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ON ELEMENTARY TRANSVERSELY AFFINE FOLIATIONS I

By NoBuo TsucHIYA

§1. Introbuction.

Let ¥ be a codimension one foliation on a closed C*-manifold M. Recall
that a transversely affine structure on (M, F) is given by an %-atlas whose
transition functions are elements of the group Aff(R) of affine automorphisms
of the real line. By gluing together the transition functions of a transversely
affine structure, we get the holonomy homomorphism h: w,(M)—Aff(R). We say
that the transversely affine structure is elementary it the image of the holonomy
homomorphism is abelian. A foliation which admits an elementrry transversely
affine structure is called an elementary transversely affine foliation. In this and
subsequent papers, we study some properties of elementary transversely affine
foliations.

It is known that an elementary transversely affine foliation is almost without
holonomy (i.e., the holonomy group of each non-compact leaf is trivial) (see
[Bo] and [In]). Actually, Inaba’s proof ([In]) shows that the above result is
true for elementary fopological transversely affine foliations (see §2 for the
definition of topological transversely affine structures). In this paper, we con-
sider the converse problem. That is, we study when an almost without holo-
nomy foliation admits a topological transversely affine structure.

Let & be a transversely oriented codimension one foliation on a closed C*-
manifold M. Assume & is almost without holonomy. Let U be a connected
component of M—U{K|K is a compact leaf of ¥}. Then there exists a holo-
nomy invariant measure gy on U. Since & is transversely oriented, py defines
a singular cochain on U. Let Ay<SHYU ; R) denote its spherical cohomology
class, where SHYU ; R)=HYU ; R)/R*. It is seen that the class Ay does not
depend on the choice of the holonomy invariant measure gy. We call Ay the
cohomology direction of F .y (see §3).

Now we can state the main theorem of this paper.

MAIN THEOREM. Let F be a smooth, transversely oriented codimension one
foliation on a closed C~-manifold M. Then F admits an elementary topological
transversely affine structure if and only if the following conditions are satisfied

(1) G 7s almost without holonomy.

Received October 12, 1989; Revised February 1, 1990.

289



290 NOBUO TSUCHIYA

(2) Let U be the set of connected componenis of M—\J{K|K is a compact
leaf of F}. Then for each USU, the transverse orientation is directed simulta-
neously tnward on all the compact leaves in 0U or simultaneously outward on them.

(3) There is a spherical cohomology class ASSH'(M; R) which satisfies the
following condition; for each U&U, we have iy*(A)=sign(U)- Ay, where iy de-
notes the inclusion map of U into M, Ay denotes the cohomology direction of Fy
and sign(U) is +1 (resp. —1) if the transverse orientation is directed inward
(resp. outward) on a compact leaf in 8U.

In §2, we define topological transversely affine structures. In §3, we pre-
pare some facts about open saturated sets without holonomy. Finally, in §4,
we prove our main theorem. In this paper, we assume that all the foliations
are of codimension one and transversely oriented.

§2. Topological transversely affine structures.

In this section we define topological transversely affine structures on a
manifold. We start with a notation. An orientation preserving affine auto-
morphism of the real line R is a transformation of the form ¢t—a-t+b where a
is a positive real number and b is a real number. We denote the group of all
these transformations by Aff*(R).

Now, let M be a connected C*-manifold. Let A be the universal covering
space of M.

(2.1) DEFINITION. A transversely affine structure (resp. a topological trans-
versely affine structure) on M is a pair (D, h) where D is a C*-submersion (resp.
a topological submersion with the property that D™'(¢) is a smooth submanifold
of M for each teIm(D)) from M to R and h is a homomorphism from z,(M)
to Aff*(R) which satisfies the following equivariance condition :

D(rx)=hrYXD(x)), where rex (M) and xM.

We call D the developing submersion and h the holonomy homomorphism.

(2.2) Remark. Let (D, h) be a (topological) transversely affine structure on
M. Let _I_( be a~normal subgroup of n(M) which is contained in the kernel of
h. Let M=K~M. Then the developing submersion D naturally defines a sub-

mersion D: M—R. The map D is also called a developing submersion.

