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Summary 

In some previous papers one of us discussed dielectric relaxation phenomena from the point 

of view of nonequilibrium thermodynamics. If the theory is linearized one may derive a dynami

cal constitutive equation (relaxation equation) which has the form of a linear relation among the 

electric field E, the polarization P, the first derivatives with respect to time of E and P and the 

second derivative with respect to time of P. The Debye equation for dielectric relaxation in polar 

liquids and the De Groot-Mazur equation (obtained by these authors with the aid of methods 

which are also based on nonequilibrium thermodynamics) are special cases of the more general 

equation of which the structure has been described above. It is the purpose of the present paper to 

investigate the propagation and damping of electromagnetic waves. We consider the case in 

which the dielectric relaxation may be described by the above mentioned relaxation equation 

derived by one of us, the case in which the Debye equation may be used and the case in which 

one may apply the De Groot-Mazur equation. We derive solutions of the relaxation equations 

which also satisfy Maxwell's equations. We limit ourselves to plane waves of a single frequency 

in isotropic homogeneous linear media with vanishing electric conductivity. It is also assumed 

that the media are at rest. From thermodynamic arguments several inequalities are derived for 

the coefficients which occur in the relaxation equations. Explicit expressions are given for the 

complex wave vector, the complex dielectric permeability and for the phase velocity of the 

waves. All these quantities are functions of the frequency ro of the waves. For ro ~ 0 the complex 

permeability E(compl) ~ E(eq), where E(eq) is the equilibrium value of the permeability for static 

fields. If ro ~ 00 we find E(compl) ~ 1 except for the case of the Debye equation. This is due to the 

fact that a part of the polarization changes in a reversible way in media for which the Debye 

equation holds. 
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1. Introduction 

Nonequilibrium thennodynamics is a useful tool in investigations of irreversible 

phenomena such as, heat conduction, diffusion and electric conduction. A detailed and clear dis

cussion of this theory is given in the well-known book by Gyannati 1) . 

In the references 2-7 dielectric and magnetic relaxation phenomena are discussed with the 

aid of the general methods of nonequilibrium thennodynamics. In particular it was shown in 

reference 3 that a vectorial internal variable which influences the polarization gives rise to dielec

tric relaxation phenomena. Furthennore, with the aid of such a variable one can split up the polar

ization P into two parts 

P = p(O) + pO) . (1.1) 

p(O) and pO) may be called partial polarization vectors and changes in both these vectors are 

irreversible phenomena. 

If one linearizes this theory and if one neglects cross effects as, for instance, the influence of 

electric conduction, heat conductions and (mechanical) viscosity on dielectric relaxation, the fol

lowing relaxation equation may be derived (see ref. 4) 

(0) dE (0) (I) d P (2) d
2 

P 
X(EP) E + dt = X(FE) P + X (FE) d"t + X(FE) d t2 ' (1.2) 

where E is the electric field and X~~)' x~~b, X~})E) and X~PE) are algebraic functions of the 

coefficients occurring in the phenomenological equations (describing the irreversible processes) 

and in the equations of state. 

Moreover, in ref. 4, it was shown that the Debye equation for dielectric relaxation in polar 

liquids (see ref. 8) and the equation derived by De Groot and Mazur (see ref. 9) can be considered 

as degeneracies of equation 0.2). More detailed discussions are given in sections 3,4 and 5 of this 

paper. 

Very recently, in ref. 6, the equation (1.2) has been generalized by including the above

mentioned cross effects and it was shown that, in this case, the dynamical equation has the fonn 

of a linear relation among E, P and r1 grad T (T is the absolute temperature), the first deriva

tives with respect to time of these vectors and the second derivative with respect to time ofP. 

Another generalization of (1.2) is derived in ref. 7, where the physical assumption is intro

duced that the polarization P is additively composed of n + 1 partial polarization vectors which 

play the role of thennodynamic internal variables in the Gibbs relation. 

In the present paper we shall consider the equation (1.2) and we shall investigate the propa

gation of linear electromagnetic waves in an arbitrary direction. The positive x I-axis is chosen so 

that it coalesces with this direction. It is our aim to elucidate the role played by the coefficients 

which occur in the equations of state and in the phenomenological equations describing the 

irreversible process which are considered in the theory discussed in refs. 2-7. 
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More precisely, in sects. 2 and 3, we recall the basic equations of the theory. In sect. 4 

some inequalities are derived, which are connected with stability and with the nonnegative char

acter of the entropy production. These inequalities play an important role in the theory of wave 

propagation. 

In sects. 5 and 6 it is shown that the equation (1.2) generalizes the Debye and the De 

Groot-Mazur equations for dielectric relaxation phenomena in continuous media. 

In sects. 7 and 8 we investigate linear electromagnetic waves. An explicit form for the com

plex dielectric permeability is derived. The dispersion law, the expression for the phase velocity 

and the law for the damping of the waves are obtained and the limiting cases of low and high fre

quencies are discussed. 

