_{ji} must satisfy the only condition

$$(1.2) \qquad \qquad \int_{\mathcal{L}} g^{ji} D_{ji} dV = 0 \ .$$

Let \bar{g} be a Riemannian metric such that, for every C^{∞} curve g(t) of $\mathcal{M}(M)$ satisfying $g(0) = \bar{g}$, I(g(t)) has vanishing derivative at t = 0. Then from (1.1) and (1.2) we get

$$K^{ji} = \frac{1}{9}K\varrho^{ji} + c\varrho^{ji}$$

for this metric \bar{g} . Here c is a constant, and this leads to the well-known formula of an Einstein space (M, \bar{g}) , namely,

$$(1.3) K_{ji} = \frac{K}{n} g_{ji} .$$

Now let us assume that g(0) is an Einstein metric and study the behavior of d^2I/dt^2 at t=0 for various curves g(t).

Differentiating (1.1) again we get

$$\frac{d^{2}I(g(t))}{dt^{2}} = \int_{M} \left[\left(-g^{lj}g^{ki}\frac{\partial K_{lk}}{\partial t} + 2g^{lj}\frac{\partial g_{lk}}{\partial t}K^{ki} \right) \frac{\partial g_{ji}}{\partial t} - K^{ji}\frac{\partial^{2}g_{ji}}{\partial t^{2}} \right. \\
+ \frac{1}{2}\frac{\partial K_{ji}}{\partial t}g^{ji}g^{lk}\frac{\partial g_{lk}}{\partial t} - \frac{1}{2}K^{ji}\frac{\partial g_{ji}}{\partial t}g^{lk}\frac{\partial g_{lk}}{\partial t} \\
- \frac{1}{2}Kg^{lj}g^{ki}\frac{\partial g_{lk}}{\partial t}\frac{\partial g_{ji}}{\partial t} + \frac{1}{2}Kg^{ji}\frac{\partial^{2}g_{ji}}{\partial t^{2}} \\
+ \left(-K^{ji}\frac{\partial g_{ji}}{\partial t} + \frac{1}{2}Kg^{ji}\frac{\partial g_{ji}}{\partial t} \right) \frac{1}{2}g^{lk}\frac{\partial g_{lk}}{\partial t} dV ,$$

in which we can put

$$\frac{\partial K_{ji}}{\partial t} = V_t D_{ji}{}^t - V_j D_{ti}{}^t.$$

Using Green's theorem we can write (1.4) in the form

$$\begin{split} \frac{d^2I}{dt^2} &= \int_{\scriptscriptstyle M} \left[D^{jih} \boldsymbol{\nabla}_h D_{ji} - D_t^{\ it} \boldsymbol{\nabla}^j D_{ji} + 2 D_t^{\ j} \boldsymbol{K}^{ti} D_{ji} \right. \\ & \left. - \frac{1}{2} D_s^{\ st} \boldsymbol{\nabla}_t D_i^{\ i} + \frac{1}{2} D_{st}^{\ t} \boldsymbol{\nabla}^s D_i^{\ i} - \boldsymbol{K}^{ji} D_{ji} D_t^{\ t} \right. \\ & \left. - \frac{1}{2} \boldsymbol{K} D_{ji} D^{ji} + \frac{1}{4} \boldsymbol{K} (D_t^{\ t})^2 - \left(\boldsymbol{K}^{ji} - \frac{1}{2} \boldsymbol{K} \boldsymbol{g}^{ji} \right) \frac{\partial^2 \boldsymbol{g}_{ji}}{\partial t^2} \right] dV \ . \end{split}$$

