Scuola Normale Superiore di Pisa

 Classe di Scienze
A. Lorenzi
 On elliptic equations with piecewise constant coefficients. II

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^{e} série, tome 26, n ${ }^{\circ} 4$ (1972), p. 839-870
http://www.numdam.org/item?id=ASNSP_1972_3_26_4_839_0

Abstract

© Scuola Normale Superiore, Pisa, 1972, tous droits réservés. L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ON ELLIPTIO EQUATIONS WITH PIEOEWISE CONSTANT COEFFICIENTS. II

A. Lorenzi (*)

SUMMARY - In this work we prove an existence and uniqueness theorem for solntions in $W^{2, p}\left(R^{n}\right)$ of second order linear elliptic equations, whose coefficients are constantvalued in the half-spaces R_{+}^{n} and R_{-}^{n}

1. Introduction and statement of the problem.

In this paper we are interested in solving a second order linear partial differential equation of elliptic type, whose coefficients are constant-valued in the half-spaces $R_{+}^{n}=\left\{x \in R^{n}: x_{1}>0\right\}$ and $R_{-}^{n}=\left\{x \in R^{n}: x_{1}<0\right\}$. We carry on our research, begun in [6], where square summable solutions with square summable second derivatives are dealt with : in this work we look for solutions in $W^{2, p}\left(R^{n}\right)(1<p<+\infty)$. We recall that $W^{2, p}\left(R^{n}\right)$ denotes the Sobolev space (${ }^{1}$) of all functions of $L^{p}\left(R^{n}\right)$, that have deriva. tives in the sense of distribntions of the first two orders belonging to $L^{p}\left(R^{n}\right) ; W^{2, p}\left(R^{n}\right)$ is a Banach space with respect to the norm :

$$
\|u\|_{W^{2, p}\left(R^{n}\right)}=\left\{\int_{R^{n}}\left[|u|^{p}+\sum_{r, j=1}^{n}\left|\frac{\partial^{2} u}{\partial x_{r} \partial x_{j}}\right|^{p}\right] d x\right\}^{1 / p}
$$

Our equation is

$$
\left\{\begin{array}{l}
L^{+} u \equiv \sum_{r, j=1}^{n} a_{r j}^{+} \frac{\partial^{2} u}{\partial x_{r} \partial x_{j}}+\sum_{j=1}^{n} a_{j}^{+} \frac{\partial u}{\partial x_{j}}-h+u=f \quad \text { in } R_{+}^{n} \tag{1}\\
L^{-} u \equiv \sum_{r, j=1}^{n} a_{r j}^{-} \frac{\partial^{2} u}{\partial x_{r} \partial x_{j}}+\sum_{j=1}^{n} a_{j}^{-} \frac{\partial u}{\partial x_{j}}-h-u=f \quad \text { in } R_{-}^{n}
\end{array}\right.
$$

Pervenato alla Redazione il 2 Agosto 1971.
(*) Lavoro eseguito con contributo del C. N. R. nell'ambito del Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni.
${ }^{(1)}$ For the properties of Sobolev spaces see, for instance, [2] or [9].
where $a_{r j}^{+}, a_{r j}^{-}, a_{j}^{+}, a_{j}^{-}, h^{+}, h^{-}(r, j=1,2, \ldots, n)$ are real constants with the following properties:
i) the $n \times n$ matrices $A^{+}=\left(a_{r j}^{+}\right)$and $A^{-}=\left(a_{r j}^{-}\right)$are symmetric and positive definite;
ii)

$$
h^{+}>0, h^{-}>0
$$

and f is an assigned function in $L^{p}\left(R^{n}\right)(1<p<+\infty)$.
In the following we shall be interested in the case $n \geq 3$.

Theorem. Equation (1) has a unique solution $u \in W^{2, p}\left(R^{n}\right)$ for every $f \in L^{p}\left(R^{n}\right)(1<p<+\infty)$. There exists a constant C independent of u such that the following estimate holds:

$$
\begin{equation*}
\|u\|_{W^{2, p}\left(R^{n}\right)} \leq O\|f\|_{L^{p}\left(R^{n}\right)} \tag{2}
\end{equation*}
$$

From the theorem it follows that, if p is large enough ($p>n / 2$), the solution is continuous across the interface $x_{1}=0$: if $p>n$, also the first derivatives are continuous across the interface.