Finally, in sects. 9 and 10, we consider the propagation of electromagnetic waves in media 

for which the Debye equation holds and in media for which the De Groot-Mazur equation holds 

and in section 11 we consider the limiting case of nondissipative media. 
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2. Vectorial internal variables and dielectric relaxation phenomena 

Maxwell's equations read 

rot H _ ~ aD = ~ j(el) , 

c at c 

div D = peel) , 

1 aB 
rotE+- -=0, 

c at 

div B = 0, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where E and B are the electric and magnetic field strengths, D is the electric displacement field, 

H is the magnetic displacement field, j(el) is the density of the electric current and peel) is the elec

tric charge density. 

The polarization P and the magnetization M are defined by 

P=D-E, 

M=B-H. 

We shall also use the specific polarization p defined by 

p=v P, 

where v is the specific volume related to the mass density p by 

1 
v=-. 

P 

In an analogous way the specific magnetization m is defined by 

m=vM. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

In previous papers (as noted in sect 1) some types of dielectric (and magnetic) relaxation 

phenomena were discussed from the point of view of the thermodynamics of irreversible 

processes. It was assumed that there is a vectorial internal thermodynamic variable Z which 

influences the polarization. It has been shown 4) that this leads to the possibility to write the 

polarization in the form (see (1.1)) 

P = p(O) + p(1) , (2.10) 

where p(l) is a function of Z only (see (3.7) and (6.8) of ref. 4) and may replace Z as internal 

variable. In general changes both in pCO) and pCI) are irreversible phenomena. It has been shown 

(see ref. 4) that in the limiting case, where changes in p(O) are reversible, the Debye equation for 

dielectric relaxation may be obtained from the developed formalism. Furthermore, if no internal 

variable occurs, the formalism reduces to a formalism proposed by De Groot and Mazur 9). For 

magnetic relaxation phenomena analogous phenomenological considerations may be given. 
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The specific polarizations p(O) and p(l) are defined by 

p(O) = v p(O) , p(l) = v p(1). (2.11) 

It will be assumed that the specific entropy s is a function of the specific internal energy u, 

the tensor of total strain £~ (or for a fluid the specific volume v), the polarizations p and p(1) and 

the magnetization m (cf. eq. (3.7) of ref. 2 and eq. (3.19) of ref. 4). Hence, 

s =s(u, E~, p, p(l) , m). 

The absolute temperature T is given by 

T -1 a ( (1» = au s u, ~, p, p ,m. 

Furthermore, we define the tensor field 't~I) and the vector fields E(eq) and E(I) by 

't~) = -p T -a a s(u , ~ , p, p(l) , m) , 
Eup 

and 

a 
E(eq) = -T ap s(u, Eup, p, p(1), m), 

E (1) -T _a_ ( (1» 
- (1) S U , £op , p, p ,m. 

ap 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Finally, we assume that the magnetic field strength B which occurs in Maxwell's equations (2.3) 

and (2.4) satisfies the relation 

_ _a_ (1) 
B - -T am s(u, Eup , p, p ,m). (2.17) 

The latter relation follows from eq. (3.11) of ref. 2 if magnetic relaxation phenomena are left out 

of consideration. From (2.11 )-(2.16) one has 

3 . 

Tds=du-v L 't~I)dEaIl-E(eq).dp+E(I).dp(1)-B.dm. (2.18) 

a,~1 

It may be shown that if (2.17) is satisfied magnetic phenomena do not contribute to the 

entropy production. It appears that the entropy production is due to dissipative mechanical 

processes, dielectric relaxation, heat conduction and electric conduction. We shall neglect possi

ble cross effects among dielectric relaxation and the other irreversible phenomena just mentioned. 

If, moreover, one assumes that the mass density is constant, one obtains the following 

phenomenological equations for dielectric relaxation in isotropic media (see the equations (6.12), 

(6.13) and (6.14) of ref. 4). 
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(2.19) 

and 

dP(I) =LO,O) dP +LO)I) E(I). 
dt (p) dt (P 

(2.20) 

In these relations L~~'f) , L~~'l) ,L~~O) and L~~)l) are phenomenological coefficients. We shall 

assume that these coefficients are constants. The coefficients L~~)l) and L~H) are connected with 

possible cross effects which may occur between the two types of dielectric relaxation phenomena 

described by (2.19) and (2.20). These coefficients satisfy the Onsager-Casimir reciprocal relations 

L (O.I) - LO'O) 
(P) - - (P) . (2.21) 

Finally, in (2.17) and (2.18) d / d t is the substantial derivative with respect to time defined by 

d a 3 a 
-=-+1: v..,--, 
d tat 'FI ax.., 

(2.22) 

where x.., is the y-component of the position vector x with respect to an orthogonal Cartesian 

frame of axes which is fixed in space and v.., is the y-component of the velocity field v of the 

matter. 
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3. Linear equations of state and linear equations for dielectric relaxation 

The specific free energy is defined by 

I=u -T s. (3.1) 

Using (2.18) one has 

3 

d 1= -s d T + v L 't~) d ~ + E(eq) • d P - E(l) . d p(1) + B· d m. (3.2) 

a.~1 

Hence, 

d 
E(eq) = d p I(T, ~ , p, p(l) , m) , 

E(1)- __ d_}(T (I» 
- d p(l) , Ea~ , p, p ,m, 

and 

__ d_ (1) 
B - d m I(T, E~ , p, p ,m). 

Similar equations hold for s and 't~/). 

