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A generalized master equation (GME) describing the incoherent motion of an excitation in a disordered 
system is developed. The connection of the GME to the semi-Markovian theory of Scher and Lax, the 
generalized continuous random walk, and the self-energy approaches to the temporal properties of the 
transport is discussed. The theory is used in a model calculation to compute the mean square 
displacement and the probability of the excitation to remain at the origin as functions of time, and the 
results are compared to recent work on one dimensional systems, in which only nearest neighbor inter­
actions are included. 

INTRODUCTION 

Recently, the phenomena of spectral and spatial dif­
fusion of localized excitations have received attention 
both experimentallyla.2-4 and theoretically. Ib.4-8 Most 
studies have been concerned with the motion of the ex­
citation within an inhomogeneously broadened I)ptical 
line,2-7 although this is a special case of a much broad­
er class of problems involving an incoherent, strong 
scattering process under the presence of disorder. 
Examples are electronic energy transfer (EET) in mo­
lecular crystals, 1 in ionic crystals,2-4 EET in glasses,9 

and in solutions. 8 New insight may also be gained in 
problems like the primary process in photosynthesis, 10 
electron transfer in solution and spin migration,l1 where 
the excitation obeys a master equation (ME) and the 
transfer rates are distributed according to a certain 
probability distribution function. 

In what follows we shall be interested in EET (or the 
related phenomena) in monomer bands or in ordered (or 
almost ordered) systems; hence, no clusters are in­
volved in the energy migration, except for those that 
provide a possible mechanism for randomizing the 
hopping rates, as will be discussed later. We will con­
centrate on two quantities: the mean square displace­
ment (e(t) and the probability of the excitation to re­
main at its origin at time t, (Po(t». Both quantities have 
been studied recently using a variety of methods: 

(a) Solution of the ME for dilute systems in the short 
time limit, both for (e(t) 8 and (Po(t» 4,12; 

(b) Monte Carlo calculations of the ME in one dimen­
sion (lD) over the whole time regime6 for (Po(t» only; 

(c) 1D "exact" results for both (~2(t)) and (Po(t» in the 
long time limitI3.14; 

(d) USing the generalized continuous time random walk 
in the pair approximation15 for calculating (e(t»; 

(e) A diagrammatic approach for calculating (e(t».16 

In this paper, we show that the problem of the inco­
herent migration of an excitation in a disordered sys­
tem can be described by a generalized master equation 
(GME) which provides the connection between the above­
mentioned methods. Throughout this paper we shall be 
interested in the long time behavior of (~2(t» and (Po(t», 
which are still a matter of uncertainty. 7 We adopt the 
generalized continuous random walk approach17 (GCTRW) 

and reduce it in the long time limit to a case equivalent 
to the multiple trapping model according to the Scher­
Montrol theory. 18 The asymptotic behavior of <e(t» 
and of (Po(t» exhibits the importance of the off-diagonal 
disorder which may result in a time dependent diffusion 
coefficient that represents quasitrapped excitations. A 
scaling argument based on the theory of SCher-Lax17 is 
used to discuss probability distribution functions of the 
transfer rates, w, which have singular behavior near 
W = O. We assume that sinks and supertraps are not 
present; their effect on the long time behavior is dis­
cussed in another paper. 19 

II. GENERAL FORMALISM 

Consider a lattice in which a certain fraction of sites, 
C, are occupied in a random manner by impurity mole­
cules. An electronic excitation is supposed to migrate 
from one impurity to another. We assume that the equa­
tion governing the excitation migration is the ME: 

(1) 

where Wmn is the transition rate from site m to site n, 
and for convenience we will assume the high temper­
ture limit so that Will" = Wnm • We may write Eq. (1) as a 
matrix equation 

where 

The general properties of the solutions to Eq. (1) are 
well known and will not be considered further. 

(2) 

Equation (1) holds for every configuration of impurity 
molecules (at site fraction e), but with transition rates 
which depend on configuration. Each configuration gives 
rise to a set of interimpurity distances on the lattice, 
which in turn gives rise to a set of Wllln • For each con­
figuration, we may solve for Pn(t), assuming that the ex­
citation was on site n = 0 at t = 0, and we find 

Pn(t) = {exp(fV)}no . 