The method used to prove the existence of the solution consists in solving the Neumann problems

$$
\left\{\begin{array} { l }
{ L ^ { + } u ^ { + } = f } \tag{3}\\
{ u ^ { + } \varepsilon W ^ { 2 , p } (R _ { + } ^ { n }) } \\
{ \frac { \partial u ^ { + } } { \partial x _ { 1 } } (0 ^ { + } , \cdot) = g }
\end{array} \quad \left\{\begin{array}{l}
L^{-} u^{--}=f \\
u^{-} \varepsilon W^{2, p}\left(R_{-}^{n}\right) \\
\frac{\partial u^{-}}{\partial x_{1}}\left(0^{-}, \cdot\right)=g
\end{array}\right.\right.
$$

where g is some function in $W^{1-\frac{1}{p}, p}\left(R^{n}\right), \frac{\partial u^{+}}{\partial x_{1}}(0+, \cdot)$ and $\frac{\partial u^{-}}{\partial x_{1}}(0-, \cdot)$ denote respectively the traces of $\frac{\partial u^{+}}{\partial x_{1}}$ and $\frac{\partial u^{-}}{\partial x_{1}}$ on $x_{1}=0$. Remember that $W^{s, p}\left(R^{n}\right)$, for $s>0$ non integer, is the space of all functions which together with all derivatives of order $<s$ (in the sense of distributions) are in $L^{p}\left(R^{n}\right)$ and satisfy the inequality

$$
\begin{align*}
\|u\|_{W^{s, p}\left(R^{n_{j}}\right)} & =\mid \sum_{j=0}^{[8]} \sum_{|a|=j}\left[\iint_{R n}\left|J^{a} u\right|^{p} d x+\right. \tag{5}\\
& \left.\left.+\int_{i^{n}} d x \int_{R^{n}} \frac{\left|D^{a} u(x)-D^{\alpha} u(y)\right|^{p}}{|x-y|^{n+p(s-[s])}} d y\right]\right\}^{1 / p}<+\infty
\end{align*}
$$

where [s] is the largest integer $<s . W^{s, p}\left(R^{n}\right)$ is a Banach space with respect to the norm defined by the left side of (5).

We observe that $W^{1-\frac{1}{p}, p}\left(R^{n}\right)$ is exactly the space of traces of first derivatives of functions in $W^{2, p}\left(R^{n}\right)$.

We shall prove that problems (3) and (4) have a unique solution. Then we shall choose g so that the function u so defined:

$$
u(x)= \begin{cases}u^{+}(x) & x \in R_{+}^{n} \\ u^{-}(x) & x \in R_{-}^{n}\end{cases}
$$

is the wanted solution of (1). To do thus, we shall have to solve an integral equation in g : the solution of such an equation is obtained by inter-polation-techniques.

2. Fundamental solution of an operator with constant coefficients.

In this section we shall, for the sake of convenience, denote the variables by $\left(x_{0}, x_{1}, \ldots, x_{n}\right)(n \geq 2)$.

Consider the second order linear differential operator with real constant coefficients

$$
\begin{equation*}
L=\sum_{r, j=0}^{n} a_{r_{j}} \frac{\partial^{2}}{\partial x_{r} \partial x_{j}}+\sum_{j=0}^{n} a_{j} \frac{\partial}{\partial x_{j}}-h^{2} \tag{6}
\end{equation*}
$$

where $A=\left(a_{r j}\right)$ is a symmetric, positive definite $(n+1) \times(n+1)$ matrix and $h>0$.

We shall show some properties of the function

$$
\begin{equation*}
E(x)=c^{n-1}(\operatorname{det} A)^{-1 / 2} l_{n}[c(x)] \exp \left[-\frac{1}{2}\left(A^{-1} a, x\right)\right] \quad x \neq 0 \tag{7}
\end{equation*}
$$

that turns out to be a fundamental solution of L. In formula (7)

$$
\begin{equation*}
l_{n}(r)=-(2 \pi)^{-(n+1) / 2} r^{(1-n / 2} K_{(n-1) / 2}(r) \tag{8}
\end{equation*}
$$

$K_{(n-1) / 2}$ being the modified Hankel function, $\left({ }^{2}\right)$, a being the vector

[^0]$\left(a_{1} \ldots a_{n}\right)$,
(9)
\[

$$
\begin{gather*}
c=\left[h^{2}+\frac{1}{4}\left(A^{-1} a, a\right)\right]^{1 / 2}\left({ }^{3}\right) \\
r(x)=\left(A^{-1} x, x\right)^{1 / 2} \tag{10}
\end{gather*}
$$
\]

For the following it will be useful to recall the integral representation formula

$$
\begin{equation*}
l_{n}(r)=-\frac{1}{2}(2 \pi)^{-(n+1) / 2} \int_{0}^{+\infty} s^{(n-3) / 2} \exp \left(-\frac{1}{2} r^{2} s-\frac{1}{2 s}\right) d s \tag{11}
\end{equation*}
$$

that is an immediate consequence of known formulas for Bessel functions.
Then, we should like to call to mind that, if $L=\Delta-h^{2}$, the fundamental solution (7) becomes the familiar function $h^{n-1} l_{n}(h|x|)$.