We shall suppose that one has in a first approximation for isotropic media 

1=/1
) + 12

) + 13
) , 

where 

II) =/1
) (T, E~), 

12) =+ p{af~')O) p. (p_2p(I»+a~J,')I) (p(l»2} 

and 

13) =1.. P _11_ m2 . 
2 11- 1 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

In (3.8) and (3.9) af~')O) , a~J,p and 11 are scalar constants. It will be seen that 11 is the magnetic 

permeability. Since 

p = p(O) + p(1) (3.10) 

(see (2.10), (2.7) and (2.11» we have from (3.8) 

12) = + p {a~~')O) (p(O»2 + (a~~I) _ a~~')O) )(p(I»2}. (3.11) 

From (3.3)-(3.9) one obtains the linear equations of state 
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E(eq) = a~~'~) (P _ p(1» = a~~')O) p(O) , 

E(l) = a~~'~) P - a~~'l) pCl) 

B=-J.l.- M , 
J.l.-1 

(3.12) 

(3.13) 

(3.14) 

where we also used (2.7)-(2.11) (see eqs. (6.10) and (6.11) of ref. 4). 

By eliminating p(O) , p(l) • E(eq) and E(l) from (2.19). (2.20). (3.12) and (3.13) one obtains 

the linear relaxation equation 

(0) dE (0) (1) dP (2) d
2

P 
'X(EP) E + dt = 'X (FE) P + 'X(PE) dt + 'X (PE) d t2 • (3.15) 

where 

'X~~P) = a~H) L~})l) • (3.16) 

'X~~E) = a~~O) (a~})l) - a~~)O» L~})l) • (3.17) 

'X~).b = a~~O) (1 + L~~)I) - L~J,)O» + a~H) (L~~)O) L~MI) - L~~l) L~H» • (3.18) 

'X~~b = L~~)O). (3.19) 

See section 7 of ref. 4 for details concerning the derivation. In particular we note that in the 

derivation of (3.15) it is assumed that the phenomenological coefficients L~~)O) , L~H). L~~)l) and 

L~}'~)' which occur in (2.19) and (2.20), are constants. Using the Onsager-Casimir reciprocal rela

tions (2.21) the expression (3.18) for 'XU1~') becomes 

(3.20) 

If we replace P by D - E (see (2.5» the relaxation equation (3.15) may be written in the 

form 

(0) (I) d D (2) d
2 

D 
'X(DE) D + 'X(DE) - + 'X --, 

d t d t 2 
(3.21) 

where 

(3.22) 

(3.24) 
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XWE) = X~})E) = a~~'f) (l + 2 L~~)I)) + a~),'l) {L~~'f) L~H) + (L~~'l))2) , (3 .25) 

X(2) = X~~E) = L~~·f). (3 .26) 

See also (3.16)-(3.19). 

Finally, we multiply both sides of (3.14) by ~ - 1 and we replace M by B - H (see (2.6)). 

We then obtain 

B=J.l.H. (3.27) 

From this equation it is seen that indeed ~ is the magnetic permeability. It is obvious that (3.27) 

implies that magnetic relaxation phenomena are left out of consideration. 

In the static case where all time derivatives vanish, we have from (3.21) 

D = E(eq) E (static case) • (3.28) 

where 

(3.29) 

See also (3.22) and (3.24). One may consider E(eq) as the equilibrium dielectric permeability. 
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4. Some inequalities 

In section 5 of ref. 4 we have seen that the entropy production is a nonnegative quantity provided 

See eq. (5.27) of ref. 4. Furthennore, we shall assume that 

a~J,p > a~~O) > O. 

(4.1) 

(4.2) 

It follows from the inequalities (4.2) that /2) = 0 if and only if both p(O) and p(l) vanish (see 

(3.11)). In all other cases we have /2) > O. This means that energy is stored in the dielectric if it 

is polarized. Finally, we shall assume that 

1.1. > O. (4.3) 

IF 0 < 1.1. < 1 we have a diamagnetic medium and if 1.1. > 1 the medium is paramagnetic. 

From (4.1)-(4.3) some other inequalities may be derived which play an important role in the 

theory of wave propagation. By virtue of (4.2) we have from (3.29) for the equilibrium dielectric 

penneability the well-known inequality 

E(eq) > 1. 

Using (4.1) and (4.2) it is seen from (3.16), (3.17) and (3.19) that 

x~~P) ~ 0, x~)1b ~ 0, X~PE) ~ O. 

Furthennore, we have from (3.20), (3.16) and (3.19) the identity 

X~J)E) - X~~) Xg/E) = (a~M) - a~)1)O») (L~~)1»)2 + a~~)O) (1 + L~~1»)2 . 

Hence, using (4.2), we get from this relation 

and, because of (4.5), we have from (4.7) the inequality 

X~J)E) > O. 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

From (4.5) and (4.8) it is seen that none of the coefficients which occur in the relaxation equation 

(3.15) is negative. With the aid of (3.16), (3.17) and (3.20) we find 

X~J)E) X~~P) - X~~E) = {(ag)l) L~~~) + a~~f»)2 + (a~M»)2 L~~)O) L~)l)} L~M) (4 .9) 

and it follows from this relation that 

(4.10) 

where we also used (4.1). 