Let (D, h) be a (topological) transversely affine structure on M. Let § be
the foliation on M defined by the level surfaces of D. Then, since D is A-
equivariant, the foliation & projects down to a foliation & on M. We call &
the underlying foliation of the (topological) transversely affine structure (D, h).
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(2.3) DEFINITION. Let 9 be a smooth foliation on M. We say that &
admits a transversely affine structure (D, h) if the underlying foliation of (D, h)
is diffeomorphic to ¢ under a diffeomorphism which preserves the transverse
orientation. We say that F admits a topological transversely affine structure
(D, h) if there is a homeomorphism f of A which sends each leaf of the under-
lying foliation of (D, k) diffeomorphically onto a leaf of ¥ and which preservcs
the transverse orientation. We alse say that & is a (topological) transversely
affine foliation if § admits a (topological) transversely affine structure.

(2.4) Remark. There are many C*-foliations which admit topological trans-
versely affine structures but which does not admit transversely affine structures.
We give two examples.

A first example is given by foliations of the 2-torus T? consisting of two
Reeb components. Let & be the foliation of the punctured plane R*—{0} defined
by the level surfaces of the submersion Dix, y)=y. The quotient of 4 by the
Z-action generated by (x, ¥)—(2x, 2y) is a Reeb foliation & of 7% which has
an obvious transversely affine structure (see [Bo]). Consider a C=-foliation &,
of T? such that

(1) &, is homeomorphic to & and

(2) the holonomy group of each compact leaf of &, is infinitely tangent

to the identity.
Then the foliation &, does not admit a transversely affine structure since each
non-trivial holonomy of a transversely affine foliation has non-trivial linear part.
But it is obvious that the foliation &, does admit a topological transversely
affine structure.

A second example is given by the suspension foliation F, of a diffeomor-
phism g of S* which is topologically conjugate to a rotation. It is easy to see
that the foliation &, admits a topological transversely affine structure. It is
also easy to see that the foliation &, admits a transversely affine structure if
and only if g is smoothly conjugate to a rotation.

Let ¢ be a topological transversely affine foliation on a C®-manifold M.
As in [S, Theorem 6], one can prove that M admits a possibly new C=-struc-
ture with respect to which & is transversely affine. The precise statement is
the following.

(2.5.) PROPOSITION. Let (D, h) be a topological transversely affine structure
on a connected C>-manifold M. Let F be the underlying foliation. Then there
is a C*-manifold M’ and a transversely affine foliation F' on M’ which satisfies
the following conditions.

(1) M’ s identical to M as a topological manifold.

(2) The identity map ¢ from M to M’ sends each leaf of F diffeomorphically

onto a leaf of F'.

Proof. Let M be the universal covering space of M and & the lift of &.
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Since F={D"'(t)};ermc, there exists uniquely a new differentiable structure on
M in which each leaf of & is a differentiable submanifold and in which the
developing submersion D is a smooth map. Let M’ be this differentable mani-
fold and 1: M—M’ the identity map. From the equivariance condition it follows
that the action of #,(M) on M given by 7(x")=171x') (where 7er (M) and
x’EM’) is differentiable. Thus the differentiable manifold M’:m(M)\M’
satisfies the desired properties. We have proved the proposition.

Let (D, h) be a (topological) transversely affine structure. Let I” denote
the image of the holonomy homomorphism h. We call I” the global holonomy
group of (D, h).

(2.6.) DEFINITION. A (topological) transversely affine structure is said to be
elementary if the global holonomy group I” is abelian. A foliation which admits
an elementary (topological) transversely affine structure will be called an ele-
mentary (topological) transversely affine foliation.

See [Bo] and [G, Chapter 3] for fundamental properties on transversely
affine foliations. Some of the results there are valid for topological transversely
affine foliations. See [E, §17] for general backgrounds on transversely (G, X)-
foliations.

§3. Open saturated sets without holonomy.