Moreover, we observe that

$$
\begin{equation*}
E(x)=-\frac{\Gamma\left(\frac{n+1}{2}\right)}{2 \pi^{(n+1) / 2}(\operatorname{det} A)^{1 / 2}(n-1)}[r(x)]^{1-n}[1+0(|x|)] \text { as } x \rightarrow 0 \tag{12}
\end{equation*}
$$

where the function $-\frac{\Gamma\left(\frac{n+1}{2}\right)}{2 \pi^{(n+1) / 2}(\operatorname{det} A)^{1 / 2}(n-1)}[r(x)]^{1-n}$ is a fundamental solution of the operator $\sum_{r, j=0}^{n} a_{r j} \frac{\partial^{2}}{\partial x_{r} \partial x_{j}} \cdot(12)$ is easily proved by using the formula

$$
\begin{equation*}
K_{m}(r)=2^{m-1} \Gamma(m) r^{-m} e^{-r}(1+r 0(r)) \text { as } r \rightarrow 0(m>1 / 2) \tag{13}
\end{equation*}
$$

(see, for instance, [10], appendix) and the inequalities

$$
\begin{equation*}
\left|\left(A^{-1} a, x\right)\right| \leq\left(A^{-1} x, x\right)^{1 / 2}\left(A^{-1} a, a\right)^{1 / 2} \tag{14}
\end{equation*}
$$

(that is valid for all symmetric, positive definite $(n+1) \times(n+1)$ matrices and for all vectors $a, x \in R^{n+1}$)

$$
\begin{equation*}
|r(x)| \leq v^{-1 / 2}|x| \tag{15}
\end{equation*}
$$

\boldsymbol{v} being the largest eigenvalue of A.
${ }^{(3)}(\cdot, \cdot)$ denotes the scalar prodnct in R^{n}.

Finally, we observe the following estimates for E and the gradient $D E$ of E, that, in particular, imply $E \in W^{1,3}\left(R^{n+1}\right)$:

$$
\begin{array}{r}
|E(x)| \leq \frac{\nu}{4 \pi^{2}(\operatorname{det} A)^{1 / 2}} \cdot \frac{\exp (-\alpha|x|)}{|x|^{2}}\left[1+\left(\frac{c \pi}{2 \boldsymbol{v}^{1 / 2}}|x|\right)^{1 / 2}\right] \quad n=3 \tag{16}\\
|E(x)| \leq \frac{\Gamma\left(\frac{n+1}{2}\right) v^{\frac{n-1}{2}}}{2 \pi^{\frac{n+1}{2}}(\operatorname{det} A)^{1 / 2}(n-1)} \cdot \frac{\exp (-\alpha|x|)}{|x|^{n-1}}\left[1+\frac{c}{C_{n} \nu^{1 / 2}}|x|\right]^{\frac{n-2}{2}} \quad n \geq 4
\end{array}
$$

$$
|D E(x)| \leq \frac{v^{3 / 2}}{2 \pi \mu(\operatorname{det} A)^{1 / 2}} \cdot \frac{\exp (-\alpha|x|)}{|x|^{2}}\left[1+\frac{2 c \nu^{1 / 2}+|a|}{4 v}|x|\right] \quad n=2
$$

$$
\begin{equation*}
|D E(x)| \leq \frac{v^{2}}{2 \pi^{2} \mu(\operatorname{det} A)^{1 / 2}}\left(1+\frac{|a|}{c \boldsymbol{v}^{1 / 2}}\right) \frac{\exp (-\alpha|x|)}{|x|^{3}}\left|1+\frac{c \pi^{1 / 3}}{2 \nu^{1 / 2}}\right| x| |^{13 / 2} \quad n=3 \tag{17}
\end{equation*}
$$

$$
\begin{align*}
|D E(x)| & \leq \frac{\Gamma\left(\frac{n+1}{2}\right) v^{\frac{n+1}{2}}}{2 \pi^{\frac{n+1}{2}} \mu(\operatorname{det} A)^{1 / 2}} \tag{17}\\
& . \frac{\exp (-\alpha|x|)}{|x|^{n}}\left(1+\frac{|a|}{2 c \boldsymbol{\nu}^{1 / 2}}\right)\left(1+\frac{e}{C_{n+2} \boldsymbol{\nu}^{1 / 2}}|x|\right)^{n / 2} \quad n \geq 4
\end{align*}
$$

where μ and ν are the smallest and largest eigenvalues of A and $\alpha,|a|$, C_{n} are given respectively by

$$
\begin{equation*}
\alpha=\frac{c-\frac{1}{2}\left(A^{-1} a, a\right)^{1 / 2}}{\nu^{1 / 2}} \tag{18}
\end{equation*}
$$

$$
|a|=\left(\sum_{j=0}^{n} a_{j}^{2}\right)^{1 / 2}
$$

$$
\begin{equation*}
C_{n}=\frac{1}{2}\left[\pi^{-1 / 2} I\left(\frac{n-1}{2}\right)\right]^{\frac{2}{n-2}} \tag{19}
\end{equation*}
$$