Next, we consider the coefficients which occur in the fonn (3.21) for the relaxation equa

tion. From (3.22)-(3.26), (4.5) and (4.8) we obtain 
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x~~:)) ~ 0, x~2fE) ~ 0, X(2) ~ 0 , 

XWE) > 0, X~1?D) > 1. 

With the help of (3.22)-(3.25) we find the identity 

X~~) XWE) - X~2fE) X~1?D) = x~),b X~)pp) - x~~b 

and hence, from (4.10) we have the inequality 

X~~:)) XUJE) - XWJE) X~1?D) ~ O. 

In the discussion of electromagnetic waves the quantity ~, defined by 

also plays an important role. 

We wish to show that the right-hand side of (4.15) satisfies the inequality 

X~lb) X~1JE) - X(2) Cx~WD) + X~2fE) ) > O. 

Using (3.22)-(3.25) we can also write for (4.15) 

~ = (X~})E»2 + X~})E) - X(2) (X~)pp) + 2 X~WE» 

or, with the help of (3.16), (3.17), (3.20) and (3.26): 

or 

~ = [a~~O) (1 + 2 L~~)l» + a~H) (L~~f) L~hl) + (L~~)1)2} f + 

+a~~')O) (l+2L~~)1) +a~pl) (L~~O) L~H) +(L~~l)i}-

- (a~H) + 2 a~H) (a~H) - a~~)O» } L~~)O) L~j,}) , 

~ = [a~~O) (1 + L~~)1»2 + a~H) L~~O) L~H) + (a~hl) - a~~)O» (L~~)1»2 f + 

+a~~')O) (1+L~~1»2 +(a~H) _a~~)O» (L~~)1»2_ 

- 2 a~~)O) (a~pl) - a~~O» L~~P) L~H). 

Hence, we find 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

~ = (a~~O»2 (1 +L~~»4 + (a~H»2 (L~~O) L~H»2 + (a~H) - a~~)O»2 (L~~}»4 + 

+ 2 a~~)O) a ~H) (1 + L~~1»2 L~~P) L~H) + 

+ 2 a~j,)l) (a~H) - a~~O» (L~~)1»2 L~~O) L~H) + 

+2a~~)O) (a~H) _a~~O» (1+L~~)1»2 (L~~p)2 + 
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+ a~~'f) (1 + L~~'l»2 + (a~~~) - a~~'f» (L~~}) f -

- 2 a~~')O) (a~~p - a~~'f» L~~f) L~~·l). 

One may also write for the latter relation 

or 

13 = (a~~)O»2 (1 + L~~,>1»4 + 

+ {(a~~,>l) - a~~'f»2 + (a~~,>O»2 + 2 a~~'f) (a~H) - a~~)O»} (L~~'f) L~H»2 + 

+ (a~~p - a~~,>O)i (L~~)1»4 + 

+ 2 (a~~)O) (a~~,>l) - a~~,>O» + (a~~)O»2} (1 + L~~)t»2 L~~f) L~H) + 

+ 2 {(a~H) - a~~,>O»2 + a~'f) (a~~p - a~~'f»} (L~~,>1»2 L~~)O) L~hl) + 

+2a~~)O) (a~})l) _a~~)O» (1+L~~,>1»2 (L~~]»2 + 

+ a~~,>O) (l +L~~}) i + (a~~)l) - a~~'f»)(L~~)1»2 -

- 2 a~~'f) (a~H) - a~~f» L~~'f) L~H) 

= (a~~)O»2 (1 + L~~,>1»4 + {(a~~l) _ a~~)O»2 + (a~~)O»2} (L~~O) L~J,)1»2 + 

+ (a~H) - a~~O»2 (L~~p)4 + 2 (a~~)O»2 (1 +L~~]»2 L~~,>O) L~H) + 

+2 (a~~)I) _a~~)O»2 (L~~)I»2 L~~f) L~J,P + 

+ a~~)O) (1 + L~~)1»2 + (a~H) - a~~)O» (L~~l) i + 

+ 2 a~~)O) (a~PJl) - a~~)O» {(L~~)O) L~H»2 + (1 + L~~)1»2 L~~)O) L~PJl) + 

+ (L~~)1»2 L~~)O) L~H) + (1 + L~~]»2 (L~~)1»2 - L~~)O) L~H)} , 

13 = (a~~O»2 (1 + L~~)I»4 + {(a~H) - a~~)O»2 + (a~~'f»2} (L~~O) L~H»2 + 

+ 2 (a~~)O»2 (1 + L~~)1»2 L~~)O) L~H) + 

+ (a~H) - a~~O»2 (L~~I»2 {2 L~~)O) L~J,)I) + (L~~I»2} + 

+ a~~)O) (1 + L~~1»2 + (a~H) _ a~~O» (L~~)I»2 + 

+2a~~)O) (a~H) _a~~O» (L~~O) L~H) +(l+L~~l»L~~])}2. 

(4.20) 

(4.21) 

(4.22) 

By virtue of (4.1) and (4.2) one gets from (4.22) ~ > 0 and, thus, the inequality (4.16) fol

lows from (4.15). 
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5. The Debye equation 

If the phenomenological coefficients L~~O) and L~~I) = -L~H) (see (2.21» vanish, it follows 

from (2.19) that E = E(eq) and, hence, it is seen from (3.12) that 

Furthennore, (2.20) reduces to 

d ::1) = L~H) E(l). 