Let ¢ be a C=-foliation on a closed manifold M. Let U be a connected
component of M—\U{K|K is a compact leaf of ¥}. Assume that each leaf in
U has trivial holonomy group. Such a set is a building block of an almost
without holonomy foliation, and the structure of such a set is fairly well-under-
stood (see e.g., [Hel, [Im], [C-C, §4] and [T, §6]). There are several equi-
valent ways to describe the situation. One can use the notion of:

(1) holonomy invariant measures ([P]),

(2) leaf preserving flows ([C-C], [T]),

(3) C°-closed one forms defining F ([Im])
or (4) foliated J-bundles (M-M-TJ).

In this paper we adopt the notion of holonomy invariant measures, and show
that it is also equivalent to

(5) topological transversely affine structures whose global holonomy groups
are contained in the group of translations.

Let U be as above. Let X be the disjoint union of all immersed transverse
arcs in U. A holonomy invariant measure on (U, Fy) is a non-trivial Borel
measure on X which is invariant under the action of the holonomy pseudogroup
of 9,y (see [H-H, p. 2607).
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(3.1) LEMMA (see [C-C, p. 103]). There exists a holonomy invariant measure
py on (U, ).

(3.2) LEMMA. Let py and py be holonomy invariant measures on (U, Fy).
Then there exists a positive constant A such that py(r)=2Aplr) for every closed
curve y transverse to 4 y.

Proof. Either all leaves of F,, are dense in U or all leaves of &, are
closed in U (see e.g., [Im]). If all leaves of F,; are dense, it is easy to see
that the holonomy invariant measure gy is unique up to multiplicative constant.
Assume all leaves of &,y are closed in U. Then, by standard arguments in
foliation theory, one can find a transverse simple closed curve C in UU which
intersects with every leaf of &y exactly once. And furthermore, one can see
that every closed curve C’ transverse to &,y is freely homotopic to a multiple
C™ of C, meZ (see e.g., [T, §51). Hence, it we put A=¢'(C)/p(C), we have
2 (CN=p' (C™y=m- ' (C)=m-A- p(C)=2- p(C™)=4-u(C"). This proves the lemma.

Let py be a holonomy invariant measure on (U, Fy). Then puy defines a
real valued singular cocycle @,, which is characterized by the following con-
ditions (see [P, p. 345] and [H-H, p. 278]):

(1) Let 7:[0, L]—U be an arc transverse to & whose orientation is com-
patible (resp. incompatible) with the transverse orientation of . Then we have

0 .,(")=pu(7) (resp. —uy(7)).
(2) Let 7:[0,1]-U be an arc which is contained in a leaf of ¥. Then

we have @ ,,(r=0.
(3) Let 7o, 7:: [0, 11U be arcs in U which are homotopic relative to end-

points. Then we have @ ,,(7)=2,(1.).

(3.3) DEFINITON. Let ¢,,=HXU ; R)=Hom (x,(U), R) be the cohomology
class of the cocycle @,,. We consider g,, as a homomorphism from z=,(U) to
R and call it the period homomorphism associated with the holonomy invariant

measure gy.

Let gy and g, be as above. Let A,,=l{q,,}=SH'U; B)=H'(U; R)/R* be
the spherical cohomology class of g, Since it is known (see e.g., [Im]) that
every closed curve in U is homotopic either to a closed curve transverse to G
or to a closed curve contained in a leaf of Z, it follows from (3.2) and the de-
finition of @,, that the class A,, does not depend on the choice of the holo-
nomy invariant measure py. So we denote the class A, simply by A,. We
summarize this in the following definition.

(3.4) DEFINITION (see [H-H, p. 194]). The spherical cohomology class of
the period homomorphism ¢, is called the cohomology direction of ¥y, and is

denoted by Ag.
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We consider a special class of holonomy invariant measures.

(3.5) DEFINITION. A holonomy invariant measure gy on (U, &) is said to
to be non-singular if the following condition is satisfied:

Let 7: [0, 1J—U be an immersion transverse to ¥. Then there is a posi-
tive continuous function f,: [0, 11—-R* such that r*(g)=s,(t)-dt.