Estimates (16) follow immediately from (14), (15) and known inequalities for Bessel functions (see, for istance, [10], appendix). The same arguments
and the formulas

$$
D E(x)=\frac{c^{n}}{(\operatorname{det} A)^{1 / 2}} \cdot \frac{A^{-1} x}{r(x)} l_{n}^{\prime}(c r(x)) \exp \left[-\frac{1}{2}\left(A^{-1} a, x\right)\right]-\frac{1}{2} A^{-1} a E(x)
$$

$$
\begin{equation*}
\frac{d}{d r}\left(r^{-m} K_{m}(r)\right)=-r^{-m} K_{m+1}(r) \tag{20}
\end{equation*}
$$

give (17).
Now we can prove two lemmas:

Lemma 1. E is a fundamental solution of L, that is

$$
\mathcal{F} E(\xi)=-\frac{1}{(A \xi, \xi)-i(a, \xi)+h^{2}} \quad \xi \in R^{n}
$$

where $\mathcal{F} E(\xi)=\int_{R^{n}} \exp [-i(x, \xi)] E(x) d x$ is the Fourier transform of E.
Lemma 2. If $f \in L^{p}\left(R^{n+1}\right)(1<p<+\infty)$, the following properties hold:
i) $E * f \in W^{2, p}\left(R^{n+1}\right)$, where * denotes convolution;
ii) $L(\boldsymbol{E} * f)=f$;
 dent of f.

Proof of lemma 1 We observe that, for (11), the following formula is easily seen to hold:

$$
c^{n-1} \int_{R^{n+1}} \exp [-i(x, \xi)] l_{n}(c|x|) d x=\frac{-1}{|\xi|^{2}+c^{2}}
$$

With the change of variables $x=M_{\tau}^{-1} z$, where M is a $(n+1) \times(n+1)$ matrix such that $M_{\tau} M=A\left({ }^{4}\right)$, we get easily

$$
c^{n-1} \int_{R^{n+1}} \exp [-i(x, \xi)] l_{n}[\operatorname{cr}(x)] d x=-\frac{(\operatorname{det} A)^{1 / 2}}{(A \xi, \xi)+c^{2}}
$$

[^1]To conclude, we remember that, if f is a well-behaved function, the Fourier transform of $f(x) \exp (a, x)$ is $\mathscr{F} f(\xi-i a)$: thus the lemma is proved.

Proof of lemma 2. To prove the lemma we can suppose $f \in C_{0}^{\infty}\left(R^{n+1}\right)$. From Young's inequality it follows that

$$
\begin{equation*}
\|E * f\|_{L^{p}\left(R^{n+1}\right)} \leq\|f\|_{L^{p}\left(R^{n+1}\right)} \int_{R^{n+1}}|E(x)| d x \tag{21}
\end{equation*}
$$

the integral of E being finite on account of estimates (16). Incidentally, we notice that Lemma 1 and the obvious fact that E is negative imply the equation

$$
\int_{R^{n+1}}|E(x)| d x=1 / h^{2}
$$

The formula

$$
\frac{\partial^{2}(E * f)}{\partial x_{r} \partial x_{j}}=-\mathscr{F}^{-1}\left[\xi_{r} \xi_{j} \mathscr{F} \boldsymbol{E} \mathscr{F} f\right]=\left(\mathscr{F}^{-1} \varphi_{r j}(\xi) \mathscr{F}\right) f
$$

where

$$
\varphi_{r j}(\xi)=\frac{\xi_{r} \xi_{j}}{(A \xi, \xi)-i(a, \xi)+h^{2}} \quad(r, j=0, \ldots, n)
$$

and a theorem of Hörmander-Mihlin show that the second derivatives of $E * f$ are in $L^{p}\left(R^{n+1}\right)$ and that, taking into account (21), iii) is fulfilled. For, it is easy to see that the functions $\varphi_{r j}$ are, following Hörmander's terminology, multipliers of type (p, p) for every $1<p<+\infty$. For more details, see the appendix of this paper.

Then, from lemma 1 it follows that

$$
\mathscr{F}[L(E * f)](\xi)=-\left[(A \xi, \xi)-i(a, \xi)+h^{2}\right] \mathscr{F} E(\xi) \mathscr{F} f(\xi)=\mathscr{F} f(\xi)
$$

that is ii). The lemma is proved.
For the following we need to have the expression of the Fourier transform of $E(t, \cdot)$, where we have put, for the sake of convenience, $t=x_{0}$, $x=\left(x_{1}, \ldots, x_{n}\right):$ moreover, ξ will denote the dual variable of x and, occasionally, \mathcal{F}_{x} will denote the Fourier transform with respect to x.