The expressions (3.16)-(3.19) for the coefficients which occur in (3.15) become 

X~~P) = a~H) L~M1) , 

x~9>b = a~9»O) (aU,)I) - a~9»O» L~J,)I) 

X ~j,b = a ~9»0) , 

x~pb =0 

and, hence, (3.15) reduces to 

(0) d E (0) (1 ) d P 
X(EP) E + -d = X(pE) P + X(pE) -. 

t dt 

For the coefficients (3.22)-(3.26) we get 

X~~) = (a~hl) + a~~')O) a~p.l) - (a~~f»2) L~J,P • 

x~1b) == 1 + a~9»O) • 

X~9JE) = a~~)O) (a~J,)I) - a~H» L~J,')I) • 

XUiE) = a~~)O) , 

X(2) = o. 

Hence. one obtains for (3.21) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

In this case the contribution cr~~\ of polarization phenomena to the entropy production is 

given by 

(5.14) 

as may be seen from equation (5.25) of ref. 4. With the help of (5.2) one obtains 
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(5.15) 

Hence, only changes in p(1) contribute to the entropy production. This includes that changes in 

pCO) are reversible. This may also be seen from (5.1). The latter equation expresses that pCO) is in 

equilibrium with the electric field E. Thus, P(O) does not contribute to the dielectric relaxation. 

An equation of the type (5.7) has been derived by Debye for polar liquids 8). In the Debye 

theory pCO) is the polarization of the liquid due to the elastic deformation of the molecules. It is 

assumed that changes in these elastic deformations are reversible phenomena. pCI) is the polariza

tion due to the rotation of the molecules and these rotations are supposed to be irreversible 

processes. 

It is seen from (5.2) that sudden changes in p(1) are impossible. On the other hand, by vir

tue of (5.1) a sudden change A E in E is associated with a sudden change A pCO) in pCO). Therefore 

pCO) may be called the elastic part of the polarization and pCI) the inelastic part. Hence, we have 

or 

where 

XCaE) = 1 / a~~O). 

If we add A E to both sides of (5.17) we get with the aid of (2.5) 

A D = ECaE) A E , 

where 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

One may call ECAE) the dielectric jump-permeability and XCaE) the dielectric jump-susceptibility. 

Using the second of the inequalities (4.2) it follows from (5.18) and (5.20) that 

XcaE) > 0 , ECAE) > 1. (5.21) 

The possibility of sudden changes in pCO) is connected with the fact that if L~~f) , L~~l) and L~H) 

vanish changes in pCO) are reversible processes. 
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6. The De Groot-Mazur equation 

In this section we consider the case in which Lfh1
) , Lf~)l) and Lfj,)O) vanish. One then has 

from (2.19) 

E == E(eq) + Lf~)O) dd~' 

From (2.20) we find that d pel) I dt vanishes and we shall assume that 

p(1) == O. 

Hence, from (2.10) 

P == p(O). 

From the linear equation of state (3.12) one then gets 

E(eq) == a~H) p. 

Using (6.4) the relation (6.1) becomes 

E == af~)O) p + Lf~)O) dd~ , 

or, if P is replaces by D - E, 

dE dD 
( l+a(o.O»E+L(o.O) _==a(o)O) D+L(o)O)-. 

(P) (P) dt (P (P dt 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

An equation of the type (6.5) has been derived by De Groot and Mazur 9). In this case there 

is no splitting up of the polarization into two parts (see (2.10». However, changes in the polari

zation are irreversible processes. 

Since we assume in this section that the coefficients L~hl) ,L~~)I) and LfhO) vanish, the 

coefficients in the relaxation equation (3.15), which are given by (3.16)-(3.19), reduce to 

(6.7) 

Hence, (3.15) becomes 

d E (1) d P (2) d
2 

P (0 0) d P L(OO) d
2 

P 
- ==X(P'E) - +X(P'E) -- ==a(fI) - + (p) --. 

dt dt d t 2 d t d t 2 
(6.8) 

It is seen that (6.8) is also obtained if one takes the substantial derivative with respect to time of 

both sides of (6.5). 

The coefficients in (3.21), given by (3.22)-(3.26), reduce to 

(6.9) 
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(6.10) 

It is seen that if one takes the substantial derivative with respect to time of both sides of (6.6) the 

same relation is obtained as the relation (3.21) with the expressions (6.9) and (6.10) for the 

coefficients. 

It is seen from (6.6) that in a static state where all time derivatives vanish 

D = E(eq) E (static case) , (6.11) 

where the static dielectric permeability (or equilibrium dielectric permeability) E(eq) is given by 

[ 
1 1 x~J1) 

E(eq) = 1 + (0'0) =----m-
a(p) X (DE) 

(6.12) 

(see also (6.10»). 
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7. Electromagnetic waves 

In the case that electric currents and electric charges are neglected, the equations (2.1)-(2.4) 

read · 

rot H _.1 aD = 0 , 
cat 
1 aB 

rotE+- -=0, 
c at 

div D =0, 

div B =0. 