Since g(0) is an Einstein point¹, we get

$$\int_{M} \left[\left(K^{ji} - \frac{1}{2} K g^{ji} \right) \frac{\partial^{2} g_{ji}}{\partial t^{2}} \right] dV = - \left(\frac{1}{2} - \frac{1}{n} \right) K \int_{M} g^{ji} \frac{\partial^{2} g_{ji}}{\partial t^{2}} dV$$

at t=0. On the other hand, differentiating $\int_{V} dV = 1$ we get

$$\int_{M} g^{ji} \frac{\partial g_{ji}}{\partial t} dV = 0 ,$$

$$\int_{M} \left[g^{ji} \frac{\partial^{2} g_{ji}}{\partial t^{2}} - g^{lj} g^{ki} \frac{\partial g_{lk}}{\partial t} \frac{\partial g_{ji}}{\partial t} + \frac{1}{2} \left(g^{ji} \frac{\partial g_{ji}}{\partial t} \right)^{2} \right] dV = 0 .$$

Thus

$$(1.5) \qquad \left(\frac{d^{2}I}{dt^{2}}\right)_{0} = \int_{M} \left[(\nabla^{j}D^{ih})\nabla_{h}D_{ji} - \frac{1}{2}(\nabla^{h}D^{ji})\nabla_{h}D_{ji} - (\nabla^{i}D_{j}{}^{j})\nabla^{h}D_{hi} + \frac{1}{2}(\nabla^{i}D_{j}{}^{j})\nabla_{i}D_{h}{}^{h} + \frac{K}{n} \left\{ D_{ji}D^{ji} - \frac{1}{2}(D_{i}{}^{i})^{2} \right\} \right] dV$$

¹ We call an Einstein metric an Einstein point in $\mathcal{M}(M)$.

for any symmetric tensor field D_{ji} satisfying (1.2) if g(0) is an Einstein point.

2. Infinitesimal conformal deformations of a Riemannian metric

If we put $D_{ji} = fg_{ji}$ where f is a C^{∞} function such that $\int_{M} f dV = 0$, then

$$\left(\frac{d^2I}{dt^2}\right)_0 = \frac{n-2}{2}\left[(n-1)\int_M (\nabla^i f)\nabla_i f dV - K\int_M f^2 dV\right].$$

There exist functions f which make this quantity positive. This proves that the index of -I(g) is positive.

3. Infinitesimal deformations of a Riemannian metric in a small neighborhood

Let U be a coordinate neighborhood of M, and let $N \subset U$ be a neighborhood of a point $P_0 \in U$, where the local coordinates are such that

$$g_{ji} = \delta_{ji} \; , \qquad \left\{ egin{matrix} h \ ji \end{matrix}
ight\} = 0$$

at P_0 . We assume that N is sufficiently small so that there exists a positive number ε such that g satisfies in N

$$|g_{ji} - \delta_{ji}| < arepsilon \; , \; \; |g^{ji} - \delta_{ji}| < arepsilon \; , \; \; \left|egin{cases} h \ ii \end{pmatrix}
ight| < arepsilon \; .$$

Now we want to take a suitable C^{∞} tensor field D_{ji} . We know that for any given tensor field D_{ji} there exists g(t) such that

$$\left(\frac{\partial g_{ji}}{\partial t}\right)_{0} = D_{ji} .$$

First, we assume $D_i^i = 0$ on M. Then

$$\left(\frac{d^2I}{dt^2} \right)_{\scriptscriptstyle 0} = \int_{\scriptscriptstyle M} \left[(\nabla^j D^{ih}) \nabla_h D_{ji} - \frac{1}{2} (\nabla^h D^{ji}) \nabla_h D_{ji} \, + \, \frac{K}{n} D_{ji} D^{ji} \right] dV \; .$$