The following lemma holds:
Lemma 3. We have

$$
-\int_{R^{n}} \exp [-i(x, \xi)] E(t, x) d x=\psi(t, \xi)= \begin{cases}\frac{\exp \left[t z_{1}(\xi)\right]}{\sqrt{H(\xi)}} & t \geq 0 \tag{22}\\ \frac{\exp \left[t z_{2}(\xi)\right]}{\sqrt{H(\xi)}} & t<0\end{cases}
$$

where $z_{1}(\xi)$ and $z_{2}(\xi)$ are the roots of the equation

$$
\begin{equation*}
a_{00} z^{2}+\alpha(\xi) z-\beta(\xi)=0 \tag{23}
\end{equation*}
$$

respectively with negative and positive real part and

$$
\begin{equation*}
H(\xi)=\alpha^{2}(\xi)+4 a_{00} \beta(\xi) \tag{24}
\end{equation*}
$$

is the discriminant $\left(^{5}\right), \alpha(\xi)$ and $\beta(\xi)$ being defined as follows:

$$
\begin{gather*}
\alpha(\xi)=a_{0}+2 i \sum_{j=1}^{n} a_{0 j} \xi_{j} \tag{25}\\
\beta(\xi)=h^{2}+\sum_{r, j=1}^{n} a_{r j} \xi_{r} \xi_{j}-i \sum_{j=1}^{n} a_{j} \xi_{j}
\end{gather*}
$$

Remark 1. Observe that the discriminant $H(\xi)$ has the following properties :
i) $\operatorname{Re} H(\xi) \geq a_{0}^{2}+4 a_{00} h^{2}$
ii) $\operatorname{Re} \sqrt{\bar{H}(\xi)} \geq \sqrt{\operatorname{ReH}(\xi)}$
iii) $|H(\xi)| \geq C\left(1+|\xi|^{2}\right),[C$ being a strictly positive constant, $|\xi|=$ $\left.=\left(\sum_{j=1}^{n} \xi_{j}^{2}\right)^{1 / 2}\right]$.

Moreover, the roots $z_{1}(\xi)$ and $z_{2}(\xi)$ have the properties:

$$
\begin{align*}
& \operatorname{Re} z_{1}(\xi) \leq \frac{-a_{0}-\sqrt{a_{0}^{2}+4 a_{00} h^{2}}}{2 a_{00}}<0 \tag{27}\\
& \operatorname{Re} z_{2}(\xi) \geq \frac{-a_{0}+\sqrt{a_{0}^{2}+4 a_{00} h^{2}}}{2 a_{00}}>0
\end{align*}
$$

$$
\begin{equation*}
\mathrm{C}^{\prime}\left(1+|\xi|^{2}\right)^{1 / 2} \leq\left|\operatorname{Re} z_{j}(\xi)\right| \leq\left|z_{j}(\xi)\right| \leq O^{\prime \prime}\left(1+|\xi|^{2}\right)^{1 / 2}(j=1,2) \tag{29}
\end{equation*}
$$

O^{\prime} and $O^{\prime \prime}$ being positive constants.
For the proof, see [6], lemmas 1 and 3.
(5) In this paper the square root of a complex number is the one with non-negative real part.

REMARK 2. The function $-\psi$ is a fundamental solution of the operator

$$
a_{00} \frac{\partial^{2}}{\partial t^{2}}+\alpha(\xi) \frac{\partial}{\partial t}-\beta(\xi)
$$

that admits (23) as its characteristic equation.
Proof of lemma 3. From the properties of integrability of E (see inequalities (16)) it follows that

$$
\begin{equation*}
\int_{R^{n}} \exp [-i(x, \xi)] E(t, x) d x=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \exp (i t \tau) \mathscr{F} E(\tau, \xi) d \tau \tag{30}
\end{equation*}
$$

For lemma 1 and the notations introduced before the statement of lemma 3, we can write

$$
\begin{equation*}
\mathcal{F} E(\tau, \xi)=-\frac{1}{a_{00} \tau^{2}-i \alpha(\xi) \tau+\beta(\xi)} \tag{31}
\end{equation*}
$$

where $\alpha(\xi)$ and $\beta(\xi)$ are defined by (25), (26).
Applying Cauchy's theorem on residues, from (30) and (31) we get

$$
\int_{R^{n}} \exp [-i(x, \xi)] E(t, x) d x= \begin{cases}-\frac{1}{a_{00}} \cdot \frac{\exp \left[t z_{1}(\xi)\right]}{z_{2}(\xi)-z_{1}(\xi)} & t \geq 0 \\ -\frac{1}{a_{00}} \cdot \frac{\exp \left[t z_{2}(\xi)\right]}{z_{2}(\xi)-z_{1}(\xi)} & t<0\end{cases}
$$

i. e. the assertion.

For the following, it will be useful to estimate all the derivatives of E : such estimates imply, in particular that E is analytic in $R^{n}-\{0\}$.