Moreover, we recall that according to (3.27) we suppose that 

Hence, we neglect magnetic relaxation phenomena. 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

If we assume that the medium is at rest the substantial derivative with respect to time d / d t 

may be replaced by the local derivative with respect to time a / a t (see (2.22» and the equation 

(3.21) for dielectric relaxation then reduces to 

(7.6) 

It is the purpose of this section to show that equations (7.1)-(7.6) have solutions which only 

depend on 

(7.7) 

where k is the complex wave number and 00 is the real angular frequency, i.e. we consider plane 

waves which propagate in the direction of the x 1 -axis. 

We assume that a generic vector V of the field (H, E, D, B) has the form 

V = V(O) exp (i~) where V(O) = (0, V~O) , V~O» , (7.8) 

i 2 
=-1 and V(O) is a constant which may be complex. 

Utilizing (7.7) and (7.8) we have the following relations 

av . V Tt=-lOO , (7.9) 

av =ikV, av = av =0, 
aXl aX2 aX3 

(7.10) 

a
2 

V =_ 002 V. 
at2 

(7.11) 
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By virtue of (7.8) one has 

(7.12) 

where we have indicated with subscript 1 the components of the vectors E, D, B and H with 

respect to the x l-axis. Hence, we consider transverse waves, as may be seen from (7.7), (7.8) and 

(7.12). Using (7.10) and (7.12) it is seen that the Maxwell equations (7.3) and (7.4) are satisfied. 

With the aid of (7.9), (7.10) and (7.12), the equation (7.1) leads to 

ck 
D 2 =-H 3 , 

ro 
(7.13) 

(7.14) 

where the subscripts 2 and 3 indicate the components of the vectors with respect to the X2- and 

x3-axes, respectively. 

In a similar way we have from (7.2) 

ck 
B 2 =--E3 , 

ro 

ck 
B 3 =-E 2· 

ro 

By virtue of (7.15) and (7.16) the equation (7.5) gives 

ck 
H2=--E 3 , 

roll 

ck 
H 3 =-E2 , 

roll 

and so, utilizing the latter expressions, (7.13) and (7.14) become 

c2 k2 

D2 =--E 2 , 

Il ro
2 

c2 k 2 

D 3 =--2- E3 , 

Ilro 

respectively. 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

Thus, because of (7.12) and (7.15)-(7.20) the vectors of the electromagnetic field have the 

following forms 

(7.21) 

(7.22) 
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ck ck 
H = (0, -- E3 , - E 2)' 

1100 11 00 

From (7.6) it is seen that the components of E and D must satisfy the relation 

x~~)) E a + x~1b) a :ta 
+ X(2) a; ~ a = XWJE) D a + XUiE) a ~ a + X(2) a; ~ a 

(ex = 1 ,2, 3). 

(7.23) 

(7.24) 

(7.25) 

Since E 1 = D 1 = 0 (see (7.21) and (7.22)) the equation is satisfied for ex = 1. From (7.25) we 

obtain with the help of (7.9), (7.11), (7.19) and (7.20) 

and 

or 

{ <X~~D) - i 00 X~1!D) - 00
2 X(2») - <xWJE) - i 00 XUiE) - 00

2 X(2») c
2 

k
2

} Ea = 0 
11 00

2 

(ex = 2,3). 

If we suppose that 

Ea:;tO (ex=2,3) 

From (7.21)-(7.24) we find 

E· B=E· H=O, D· B=D· H=O 

D = E(compl) E , 

where 

c2 k2 

E(compl) = --2 
1100 

is the complex dielectric permeability. 

Using (7.28) one obtains from (7.32) 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

(7.30) 

(7.31) 

(7.32) 
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x~}lb) - oi X(2) - i co x~1b) 
E(campl) = (0) 2 (2) . (1)' 

X(DE) - CO X - l CO X(DE) 
(7.33) 

Hence, for co ~ 00 we have 

E(oo) = lim E(camp/) = 1. (7.34) 
c.o>--+oo 

and if co ~ 0, using (3.29), we have 

. x~}lb) 
E(O) = hm E(camp/) = ~ = E(eq) , 

c.o>--+O X (DE) 
(7.35) 

where E(eq) is the static dielectric penneability (see (3.28) and (3.29». 

Next, we wish to derive the velocity of propagation and the attenuation law of the elec

tromagnetic waves. Let kl be the real part of the complex wave number k and k2 the imaginary 

part. Hence, 

(7.36) 

where kl and k2 are real numbers. 

It is our purpose to find k I and k2 as function of co, i.e. we wish to find the dispersion law. 

To this end we note that we obtain from (7.28) 

kr _ k~ = !l co
2 { co

4 
(X(2»2 + co

2 
[XU(D) XU:fE) - X(2)ex~}lb) + X~9JE» 1 + x~}lb) X~9JE) } , (7.37) 

c
2 ex~9JE) - co

2 
X(2»2 + co

2 ex WEi 

and 

(7.38) 

Utilizing the relations (3.23) and (3.25) we have 

(7.39) 

and the relation (7.38) becomes 

k I k2 = J..l co
3 

{ co
2 

X(2) + exWE) X~~) - x~1b) XWJE»}. 