As we have

$$|(\nabla^j D^{ih} + \nabla^i D^{jh}) \nabla_h D_{ji}| = |(\nabla_c D_{ba} + \nabla_b D_{ca}) (\nabla_h D_{ji}) g^{cj} g^{bi} g^{ah}|,$$

where

$$\nabla_j D_{ih} = \partial_j D_{ih} - {k \choose ji} D_{kh} - {k \choose jh} D_{ik}$$

we get

$$\begin{split} |(\nabla^{j}D^{ih} + \nabla^{i}D^{jh})\nabla_{h}D_{ji}| \\ &= \left| \left(\partial_{c}D_{ba} + \partial_{b}D_{ca} - 2 \begin{Bmatrix} t \\ cb \end{Bmatrix} D_{ta} - \begin{Bmatrix} t \\ ca \end{Bmatrix} D_{tb} - \begin{Bmatrix} t \\ ba \end{Bmatrix} D_{tc} \right) \\ &\cdot \left(\partial_{h}D_{ji} - \begin{Bmatrix} s \\ hi \end{Bmatrix} D_{si} - \begin{Bmatrix} s \\ hi \end{Bmatrix} D_{sj} g^{cj}g^{bi}g^{ah} \right|. \end{split}$$

Let us denote this quantity by F_1 .

Define S_{ji} by

$$g^{ji} = \delta_{ji} + \varepsilon S_{ji} .$$

Then S_{ji} satisfy $|S_{ji}| < 1$.

Assume that D_{ji} vanishes everywhere except in the interior of N, and define M_1 and M_2 by

$$M_1 = \max\{|D_{ji}(P)|; P \in N; i, j = 1, \dots, n\},$$

 $M_2 = \max\{|\partial_j D_{ih}(P)|; P \in N; h, i, j = 1, \dots, n\}.$

Then

$$\begin{split} F_1 &= \left| \sum_{a,b,c} \sum_{h,i,j} \left(\partial_c D_{ba} + \partial_b D_{ca} - 2 {t \choose cb} D_{ta} - {t \choose ca} D_{tb} - {t \choose ba} D_{tc} \right) \right. \\ & \cdot \left(\partial_h D_{ji} - {s \choose hj} D_{si} - {s \choose hi} D_{sj} \right) \\ & \cdot (\delta_{cj} + \varepsilon S_{cj}) (\delta_{bi} + \varepsilon S_{bi}) (\delta_{ah} + \varepsilon S_{ah}) \right| \\ & \leq \left| \sum_{h,i,j} (\partial_j D_{ih} + \partial_i D_{jh}) \partial_h D_{ji} \right| + 4n^4 M_1 M_2 \varepsilon + 4n^4 M_1 M_2 \varepsilon + 6n^4 (M_2)^2 \varepsilon \\ & + (M_1 + M_2)^2 \varepsilon \;, \end{split}$$

where the last term $(M_1 + M_2)^2 \varepsilon$ is a substitute for the terms containing ε^2 , ε^3 , ...

Next consider

$$F_2 = (\nabla^h D^{ji}) \nabla_h D_{ji} .$$

For this quantity we get

$$egin{aligned} F_2 &= \left| \sum\limits_{a,b,c} \sum\limits_{h,i,j} \left(\partial_c D_{ba} - \left\{ egin{aligned} t \ cb \end{aligned}
ight\} D_{ta} - \left\{ egin{aligned} t \ ca \end{aligned}
ight\} D_{tb}
ight) \ &\cdot \left(\partial_j D_{ih} - \left\{ egin{aligned} s \ ji \end{aligned}
ight\} D_{sh} - \left\{ egin{aligned} s \ jh \end{aligned}
ight\} D_{st}
ight) \ &\cdot \left(\delta_{cj} + \varepsilon S_{cj} \right) \left(\delta_{bi} + \varepsilon S_{bi} \right) \left(\delta_{ah} + \varepsilon S_{ah} \right) \left| \ &\geq \sum\limits_{h,i,j} (\partial_j D_{ih})^2 - 4 n^4 M_1 M_2 \varepsilon - 3 n^4 (M_2)^2 \varepsilon - (M_1 + M_2)^2 \varepsilon \end{aligned},$$