Lemma 4. Let γ be any multi-index : then

$$
\begin{equation*}
\left|D^{\gamma} E(x)\right| \leq(|\gamma|!) C^{|\gamma|+1}|x|^{1-n-|\gamma|} \exp (-\delta|x|) x \neq 0 \tag{32}
\end{equation*}
$$

where $D^{\gamma}=\frac{\partial^{\gamma_{0}}}{\partial x_{0}^{\gamma_{0}}} \frac{\partial^{\gamma_{1}}}{\partial x_{1}^{\gamma_{1}}} \cdots \frac{\partial^{\gamma_{n}}}{\partial x_{n}^{\gamma_{n}}},|\gamma|=\sum_{j=0}^{n} \gamma_{j}, c$ is defined by (9),

$$
\begin{equation*}
\delta=\frac{h^{2}}{2 \boldsymbol{\nu}^{1 / 2}\left[\left(A^{-1} a, a\right)+2 h^{2}\right]^{1 / 2}} \tag{33}
\end{equation*}
$$

and O is a constant independent of γ.

Proof. Leibniz's rule for the derivative of a product, inequalities (14), (15), formulas (9) and (33) imply that it is enough to prove the following inequality

$$
\begin{equation*}
\left|D^{r} l_{n}[\operatorname{cr}(x)]\right| \leq(|\gamma|!) C^{|\gamma|+1}[r(x)]^{1-n-|\gamma| \exp [-\varepsilon \operatorname{cr}(x)]} \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon=\frac{\left[\left(A^{-1} a, a\right)+2 h^{2}\right]^{1 / 2}}{\left[\left(A^{-1} a, a\right)+4 h^{2}\right]^{1 / 2}} \tag{35}
\end{equation*}
$$

For the derivation of (32) from (34) it is useful to bear in mind the inequality

$$
\begin{equation*}
\varepsilon c-\frac{1}{2}\left(A^{-1} a, a\right)^{1 / 2}=\frac{h^{2}}{\left[\left(A^{-1} a, a\right)+2 h^{2}\right]^{1 / 2}+\left(A^{-1} a, a\right)^{1 / 2}}>v^{1 / 2} \delta \tag{36}
\end{equation*}
$$

Since there exists an orthogonal $(n+1) \times(n+1)$ matrix that maps the quadratic form $r^{2}(x)$ into the canonical form $\varrho^{2}(x)=\sum_{j=0}^{n} \lambda_{j} x_{j}^{2}$, it suffices to prove (34) with $l_{n}[\operatorname{cr}(x)]$ snbstituted by $l_{n}[c \rho(x)]$. For the integral representation formula (11) we get

$$
\begin{equation*}
l_{n}[c \varrho(x)]=-\frac{1}{2(2 \pi)^{\frac{n+1}{2}}} \int_{0}^{+\infty} s^{\frac{n-3}{2}} \exp \left[-\frac{1}{2} s c^{2} \sum_{j=0}^{n} \lambda_{j} x_{j}^{2}-\frac{1}{2 s}\right] d s \tag{37}
\end{equation*}
$$

First we prove the following estimate:

$$
\begin{equation*}
\left|\frac{d^{k}}{d x^{k}} \exp \left(-a x^{2}\right)\right| \leq k!\left(\frac{k}{2}\right)^{-k / 2} e^{k / 2} a^{k / 2}\left(1-\eta^{2}\right)^{-k / 2} \exp \left(-\eta^{2} a x^{2}\right) \tag{38}
\end{equation*}
$$

for every $a>0,0 \leq \eta<1, k=0,1,2, \ldots$.
In fact, since $\exp \left(-a x^{2}\right)$ is an entire function, we can write the inequality

$$
\left|\frac{d^{k}}{d x^{k}} \exp \left(-a x^{2}\right)\right| \leq \frac{k!r^{-k}}{2 \pi} \int_{0}^{2 \pi} \exp \left[-a \operatorname{Re}\left(x+r e^{i \varphi}\right)^{2}\right] d \varphi \quad r \in(0,+\infty)
$$

where

$$
\operatorname{Re}\left(x+r e^{i \varphi}\right)^{2}=x^{2}+2 r x \cos \varphi+r^{2} \cos ^{2} \varphi-r^{2} \sin ^{2} \varphi
$$

From the inequality

$$
|2 r x \cos \varphi| \leq\left(1-\eta^{2}\right) x^{2}+\frac{r^{2} \cos ^{2} \varphi}{1-\eta^{2}}
$$

valid for every $\eta \in[0,1)$, we infer that

$$
\operatorname{Re}\left(x+r e^{i \varphi}\right)^{2} \geq \eta^{2} x^{2}-r^{2}\left[\frac{\eta^{2}}{1-\eta^{2}} \cos ^{2} \varphi+\sin ^{2} \varphi\right] \geq \eta^{2} x^{2}-\frac{r^{2}}{1-\eta^{2}}
$$

Hence

$$
\begin{equation*}
\left|\frac{d^{k}}{d x^{k}} \exp \left(-a x^{2}\right)\right| \leq k!r^{-k} \exp \frac{a r^{2}}{1-\eta^{2}} \exp \left(-\eta^{2} a x^{2}\right) \tag{39}
\end{equation*}
$$

(38) follows from (39) minimizing with respect to $r \in(0,+\infty)$.