2 c2 ex~2)E) - co
2 X(2»2 + co2 (xU:lEl 

(7.40) 

By virtue of the inequalities (4.11) (4.14) and (4.16), one obtains from (7.37) 

(7.41) 

and from (7.40) 
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(7.42) 

In (7.41) I ki I is the absolute value of ki(i = 1 , 2). 

Hence, if we consider waves travelling in the direction of the positive x 1 -axis (with 00 > 0 

and k 1 > 0, see (7.7) and (7.8» then k2 ~ 0 as may be seen from (7.42) i.e. there is attenuation of 

the amplitude (unless k2 = 0). 

Let us introduce the abbreviations 

and 

where we used (7.37) and (7.40). 

Using the inequalities (4.3) and (7.41) it is seen from (7.43) and (7.44) that 

<I> (00) ~ 0 , 

\f (00) ~ O. 

(7.45) 

(7.46) 

If we solve (7.37) and (7.40) we obtain with the help of (7.43) and (7.44) for the components of 

the wave number the following expressions 

k, = ~ ~ { ~Ol) ['1+ '1'(01) + 1] r (7.47) 

(7.48) 

From (7.45) and (7.46) it is seen that k 1 and k2 are real, positive if 00 > 0 and satisfy the 

inequalities (7.41) and (7.42). 

Finally, we note that V(Ph), the phase velocity of the waves, is given by 

(7.49) 

while 
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exp(-k2 Xl) (7.50) 

is a factor which is responsible for the attenuation of the amplitude. 
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8. Low and high frequencies 

If ro is sufficiently small one obtains from (7.43), (7.44), (7.42) and (7.48) 

_ ro ~ XWD) 
kl = - ~ (0) (low freq.), 

C X (DE) 

(low freq.). 

Using (7.35) one obtains from (8.1) 

or 

or 

k 1 == ~ -V~ E(O) (low freq.) , 
c 

kl == ~ -V~ E(eq) (low freq.). 
C 

For the phase velocity we have from (7.49), (8.3) or (8.4) 

_ C 

V (Ph) = _,---
'I~ E(O) 

(low freq.) , 

v (Ph) == ~ (low freq.). 
~ E(eq) 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

By virtue of (7.44), (8.2), (8.5) (or (8.6» it is seen that in a first approximation at low frequencies 

the dielectric relaxation phenomena do not influence the propagation of electromagnetic waves. 

Next, we consider the case of high frequencies. From (7.43), (7.44), (7.47) and (7.48) one 

then finds 

and 

k 1 == !E.. -{; (high freq.) , 
C 

(high freq.). 

By virtue of (7.34) the relation (8.7) can be written in the following form 

k1 == ~ -V~ E(oo) (high freq.). 
C 

For the phase velocity of the waves we obtain from (7.49) and (8.9) 

V (Ph) == ~ (high freq.). 
J..1 E(oo) 

(8 .7) 

(8.8) 

(8.9) 

(8.10) 
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From (7.50), (8.8) and (8.10) it is seen that also at high frequencies the dielectric relaxation 

phenomena do not influence the wave propagation. 

In particular, using (7.31) and (7.34), we note that at high frequencies one has 

D == E (high freq.) , (8.11) 

and consequently from (2.5) we have 

(high freq.). (8.12) 

The relation (8.12) means that at high frequencies the polarization cannot follow the elec

tromagnetic field and changes in the polarization are impossible. Hence, damping of the waves 

due to polarization does not occur. If the frequencies are very low the polarization can follow the 

field instantaneously and changes in the polarization are quasistatic processes also without damp

ing of the waves. 
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9. Wave propagation in media with dielectric relaxation phenomena described by the 

Debyeequation 

. In sect. 5 we have shown that if changes in p(O) are reversible the dynamical equation (7.6) 

reduces to the Debye equation. As noted in the first paragraph of sect. 5 the Debye equation is 

obtained if one assumes that L~~)O) and L~~)l) = -L~J,)O) vanish. In this case the expressions (3.22)

(3.26) become 

X(2) = 0, 

x~2b) = {a~J,}) +a~~)O) (a~hl) -a~~f»} L~pl) ~ 0, 

x~}1) = (1 + a~~)O» ~ 1 , 

X~9JE) = a~)O) (a~J,)l) - a~~)O» L~H) ~ 0 , 

XU)E) = a~~)O) ~ O. 

Using (9.1) one has from (7.43), (7.44) and (7.33) 

<1>(00) = 1.. { 00
2 
X~l>D) XU)E) + x~2b) X~9JE) } 

2 <x~9JEl + 00
2 

<XU)E»2 ' 

\1'(00) = 00
2 

(XU)E) X~~D) - x~l1) X~9JE»2 

(00
2 
x~l1) XU)E) + x~2b) X~9JE»2 

and 

where XWJE), X~9JE) , x~l1) and XU)E) are given by (9.2)-(9.5). 

If 00 is sufficiently small one obtains from (7.42), (7.48), (9.6), (9.7), (9.8) and (3.29) 

_ 00 ~ X~WD) 
kl = - 11 ((i) (low freq.) , 

C X (DE) 

(low freq.) , 

and 

Using (7.49), (9.9) and (9.11) one has 

v (Ph) == ~ = ~ (low freq.). 
11 E(O) 11 E(eq) 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

(9.11) 

(9.12) 
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We note that for low freqencies we have the same results which were obtained in sect. 8 

(see (8.2) and (8.5) or (8.6» . 

and 

. For high frequency waves we have from (7.47), (7.48), (9.6), (9.7) and (9.8) 

k :::: ~ - 1 XWD) (h; h f ) 
I - C -\j ~ xUiE) \ .... g req., 

(high freq.) 