Averaging over all configurations, we obtain 

(Pn(t» = (exp(tV»no • 

(4) 

(5) 
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844 J. Klafter and R. Silbey: Energy transfer in disordered systems 

In the Laplace transform representation Eq. (5) is: 

(p n(u» =«u - V t 1).0 • (6) 

Defining a projection operator as 

<l" " =( •.•.• ) , (7) 

we have (see Appendix for details) for the configurational 
average of l>n(u) 

(Pn(u» = «u - V t 1
) no 

=[u - (V) - (oV[u - (1 - <p)V ]-10V) ];~ 

=[u - i(u)] ~~ , (8) 

where 

OV = V - (V) (9) 

and i(u) is a self-energy matrix. Rewriting Eq. (8) we 
now have 

(10) 

and 

=6no+:E~n,(u)(p,(u»+~nn(u)(Pn(u»; (11) 
,lin 

one then arrives at a GME for the (Pn(t» with kernels 
(self-energy matrix elements) that contain the informa­
tion about disorder: 

(fin(t» = (' dr {:E ~n ,(r)(p,(t - r» Jo ,lin 

+~nn(r)(Pn(t - or»} , 

with the initial condition 

(12) 

Upon averaging, the system is translationally invari­
ant, representing an effective or averaged system; 
therefore, 

~ (k, T) =:E exp[ - ik. (n -l)]~n'( T) (13a) 
n~' 

~(k= 0, T) = L ~n,(T) = - ~.n(T) (13b) 
n~' 

The GME can be rewritten as 

Laplace transforming this equation, one arrives at 

or, using the k representation, 

u(Pt(u» - 1 = [t(k, u) - ~(o, u)] (Pt(u» • (16) 

From Eq. (16) we derive the following relations: 

<Pt(u» =[u + £(0, u) - t(k, U)]-1 '" G(k, u) , (17a) 

and 
ItoR 

(Pn(u» = N -1 ~ U + f(;, u) _ t(k, u) 

N-1 elk'. 

= u+£(O,u) ~ 1-[t(k,u)/(u +i(O,u))] 
(17b) 

The two representations of the probability, Eqs 0 (1 7a) 
and (17b), can now easily be related to the methods 
mentioned in the introduction. Equation (17a) is the 
basic equation for the method which adopts a diagram­
matric expansion by Gochanour et al. 16 This method is 
a generalization of the Haan-Zwanzig approach8 to in­
clude also long time tails. Equation (17b) can be re­
lated to the GCTRW discussed by Scher and Lax, 17 

which will be used in Secs. IV and V for a model system. 
Both approaches are closely related through the above 
equations, each providing a different starting point for 
approximations for summing up terms in the self-energy 
series expansions. 

Gochanour et al. 16 define a generalized diffusion coef­
ficient D(k, u) by the identity 

G(k, u) = [u + k 2 D(k, U)]-l • (18) 

Using Eq. (17a) for G(k, u), they obtain 

(19) 

Any function of u, say H(u), can be added to t(k, u) for 
all k, and the form of Eqs. (17b) and (19) remains in­
variant. 1S The k= ° limit of the generalized diffusion 
coefficient determines migration of an excitation at 
large displacements and allows an exact definition of 
the (e(t»8 for long times. The Laplace transform of 
the mean square displacement at small u is 

(20) 

If D(k= 0, u) is independent of u, one gets the usual rela­
tion between (l;2(t» and D. 

In the following section we discuss the derivation of 
the GCTRW17 equations starting from Eq. (17b). 

III. THE GENERALIZED CONTINUOUS TIME 
RANDOM WALK 

Equation (17b) provides a connection between the GME 
and the GCTRW theory. Defining a generalized struc­
ture function A (k, u) by 

A(k u) '" f(~,u) 
, u+r:(O,u) ' 

(21) 

we rewrite Eq. (17b) as 

N-1 Ik'o 

(P.(u» = u + 1:(0, u) ;; 1 ~ A(k, u) 

= l-A(O,u). N- 1 '"' elk'" 
u "t' 1-A(k,u) • (22) 

Let .v(s, t) be the probability density for hopping a dis­
tance s with a hopping time t. $(s, u) is its Laplace 
transform; then by making the identification 

$(k, u) = L: ~(s, u) e-lt·• , (23) 
.~o 

an exact relationship between the GME and GCTRW is 
found. The following relationships are now easily veri­
fied: 

$(s,u)=f(s,u)[u+f(O,u)]-l, (24) 
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~(u) ;: L ~(s, u) = f(o, u)[u + teo, U)]-1 , (25) 
.*0 