Then, (37) and (38) imply that, for $\eta \in(0,1)$, denoting $|\gamma|$ by σ

$$
\begin{gather*}
\left|D^{\gamma} l_{n}[c \varrho(x)]\right| \leq \frac{C^{\sigma}\left(\frac{\sigma}{2}\right)^{-\sigma / 2} e^{\sigma / 2} \sigma!}{2(2 \pi)^{\frac{n+1}{2}}} \int_{0}^{+\infty} s^{\frac{\sigma+n-3}{2}} \exp \left[-\frac{s \eta^{2} c^{2} \varrho^{2}(x)}{2}-\frac{1}{2 s}\right] d s= \tag{40}\\
=\left(\frac{\sigma}{2}\right)^{-\sigma / 2} e^{\sigma / 2}(\sigma!)\left|l_{n+\sigma}[\eta c \varrho(x)]\right|
\end{gather*}
$$

Use has been made of the inequalities $\lambda_{j} \leq \frac{1}{\mu}(j=0, \ldots . n), \mu$ being the smallest eigenvalue of A, of formula (11) and the estimates:

$$
\prod_{j=0}^{n} \gamma_{j}!\leq \sigma!\quad \prod_{j=0}^{n}\left(\frac{\gamma_{j}}{2}\right)^{-\gamma_{j} / 2} \leq(n+1)^{\sigma / 2}\left(\frac{\sigma}{2}\right)^{-\sigma / 2}
$$

Then, the estimate

$$
\left|K_{m}(r)\right| \leq 2^{m-1} r^{-m} \Gamma(m)\left(1-\eta^{2}\right)^{-m} \exp (-\eta r) r>0,0<\eta<1
$$

(see, for instance, $[10]$, appendix), Stirling's formula

$$
\lim _{m \rightarrow+\infty} \frac{\Gamma(m+\varrho)}{m^{\varrho} \Gamma(m)}=1 \quad \varrho>0
$$

and inequality (41) imply the assertion, if η is chosen to be equal to $\varepsilon^{1 / 2}$.

3. The Poisson kernel.

In this section, and from now on, we denote, as in lemma 3, the variables by (t, x), where $t \in R, x=\left(x_{1}, . . x_{n}\right) \in R^{n}$.

Now, consider the real analytic function

$$
\begin{equation*}
P(t, x)=2 D_{\zeta} E(t, x)+a_{0} E(t, x) \quad(t, x) \neq(0,0) \tag{42}
\end{equation*}
$$

where $\zeta=\left(a_{00}, . ., a_{0 n}\right)$ and $D_{\zeta}=\sum_{j=1}^{n} a_{0 j} \frac{\partial}{\partial x_{j}}+a_{00} \frac{\partial}{\partial t}$ is the differentiation along the conormal direction ζ. From (7) and (11) it follows that

$$
\begin{align*}
& P(t, x)=\frac{2 c^{n} t}{r(t, x)(\operatorname{det} A)^{1 / 2}} l_{n}^{\prime}[c r(t, x)] \exp \left(\tilde{a}_{0} t+\sum_{j=1}^{n} \tilde{a}_{j} x_{j}\right)= \tag{43}\\
& \quad=\frac{c^{n+1} t \exp \left(\tilde{a}_{0} t+\sum_{j=1}^{n} \tilde{a}_{j} x_{j}\right)}{(2 \pi)^{\frac{n+1}{2}}(\operatorname{det} A)^{1 / 2}} \int_{0}^{+\infty} s^{\frac{n-1}{2}} \exp \left[-\frac{s c^{2}}{2} r^{2}(t, x)-\frac{1}{2 s}\right] d 8
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{a}=-\frac{1}{2} A^{-1} a \tag{44}
\end{equation*}
$$