and therefore

$$\begin{split} \int_{M} \left[(\nabla^{j} D^{ih}) \nabla_{h} D_{ji} &- \frac{1}{2} (\nabla^{h} D^{ji}) \nabla_{h} D_{ji} \right] dV \\ &\leq \frac{1}{2} \int_{N} (F_{1} - F_{2}) dV \\ &\leq \frac{1}{2} \int_{N} \left[\left| \sum_{h,i,j} (\partial_{j} D_{ih} + \partial_{i} D_{jh}) \partial_{h} D_{ji} \right| - \sum_{h,i,j} (\partial_{j} D_{ih})^{2} \right. \\ &+ \left. 12 n^{4} M_{1} M_{2} \varepsilon + 9 n^{4} (M_{2})^{2} \varepsilon + 2 (M_{1} + M_{2})^{2} \varepsilon \right] dV \; . \end{split}$$

Now let us consider a tensor field T_{ji} , which vanishes everywhere except in the interior of N, such that all components are identically zero except

$$T_{12} = T_{21} = f$$
,

where f is a C^{∞} function. By putting

$$D_{ji} = T_{ji} - \frac{1}{n} T_{lk} g^{lk} g_{ji} = T_{ji} - \frac{2}{n} t g^{12} g_{ji} ,$$

we get $D_i^i = 0$ and

$$|\partial_j D_{ih} - \partial_j T_{ih}| \le \left(\frac{4}{n}|f| + \frac{2}{n}|\partial_j f|\right) \delta_{ih} \varepsilon + O(\varepsilon^2).$$

Hence

$$M_1 = (\max |f|)(1 + 0(\varepsilon)), \qquad M_2 \leq \left(\max |\partial_j f| + \frac{4}{n}|f|\varepsilon\right)(1 + 0(\varepsilon)),$$

and we can neglect all minor terms in F_1 and F_2 . Moreover we can replace D_{ih} and $\partial_j D_{ih}$ by T_{ih} and $\partial_j T_{ih}$ respectively to obtain

$$egin{aligned} \left(rac{d^2I}{dt^2}
ight)_0 &= \int_N \left[\sum\limits_{h,i,j} (\partial_j T_{ih}) \partial_h T_{ji} - rac{1}{2}\sum\limits_{h,i,j} (\partial_j T_{ih})^2 + rac{K}{n}\sum\limits_{i,j} (T_{ji})^2
ight] dV \ &= \int_N \left[-(\partial_3 f)^2 - \cdots - (\partial_n f)^2 + rac{2K}{n} f^2
ight] dV \;. \end{aligned}$$

As there exist functions f for which the last integral is negative, the index of I is positive.

Thus we have proved the main theorem.

4. Index of an Einstein metric

Let g be an Einstein metric. Then the right hand side of (1.5) is a quadratic functional of the tensor field D_{ji} . For convenience this integral will be denoted by J(D). Let \mathscr{D} be the set of tensor fields D (with components D_{ji}) which satisfy

$$(4.1) \qquad \qquad \int_{M} g^{ji} D_{ji} dV = 0 ,$$

$$(4.2) \qquad \qquad \int_{M} D^{ji} D_{ji} dV = 1 .$$

We now study critical points of J(D) when D moves in \mathcal{D} .

If E_{ji} denotes an infinitesimal change of D_{ji} , we have at a critical point

$$\int_{M} \left[(\nabla^{j} E^{ih}) \nabla_{h} D_{ji} + (\nabla^{j} D^{ih}) \nabla_{h} E_{ji} - (\nabla^{h} E^{ji}) \nabla_{h} D_{ji} \right] \\
- (\nabla^{i} E_{j}^{j}) \nabla^{h} D_{hi} - (\nabla^{i} D_{j}^{j}) \nabla^{h} E_{hi} + (\nabla^{i} E_{j}^{j}) \nabla_{i} D_{h}^{h} \\
+ \frac{K}{n} (2D^{ji} E_{ji} - D_{j}^{j} E_{i}^{i}) \right] dV = 0 ,$$