£(0,u)=u~(u)/[1-~(u)]. (26) 

These relations between the self-energies and the hop­
ping time distribution function are exact. This is an 
extension of the conclusion by Butcher20 that the GCTRW 
is equivalent to some modified pair approximation in 
solving the ME, Eq. (1). teo, u) can also be identified 
with the relaxation function in the work of Kenkre et al.21 

The above relations, equations (24)-(26) provide a clear 
connection among the various approaches to study the 
incoherent EET in disordered systems. In spite of the 
equivalence between the self-energy method and the 
GCTRW, the results for (~2(t» and ( Po (t) may differ in 
the two frameworks owing to the use of different approx­
imations. 

From Eqs. (21) and (22) and from the relations be­
tween the self-energies and the hopping time distribu­
tion function, it turns out that 

- 1- >k(u) 
(Pn(u) = R(n,u) , 

u 

where 

L 
eit·n 

R(n,u)=N-1 

It 1 - A (It, u) 

(27) 

(28) 

is a generalized generating function. 17 (Pn(u) has been 
derived here in the framework of a GME approach; it 
can also equivalently be derived from a generalization 
of the Montroll-Weiss CTRW.17 (Po(t» is of course 
given by the inverse Laplace transform of (Po(u), 

The mean square displacement at long times can be 
shown17 to be the inverse Laplace transform of 

2 -

('t2( »:= l' -2 "s \{f(s!u)u 
"u .IJP u ~ 1 _ \{f(u) 

(29) 

(30) 

A very useful limit of the GCTRW is the CTRW, or the 
Scher-Montrolllimit, 18 which assumes a decoupling of 
the generalized structure factor A(k,u), or of its Fou­
rier transform ~(s, u): 

A(k,u):= ~(u) L pes) e- ilt •• , 

."0 
leading to 

- 1- ~(u) -
(Pn(u» := Ro(n, \{feu)~ , 

u 

where 

_ "eik
' U 

Ro(n, \{feu»~ =N -1 ~ 1 _ w(u)A(k) , 

A(k) = L pes) elk' •• 

.,00 

(31) 

(32) 

(33) 

Ro(n, u) is the lattice generating function, and A(t) is the 
usual structure factor. 21b.22 

Then, 

-2 () " 2 ( ) ~(u) (~ u = ~ s p s [1- ~(u)]u 

Note that the time dependence of (~2(t» in the CTRW 
scheme is given by 

~(u) 
u(l- $(u» , 

(34) 

which depends on the disordered nature of the system 
and whose form does not depend on its dimensionality 
although the explicit function of u of course depends on 
the topology of the lattice. The form of (Po(t) on the 
other hand does depend on the system's dimensionality. 

The different behavior of (Po(t» and of (~2(t» with re­
spect to dimenSionality generalizes in some sense the 
1D results of Refs. 13 and 14, which point toward the 
interesting relation 

(35) 

where d is the dimensionality. We show later that this 
relation is typical only for the 1D problem in general, 
although it holds for all d in the diffusive limit. 

In the present section, we have shown that the GCTRW 
is equivalent to the GME and is therefore exact. Thus 
an exact calculation can be done of either the ~n",(t) for 
the GME or the \{f(s, t) for the GCTRW. In general, of 
course, exact calculations of either are impractical. 
However, an approximate calculation of \{f(t) can be done 
by connecting \{f(t), the distribution function of hopping 
times, to the distribution function of hopping rates. In 
the next section we will present a plausible but not 
exact relation between ~(u) and the distribution function 
of hopping rates, pew) [where w is a hopping rate re­
lated to the W",n's appearing in Eq. (1)] which will en­
able us to compute (~2(t» and (Po(t» without calculating 
the kernels in the GME. Since we are interested in the 
long time behavior of ~(t), or equivalently the small u 
behavior of .j,(u), the important part of pew) will be near 
w=O. We also assume that the small w part of the pew) 
is dominated by the distribution of nearest neighbor im­
purity Wmn's appearing in the original master equation, 
Eq. (1). 