Ii xU1) (h; h fr ) 
E(oo) = m E(comp/) = ~ \lug eq .. 

w-+
OO X (DE) 

Using (7.49), (9.13) and (9.15) we obtain 

v (Ph) == ~ (high freq.). 
~ E(oo) 

We observe that, by virtue of (9.3), (9.5) and (5.18) the relation (9.13) becomes 

(9.13) 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

where X(l1E) is the dielectric jump-susceptibility which was introduced in sect. 5 of this paper. 

Consequently, by virtue of (9.17), (7.49) and (5.20) we have 

V (Ph) == C (high freq.) , 
~~ E(8E) 

(9.18) 

i.e. at high freqencies the phase velocity of electromagnetic waves which propagate in polar 

liquids depends on the magnetic penneability, 11, and the dielectric jump-penneability, E(8E) (see 

(5.20». 
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10. Wave propagation in media with dielectric relaxation phenomena described by the De 

Groot-Mazur equation 

In sect. 6 we have shown that if the polarization does not split up into two parts, we have 

(see (6.9) and (6.10» 

X(2) = L~~)O) ~ 0 , (10.1) 

x~2b) = X~2)E) = 0 , (10.2) 

x~l1) = 1 + a~~)O) > 1 , (10.3) 

XWE) = a~)O) > 0 (10.4) 

and the relaxation equation (7.6) reduces to the De Groot-Mazur equation (see sect. 6). 

In this case, using (10.2) one has from (7.43), (7.44) and (7.33) 

<I> (J) = 1.. { (J)2ex(2»2 + x~l,)D) XWE) } 

() 2 (J)2ex(2»2 + exWE»2 ' 
(10.5) 

(J)2 cl2»2 
'I' ( (J) - -=--=--=,-----'-'-"-:-:-:''-------:-:-:----:-

- {(J)2ex(2»2 + x~1b) X~llE) f 
(10.6) 

and 

(J) X(2) + i X~l,)D) 
E(compl) = (2) . (1) , 

(J) X + l X(DE) 

(10.7) 

where X(2) , X~l,)D) and XWE) are given by (10.1), (10.3) and (l0.4), respectively. 

If (J) is sufficiently small one obtains from (6.12), (7.47), (7.48), (l0.5), (10.6) and (l0.7) 

_ (J) ~ X~PD) (J) _ ~ 
k 1 = - I! (i) = - -VI! E(eq) (low freq.) , 

C X (DE) C 

(10.8) 

(low freq.) , (10.9) 

. x~1b) 1 
E(O) = hm E(compl) = (i) = 1 + (00) = E(eq) (low freq.) 

0>-t0 X (DE) a(p) 
(10.10) 

and 

V (Ph) = ~ == ~ (low freq.). 
k 1 Il E(eq) 

(10.11) 

We observe that these results are the same as those obtained in the case of wave propagation at 

high freqencies in the Debye theory (see (9.13), (9.14) and (9.15». 

For waves at high frequencies we have from (7.47), (7.48), (10.5), (10.6) and (10.7) 
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k 1 == ~ ~ (high freq.) , 
c 

k2 == 0 (high freq.) , 
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£(00) = lim £(compl) = 1 (high freq.) 
Il>---too 

V(Ph)=~== _~ = ~ (highfreq.). 
k 1 "V~ ~ £(00) 

(10.12) 

(10.13) 

(10.14) 

(10.15) 

From (10.12), (10.13), (10.14) and (10.15) it is seen that at high frequencies the wave pro

pagation in the De Groot-Mazur theory for media with dielectric relaxation has the same 

behaviour as described in the theory which was reviewed in the sections 2, 3, 4, 7 and 8 of this 

paper. 
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11. Wave propagation in media without dielectric relaxation 

Finally, we consider media without dielectric relaxation phenomena and we will show that 

in this case our formalism reduces to the well-known theory for nondissipative media. We obtain 

the equations for a nondissipative medium if we assume that in the De Groot-Mazur equation 

X(2) = L~~)O) = 0 (11.1) 

(see (l0.1». The equations (10.5), (10.6) and (10.7) then reduce to 

<I> - 1 XWD) 
-2 X9iE) , 

(11.2) 

\l'=0, (11.3) 

x~J1) 
E(comp/) = ~ . 

X (DE) 

01.4) 

It is seen that in this case E(compl) is real and does not depend on w. 

Hence, we have (see (10.10), (10.14) and (11.4» 

1 X~1>D) 
E(O) = E(oo) = E(comp/) = 1 + ----ro<i) = ~ = E(eq) · 

a(p) X(DE) 

(11.5) 

Furthermore, we obtain from (7.47), (7.48), (11 .2), (11.3) and (11.5) 

(11.6) 

and by virtue of (7.49) 

(11.7) 

Since k2 vanishes there is no damping of the waves (see (7.50». 

Finally, we note that (11.7) is the well-known formula for the phase velocity of electromag

netic waves in nondissipative media. 
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