(3.6) LEMMA. There exists a non-singular holonomy invariant measure gy on
W, Fw).

Proof. By a theorem of Imanishi [Im, Theorem S’], there exist a smooth
non-singular closed one form w on U and a homeomorphism 4 of U such that
h sends each leaf of Zy diffeomorphically onto a leaf of the foliation &, defined
by w. Let py=h*y, where yu, denotes the holonomy invariant measure on
(U, F,) defined by w. It is obvious that gy is a non-singular holonomy invari-
ant measure. This proves the lemma.

(3.7) LEMMA. Let pry be a non-singular holonomy invariant measure and q,,
the period homomorphism associated with py. Let K be a subgroup of =, (U)
which is contained in the kernel of q,., and U the covering space of U defined by
the group K.

Then there exists a topological submersion Fy: U—R which satisfies the fol-
lowing conditions:

(1) Let & be the foliation on U induced from F\y. Then & is the pullback
of the point foliation of R by Fy.

(2) For each rem(U) and x<U, we have Fy(yx)=q,,(1)+Fy(x).

(3) The lift of the non-singular holonomy invariant measure py to U coin-
cides with the pullback of the Lebesgue measure of R up to multiplication by a
positive continuous function.

(4) Let C(U) be the completion of U with respect to a meiric induced from
a Riemannian metric of M. Let c: [0, 1]-C(U) be a continuous path such that
e([0, IDND =c((0, 1]) and ciw.11 s transverse to &. If the orientation of ¢ is
compatible (resp. incompatible) with the transverse orientation of 4, then we have
lim Fy(e(t))=—oco (resp. +oo).

Proof. Choose a base point xy&U, and consider the space P(U, xp) of all
continuous paths in U based at xy: P(U, xy)={a: [0, 1]-U, a(0)=xy}. Then
the cochain @, restricts to a map F: P(U, xy)—R. Define an equivalence rela-
tion~on P, xy) by a~b if and only if a(1)=0b(1) and exb-*=K. Then the
space P(U, xy)/~ is homeomorphic to the space U. Since KCKer (Gpp), We
have F(a)=F(b) if a~b. So the map F induces a map Fy: U—R. It is easy
to see that the map Fy is a topological submersion and satisfies the conditions
(1), (2) and (3).
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We prove the condition (4). Let ¢: [0, 1]-C(0) be a path as in (4) whose
orientation is compatible with the transverse orientation of &. Then there
exists an element g of the holonomy pseudogroup of & which sends c(¢) (0<
t<1) to gle(t))=c(a(t)) where a: (0, 1]—(0, 1] is a contraction to 0 (see e.g.,
[C-C, Lemma 2]). Then we have, by the holonomy invariance of py,

lim Fy(e(t)=1im Fy(c(a™(1))
=lim [Fy(c(D)+{—Fyle)+ Fo(clal))}

+{—FpleCa(L))+ Fyle(a? DN} + -
+{—Fplela" N+ Flcla™DN}]
=£igla LFy(c(1)—n- {Fy{c(1))— Fy(c{a(1))} ]
This completes the proof of the lemma.

The lemma (3.7) says that the pair (Fy, ¢,,) defines a topological trans-
versely affine structure on &,y whose global holonomy group is contained in the
group of translations RCAff*(R). We remark that the converse statement holds.

(3.8) LEMMA. Let U be a connected, open saturated set without holonomy.
Let (D, q) be an elementary topological transversely affine structure on F,y whose
global holonomy group is contained in the group of translations. Then the pull-
back of the Lebesgue measure of R by the map D defines a non-singular holonomy
invariant measure Uy, and the period homomorphism q,, associated with py coin-
cides with the homomorphism q.

The proof is easy and is omitted.

§4. Proof of the main theorem.
In this section we prove our main theorem.