IV. MODEL CALCULATIONS 

The CTRW has been shown23
-

25 to be equivalent to a 
multiple trapping model which provides a reasonable 
relation between .j,(u) and pew). The multiple trapping 
describes a situation where the excitation can choose 
to leave a site via a broad spectrum of relaxation rates, 
w, with a reasonably smooth normalized pew), so that23 - 25 

\{f(t) = r dw we-Ol' pew) • (36a) 

w(u) is given by the Stieltjes transform of wp(w) 

~(u) = (o~ dw wp(w) (36b) 
), w+u' 

and 

1- ~(u) 
u S .. dw pew) • 

o w+u 

We now choose three typical distribution functions13• 14: 
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846 J. Klafter and R. Silbey: Energy transfer in disordered systems 

(a) p(w) such that (w-I ) exists; 

1 
(l_o)w-CI 1 5 w 5 0, 0<0<1 

(b) p(w) = 0 
otherwise; 

(c) p(w) as in (b), but with 0 = O. 

We will study each situation separately. 

(a) p(w) such that (w-I ) exists 

According to Eq. (36), 

$(u) = 1 - (w-I
) u + O(UZ) , 

where 

and 

(w-") =m! t" , 

t" = f tm \f!(t) dt • 

In the framework of the CTRW, Eq. (34), 

-2 ~(u) 1 - (w-l)u 
(1; (u»- u[1-~(u)]= u[(w-i)u] 

It then follows that 

(~2(t» - W ett t , 

where 

W~~f =(1/wyl • 

(37a) 

(37b) 

(37c) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

This result is independent of dimensionality. (Po(t)) 
calculated according to Eqs. (32) yields 

(Po(t) = 1 - -it(u) Ro(O, ~(u» 
u 

- (w-I
) Ro(O, ~(u» as u - ° . (44) 

(Po(t» strongly depends on dimensionality via Ro(O,-it(u». 
Ro(O, z) is found to be22 

l
lD (1- Z2)-1/2 \ 

Ro(O, z) - 2D -11-l log(l - z) z -1 . 

3D const +a(l- Z)1/2 

(45a) 

(45b) 

(45c) 

Therefore, the results for (Po(t» change drastically 
with dimensionality. One obtains in the case of a "well­
behaved" p(w) the usual asymptotic (Po(t)) for ordered 
systems26

; thus, a disordered system characterized by 
(37a) having first moment behaves at long time as an 
ordered system. An example of such a p(w) is provided 
by multipolar interaction in all dimensions: 

1D: 

(Po(u»- W~~f [1- ~(U)]-1/2 

and 

(Po(t» - W;~[2 rl/Z , 

2D: 

t- 00' , 

(Po(u» - W;~f [- 11 .llog(l - $(u»] 

(46) 

(47) 

-I (1 +AU) - weft log -]jU" 

(Po(t»- W~f ("I as t- 00 ; 

3D: 

as u-O, 

(Po(u»- w~~f[const +a(1- ~(uW/21 

(48) 

(49) 

-w;~fconst+aw-;;:2uI/Z asu-O, (50) 

(51) 

It is obvious that Relation (35) holds for the usual dif­
fusive situation. We would like to emphasize here that 
Eqs. (42), (47), (49), and (51) can also be obtained by 
exactly solving the ME for ordered systems as t _ 0()26 

[the exact solution found by calculating the self-energy 
terms Eq. (17a)j. 

(b) p(w)- w-"; 0 5W 51 

For this case (l/w) does not exist. This interesting 
behavior is typical to dilute 1D systems dominated by 
exchange type interactionsl9•27 or to systems where in­
coherent motion is induced by fluctuations of an Arrhe­
nius activation law. 9.28.29 In the latter case 0 is tem­
perature dependent and may change as a function of 
temperature to give all the three p(w) given by Eqs. (37) 
(0<0,0=0,0>0). For 0>0, 

1
1 1-" 

~(u) = (1 - 41) 0 ~ dw- 1-A u1
•

a 

w+u ' 
u-O (52) 

where A is independent of u, 

(~2(u»-U-(2-Cl), u- 0, (53) 

and 
(54) 

These results are again independent of dimension. Note 
that Alexander and Bernasconi14 found (~2(t»1/2 
- t(1-Cl)/12-a), which differs from (54). We shall com­
ment on this later. 

Calculating <Po(t)) for 1D we obtain 

(Po(u» = A U
l
-

CI 
[1 _ (1 _ A UI- a )2]1/2 (55) 

u 
- BU·(I+CI)/2, u- 0, 

(56a) 

Equations (54) and (56) clearly demonstrate that for 1D, 
Relation (35) holds. 