where E_{ji} satisfies

$$\int_{M} g^{ji} E_{ji} dV = 0 , \qquad \int_{M} D^{ji} E_{ji} dV = 0 .$$

From (4.3) we get

$$\begin{split} \int_{M} \left[-(\nabla_{h}\nabla^{j}D^{ih} + \nabla_{h}\nabla^{i}D^{jh}) + \nabla_{h}\nabla^{h}D^{ji} + (\nabla^{k}\nabla^{h}D_{hk})g^{ji} + \nabla^{j}\nabla^{i}D_{k}{}^{k} \right. \\ & - (\nabla_{k}\nabla^{k}D_{h}{}^{h})g^{ji} + \frac{2K}{n}D^{ji} - \frac{K}{n}D_{k}{}^{k}g^{ji} \right] E_{ji}dV = 0 \ , \end{split}$$

where E_{ii} is restricted only by (4.4). Hence we have

$$(4.5) \qquad -\nabla_k \nabla^j D^{ik} - \nabla_k \nabla^i D^{jk} + \nabla_k \nabla^k D^{ji} + \nabla^j \nabla^i D_k^k + \left(\nabla^t \nabla^s D_{ts} - \nabla_t \nabla^t D_s^s - \frac{K}{n} D_k^k\right) g^{ji} = C_1 g^{ji} + C_2 D^{ji},$$

where C_1 and C_2 are constants.

If (4.5) is transvected with g_{ji} and then integrated over M, we get $C_1 = 0$ because of (4.1). If (4.5) is transvected with D_{ji} and then integrated over M, we get

$$\begin{split} C_2 &= \int_{M} \left[2 (\mathcal{V}^{j} D^{ik}) \mathcal{V}_{k} D_{ji} - (\mathcal{V}^{k} D^{ji}) \mathcal{V}_{k} D_{ji} - 2 (\mathcal{V}_{j} D^{ji}) \mathcal{V}_{i} D_{k}^{k} \right. \\ &+ \left. (\mathcal{V}^{i} D_{s}^{s}) \mathcal{V}_{l} D_{l}^{l} - \frac{K}{n} D_{l}^{l} D_{k}^{k} \right] dV \end{split}$$

because of (4.2). Hence from (1.5) it follows that

(4.6)
$$\left(\frac{d^2I}{dt^2}\right)_0 = \frac{1}{2}C_2 + \frac{K}{n} .$$

Let a symmetric tensor field A_{ji} be a solution of the following system of partial differential equations with an unknown constant C_2 ,

$$(4.7) -\nabla^{k}\nabla_{j}A_{ik} - \nabla^{k}\nabla_{i}A_{jk} + \nabla_{k}\nabla^{k}A_{ji} + \nabla_{j}\nabla_{i}A_{k}^{k} + \left(\nabla^{t}\nabla^{s}A_{ts} - \nabla_{t}\nabla^{t}A_{s}^{s} - \frac{K}{n}A_{k}^{k}\right)g_{ji} = C_{2}A_{ji},$$

when C_2 takes the eigenvalue a. If A_{ji} satisfies $\int_M g^{ji} A_{ji} dV = 0$, and moreover a < -2K/n, then we have J(A) < 0 for this tensor field A_{ji} .

If (4.7) is transvected with g^{ji} and integrated over M, we get

$$-K\int_{M}A_{k}^{k}dV=C_{2}\int_{M}A_{k}^{k}dV.$$

Hence any solution D_{ji} of (4.7) satisfies (4.1) if $K + C_2 \neq 0$. (4.2) is always satisfied if D_{ji} is replaced by D_{ji} multiplied by a suitable number.

Let us call each value of C_2 , for which (4.7) has a solution D_{ji} satisfying (4.1), an effective eigenvalue of the system (4.7).