First, we prove the “only if” part. The assertions (1) and (2) were proved
by Inaba (see [In, Theorem 1.2 and Lemma 3.4]). (Although Inaba treats trans-
versely affine foliations, his proof is valid for topological transversely affine
foliations.)

We prove the assertion (3). Let & be a foliation on a closed manifold M
which admits an elementary topological transversely affine structure (D, h).
Since the global holonomy group I"’=Im(q) is abelian, either I is contained in
the group of translations or I" is a subgroup of Aff*(R) which fixes a point
tv=R.
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Assume [ is contained in the group of translations. Then the foliation &
is without holonomy, and the condition (3) is automatically satisfied.

Assume I fixes a point {,=R. By passing to an equivalent structure, we
may assume that ¢,=0 and I"CGL*(1, R)=R*. Define a homomorphism ¢: m,(M)
—R by g=log-h, and let A denote the spherical cohomology class of g. We
show that iy*(A)=sign(U)- Ay for each U< .

Let =: M—M be the universal covering of M. Note that the union of all
compact leaves of & coincides with z-D~'(0) (see [In]). So, if U is an element
of U with sign(U)=+41 (resp. -—1), then we have D(z YU))C(0, o) (resp.
(—c0,0). For each Usv, define a homomorphism ¢y: 7, (U)>R by g,=
sign(U)-giy» and a continuous map Dy: z~(U)—R by Dy=log(sign(U)- D\-1an).
Then the pair (Dy, gy) defines a topological transversely affine structure on
F v whose global holonomy group Im(gy) is contained in the group of transla-
tions. By (3.8), the pullback of the Lebesgue measure of R by Dy defines a
holonomy invariant measure gy and the period homomorphism associated with
to coincides with ¢gy. So the cohomology direction Ay of U is the class of gy.
Thus we have iyp*(A)=sign(U)- Ay.

Now we prove the “if” part of the main theorem. Assume that the folia-
tion F on a closed manifold M satisfies the conditions (1), (2) and (3) of the
main theorem. Note that the cardinality of U is finite by (2). If U=, then
all leaves of ¢ are compact and the bundle foliation & has an obvious elemen-
tary transversely affine structure. If U={M}, then the whole mainfold is a
component of the type considered in §3. By (3.7), the foliation ¥ admits an
elementary topological transversely affine structure.

Assume U has at least two elements. Note then that, for each U=, the
closure U of U in M is naturally homeomorphic to the metric completion C(U)
of U by the assumption (2). By the assumptions (1) and (3), there exist a
homomorphism ¢: 7z, (M)—R and a holonomy invariant measure py for each
UcU such that geige=sign(U)-q,, where g,, is the period homomorphism
associated with gy. By (3.2) and (3.6), we may assume that each gy is non-
singular.

Let =: M—M be the universal covering of M, and let G==,(M). For each
Uc, let Hy=Im(iy«: m(U)—m,(M)Cr (M), Ky=Ker (iys: m,(U)—m (M)Cr,(U)
and let U be the covering space of U defined by Ky. Then the group Hy=G/Ky
acts naturally on the space U. By general theory on covering spaces, the G-
spaces 7~} (U) is G-equivariantly diffeomorphic to the twisted product G%U (see

[Br, p 46] for the notation). Define Fy: U—R asin (3.7), and define Dy: =~ YU)
—R by Dy(g, x)=sign(U)-exp{q(g)+sign(U) - Fy(x)}, where we have identified
z-YU) with GxU.
Hy
By (4) of (3.7), Dy(x) tends to zero as x tends to HC(x Y\ UN==r"4dU). So
we can define a topological submersion D: M—R by
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D(x)=Dy(x) if xea~¥U)
and
D(x)=0 if xeu{z @0)| cwe=}.

Then, from the Hy-equivariance of Fy for each U U, one can easily see
that the map D is G-equivariant with respect to the homomorphism h=expe-q:
T,(M)»R*=GL*(1, R)YCAff*(R). Thus the pair (D, h) defines an elementary
topological transversely affine structure on &. This completes the proof of the
main theorem.
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