USing Eqs. (32), (33), (45b), and (45c), we obtain for 
higher dimensionalities 

2D: (Po(t)) - tCl -
1 1g t l

-
CI t - 00 , 

3D: (Po(t)) - t",·1 t - 00 , 

(56b) 

(56c) 

which show that Relation (35) does not hold for d higher 
than 1, at least in the framework of our model calcula­
tion. These interesting results are due to the Singular 

\p(w), Eq. (37b), which is unlikely in 2D or 3D. 

(c) p(w)- canst (i. e., 0 =0) 05 w 5 1 

In this case, 

~(U)=(I ~dw-1+ulnu-u, Jo w+u 
u-o. (57) 
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It follows that 

(~2(U»- [_u21~uj-1, u- 0, 

and therefore 

(e(t))-t/lnt, t- oo • 

(Po(t)) calculated for 1D systems results in 

(Po(t»- (Int/t)1/2, t- 00 , 

(58) 

(59) 

(60) 

which is again a manifestation of the special relation 
(Po(t» - (~2(t))-1 /2 in 1D. 

V. ASYMPTOTIC BEHAVIOR FROM SCALING 
ARGUMENT 

In this section, we present a scaling argument based 
on the Scher-Lax17 formulation of theory, and which is 
also related to that suggested by Alexander and Ber­
nasconi, 14 to calculate the mean square displacement. 
The results of this agree with those found in the last 
section and indicate another way to deal with distribu­
tions p(w) with singular behavior in the Scher-Lax 
theory. 

The argument proceeds in the following way: if p(w) 
is such that (11 w}(== W;~f) does not exist because of the 
w- 0 behavior, introduce a cutoff at wo, near zero, in 
p(w). If Wo is small enough, then the distribution is 
largely unchangedj however, for the new distribution 
(11 w) will exist and be a function of wo, leading to 
w;}t(wo)' We then compute the mean square displace­
ment for t on the order wii1 with w;}r(wo), using a self­
consistency argument then leads to forms for (~2(t» in 
agreement with the last section. 

The distribution functions we will deal with are 

(a) p(w) as defined in Eq. (37b) having a singularity 
at w=O, and 

(b) p(w) characterized by a finite value at w=O. The 
example we choose is the most disordered case p(w) in 
the family of disordered chains considered by Dyson30 

( ) _ [~] . .n-1 -n", 
Pn w - (n _ 1)! Ul e • (61) 

In order to compute the long time behavior of <e(t» 
and >It(t), we adopt the procedure used by Thomas et al.31 

to compute >It(s, t) for dilute systems, obtaining for the 
Laplace transform of <~2(t», and using the W .. n 

= W(m - n) appearing in the ME, 

(~2 (u» = c L: S2 W(s) 
& 

x f dt e .... t e-w (sH (Q(t)) [u(l _ ;j,(U))]-1 

= [c 4= s2 W(s) 

S 
e-ut e-W(Slt 1 [ ~(u) ] 

x dt ~(u) (Q(t))J u(l _ ~(u» , (62) 

where (Q(t» is the probability of staying on site n= 0 
in the formulation of Thomas et al. 31 When the inte­
grand in this expression is such that its first moment 

exists a requirement for which a sufficient condition is 
the existence of a second moment of ~(t), fl, either in 
the original system or for the cutoff p(w), then (~2(t»_t 
for t > f. That is, for times longer than f, the normal 
diffusion equation is valid. In our case, p(w) without a 
cutoff leads to an infinite t; however, introducing a cut­
off Wo leads to the relation 

t=t(wO)'=[weu (WO)j-1. (63) 

In addition, by introducing the cutoff in p(w) we find the 
long time form of >Jt(t)(t> wa1) is given by17 

>Jt(t) - c r dw w e-",t p(w) • (64) 
"'0 

This way of computing >Jt(t) allows for hops to many im­
purities, not just nearest neighbors. 31 

We are now in a position to compute the mean square 
displacement. For our distribution with a cutoff, and 
for times t- wa1(> W;~t = t), we have 

Consider the distribution function given in Eq. (37b), 
p(w)- w-a for 0< a< 1. We find when we introduce a 
cutoff at Wo that 

(66) 

and 

(67) 

But, since t - wa1
, we have (e(t» - t1

- a , which agrees 
with the results in the previous section. Note that 
t=wjja and t>t (i.e., wjj1> wa a for O<a<l). 