Define a differential operator L such that from any symmetric tensor field A_{ji} a symmetric tensor field $L_{ji}(A)$ (= $(L(A))_{ji}$) is induced by

$$(4.8) L_{ji}(A) = -\nabla^k \nabla_j A_{ik} - \nabla^k \nabla_i A_{jk} + \nabla_k \nabla^k A_{ji}$$

$$+ \nabla_j \nabla_i A_k^k + \left(\nabla^t \nabla^s A_{ts} - \nabla_t \nabla^t A_s^s - \frac{K}{n} A_k^k \right) g_{ji}.$$

Then we can write (4.7) in the form²: $L_{ji}(A) = C_2 A_{ji}$. Let A_{ji} and B_{ji} be any C^{∞} symmetric tensor fields. Then

$$\begin{split} \int_{M} L_{ji}(A)B^{ji}dV &= \int_{M} \left[2(\nabla_{j}A_{ik})\nabla^{k}B^{ji} - (\nabla_{k}A_{ji})\nabla^{k}B^{ji} - (\nabla_{i}A_{k}{}^{k})\nabla_{j}B^{ji} \right. \\ & \left. - \nabla^{s}A_{ts}\nabla^{t}B_{t}{}^{l} + \nabla^{t}A_{s}{}^{s}\nabla_{t}B_{t}{}^{l} - \frac{K}{n}A_{k}{}^{k}B_{t}{}^{l} \right] dV \;, \end{split}$$

which will be denoted by (A, B). If A_{ji} and B_{ji} are solutions of (4.7) when $C_2 = a$ and $C_2 = b$ respectively, then

$$(A,B) = a \int_{M} A_{ji} B^{ji} dV , \qquad (B,A) = b \int_{M} A_{ji} B^{ji} dV .$$

As (A, B) is symmetric in A and B, we get

$$\int_{M} A_{ji} B^{ji} dV = 0 , \qquad (A, B) = 0 ,$$

if $a \neq b$.

Now let $a_1 > \cdots > a_p$ be any discrete subset of effective eigenvalues of the system of equations

$$L_{ii}(A) = C_2 A_{ii}$$

such that $a_1 < -2K/n$. Let A_{ji} be a solution of (4.7) corresponding to the eigenvalue a_k and satisfying

$$\int_{\mathcal{X}} g^{ji} A_{ji} dV = 0.$$

As

$$\int_{M} A^{ji} A_{k}^{ji} dV = 0$$

for $l \neq k, A_{1ji}, \dots, A_{pji}$ are linearly independent.

Definition. Let us say that the index of the Einstein metric under consideration is m if (4.7) has just m linearly independent solutions with effective eigenvalues less than -2K/n.

Then we get the following theorem.

Theorem 4.1. If (4.7) has p effective eigenvalues $a_1 > \cdots > a_p$ such that $a_1 < -2K/n$, then the index of the Einstein metric under consideration is not less than p. The same holds with the index of I(g) at this Einstein point.

² L is not an elliptic operator.

530 YOSIO MUTŌ

Evidently all eigenvalues of (4.7) are effective except the only possible one, namely, $C_2 = -K$. However, the author does not know whether -K is an eigenvalue or not.

It has been pointed out by M. Berger and D. Ebin [2], [3] that in studying the variation of I(g) we need to consider only tensor fields D_{ji} which satisfy $V^jD_{ji}=0$, and that a tensor field $D_{ji}=V_jX_i+V_iX_j$ never changes I(g). If we put $A_{ji}=V_jX_i+V_iX_j$, we immediately find that this is a solution of (4.7) with $C_2=-2K/n$.

The author wishes to express his cordial thanks to Professor M. Berger for his kind information on relevant studies.

References

- [1] M. Berger, Quelques formules de variation pour une structure riemannienne, Ann. sci. École Norm. Sup. (4) 3 (1970) 285-294.
- [2] M. Berger & D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Differential Geometry 3 (1969) 379-392.
- [3] D. G. Ebin, *The manifold of Riemannian metrics*, Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968) Amer. Math. Soc., 1970, 11-40.

YOKOHAMA NATIONAL UNIVERSITY