Now consider the distribution given in Eq. (61) for the 
disordered chain: 

P1(w)-e-'" • (68) 

Then 

w.u =[ -lnwo]-1 (69) 

and 

(e(t» = weft t = tllnt (70) 

for t- wa1
, which again agrees with our previous results 

for p(w) - constant at w = O. The other Pn(w) n> 1 in the 
family given above in Eq. (61) have diffusive migration 
at long times. 

It Should be emphasized that the above conclusions 
apply to (~2(t» and not to (Po(t»j although they may of 
course be calculated in the same framework of the 
Scher-Montroll theory as shown in Sec. IV. 

The results of Sees. IV and V for p(w) - w-a differ 
from those of Bernasconi, Alexander, and Orbach13 and 
Alexander and Bernasconi. 14 The latter papers deal 
with one-dimensional systems with nearest neighbor 
impurity interactions only. Our method implicitly al­
lows farther interactions [see Eq. (62) and Ref. 31]. 
We conjecture that this difference causes the difference 
in results found for p( w) - w-a • (Note that for less sin­
gular distributions, our results agree with Refs. 13 and 
14. ) 
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VI. CONCLUSIONS 

In this paper, we have examined the incoherent mi­
gration of an electronic excitation in a disorderedsys­
tem. Starting with a Pauli master equation to describe 
the temporal behavior of the site probabilities in each 
configuration, an average over configurations was per­
formed which results in a generalized master equation, 
i. e., time dependent transition rates. The exact con­
nection of this formalism to the generalized continuous 
time random walk model was presented and discussed. 
This connection allows us to calculate the mean square 
displacement of the excitation, (~2(t» and the probability 
to remain on the initial site, (PoU», in a variety of 
ways. The GME can be used, wherein a microscopic 
calculation of the self-energy, i(k. u), must be made. 
This is the route taken by Raan and Zwanzig8 and Goch­
anour et al. 16 Alternatively, the CTRW can be used, 
either by calculating 'i1(t) directly, or by calculating 
p(w) from some microscopic model. The former meth­
od is similar to the approach taken by Godzik and Jort­
n~r. 15 

We have applied our results to EET in one dimension 
for exchange dominated transition rates using both a 
time scaling argument and the direct calculation of the 
long time behavior of (~2(t». 

We believe that the powerful formalism of the GCTRW 
model allows a quick yet exact calculation of transfer 
probabilities in a number of physical situations. The 
difficult microscopic part of the calculation is in the 
computation of 'i1(t) or p(w); the solutions of the equations 
for (~2(t», etc., are straightforward consequences of 
this computation. 

In related papers, we apply these results to excitation 
trapping in molecular crystals19 and to the migration of 
atoms on disordered surfaces. 29 

ACKNOWLEDGMENTS 

Acknowledgment is made to the donors of the Petro­
leum Research Fund, administered by the American 
Chemical Society, for partial support of this work. 
This work was also partially supported by the National 
Science Foundation (Grant CRE 78-07515). 

APPENDIX 

There are a number of ways to derive the result given 
in Eq. (8). A straightforward procedure is to replace 
the W m" where rn and n are site indices) by 

Wm" ~m~" , 
where ~'" is a random variable which takes the value 
+ 1 if site rn is occupied by an impurity and 0 if site rn 
is occupied by a host molecule. The configuration aver­
age ( •.. ) is then the average over all possible values of 
the {~"} subject to (~"):= c. In order to compute (exptV), 
note 

d 
dt P(exptV):= PVPexp(tV) +PV(l-P) exptV, (A. 1) 

d 
dt P(l- P)(exptV) = (1 - p)VP exp(tV) 

+ (1 - p) V(l - p) exptV (A. 2) 

Solving (A2) with the condition lim,_o(l - p) exp(tV) =0, 
we have 

(l-P)exptV= r d7"exp[(l-p)V(t-T))(l-P)VPe vT ; 

substituting into (A1), we find 

d~ P(exptV) =PVPexptV + r PV(l-P) 

xexp[ (1- p)V(t - 7")](1- p)VP e VT 

or 

~(etV) = (V) (e IV) 
dt 

+ f d7"(o V exp[ (1 - p) V (t - T))oV) (eVT
) , 

which upon Laplace transform yields Eq. (8). 
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