It is easy to recognize from (43) that P has the sign of t.
From formulas (18), (19), (20), (43), inequalities (14), (15) and known estimates for Bessel functions (see, for instance, [10], appendix), we infer

$$
\begin{align*}
& |P(t, x)| \leq \frac{\Gamma\left(\frac{n+1}{2}\right) v^{\frac{n+1}{2}}}{2 \pi^{\frac{n+1}{2}}(\operatorname{det} A)^{1 / 2}} \tag{45}\\
& . \frac{|t| \exp \left[-\alpha\left(t^{2}+|x|^{2}\right)^{1 / 2}\right]}{\left(t^{2}+|x|^{2}\right)^{\frac{n+1}{2}}}\left[1+\frac{c}{C_{n+2} v^{1 / 2}}\left(t^{2}+|x|^{2}\right)^{1 / 2}\right]^{n / 2}{ }_{n} \geq 2
\end{align*}
$$

where α is defined by (18).
(45) establishes that $P \in L^{1}\left(R^{n+1}\right), P(t, \cdot) \in L^{1}\left(R^{n}\right)$ for all $t \in R$ and $P(\cdot, x) \in L^{1}(R)$ for all $x \in R^{n}-\{0\}$. Moreover, observe that (13), (20), (43), imply that

$$
P(t, x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}(\operatorname{det} A)^{1 / 2}} \frac{t}{[r(t, x)]^{n+1}}\left\{1+0\left[\left(t^{2}+x^{2}\right)^{1 / 2}\right]\right\} \text { as }(t, x) \rightarrow(0,0)
$$

We notice that, when $L=\Delta, P$ coincides with $\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \cdot \frac{t}{\left(t^{2}+x^{2}\right)^{\frac{n+1}{2}}}$, the usual Poisson kernel.

Finally, we point out that the Fourier transform of $P(t, \cdot)$ is given by

$$
\begin{equation*}
\left[\mathcal{F}_{x} P(t, \cdot)\right](\xi)=\psi(t, \xi) \bigvee \overline{H(\xi)} \operatorname{sgn} t \quad t \neq 0 \tag{46}
\end{equation*}
$$

Indeed, from (42) and lemma 3, recalling (17) and (25), we get

$$
\left[\mathscr{F}_{x} P(t, \cdot)\right](\xi)=-2 a_{00} \frac{\partial \psi}{\partial t}(t, \xi)-\alpha(\xi) \psi(t, \xi)=\psi(t, \xi) \sqrt{H(\xi)} \operatorname{sgn} t
$$

Obviously P is a solution of the equation $L u=0$ in $R^{n+1}-\{0\}$.
Then, consider the convolation

$$
\begin{equation*}
v(t, x)=\int_{R^{n}} P(t, x-z) g(z) d z \quad t>0 \tag{47}
\end{equation*}
$$

the properties of which are stated in the following lemmas:
Lemma 5. If $g \in L^{p}\left(R^{n}\right)(1<p<+\infty)$, then
i) $\quad\|v(t, \cdot)\|_{L^{p}\left(R^{n}\right)} \leq \psi(t, 0) \sqrt{\bar{H}(0)}\|g\|_{L^{p}\left(R^{n}\right)}=$

$$
=\|g\|_{L^{p_{\left(R^{n}\right.}}, \exp }\left\{\frac{t}{2 a_{00}}\left[-a_{0}-\left(a_{0}^{2}+4 a_{00} h^{2}\right)^{1 / 2}\right]\right\}
$$

ii)

$$
\|v(t, \cdot)-g\|_{L^{p}\left(R^{n}\right)} \rightarrow 0 \quad \text { as } t \rightarrow 0+
$$

Lemma 6. If $g \in W^{s, p}\left(R^{n}\right)(0<s<1,1<p<+\infty)$, then
i) $\quad\left(\int_{0}^{+\infty} t^{p(1-s)-1} d t \int_{R^{n}}\left|\frac{\partial v}{\partial t}(t, x)\right|^{p} d x\right)^{1 / p} \leq$

$$
\leq O_{1}\left[\left|z_{1}(0)\right|^{s}\|g\|_{L^{p}\left(\mathbf{L}^{n}\right)}+|g|_{W^{s, p_{\left(R^{n}\right)}}}\right]
$$

ii) $\quad\left(\int_{0}^{+\infty} t^{p(1-s)-1} d t \int_{R^{n}}\left|\frac{\partial v}{\partial x_{j}}(t, x)\right|^{p} d x\right)^{1 / p} \leq C_{2}|g|_{W^{s, p}}\left(R^{n}\right)$
where

$$
|g|_{W^{s, p}\left(R^{n}\right)}=\left(\int_{R^{n}} d z \int_{R^{n}} \frac{|g(x-z)-g(x)|^{p}}{|z|^{n+p s}} d x\right)^{1 / p}
$$

and C_{1} and C_{2} are constants independent of g.
Moreover, v is an analytic function in the half-space R_{+}^{n+1} and is a solution of the equation $L u=0$.

In particular. if $s=1-\frac{1}{p}, v \varepsilon W^{1, p}\left(R_{+}^{n+1}\right)$.
Remark 4. From Lemmas 5 and 6 it follows easily that, if $g \in W^{s, p}\left(R^{n}\right)$ $(0<s<1,1<p<+\infty), v(0+, \cdot)=g$, where the left side denotes the trace of v, defined in the usual way.

We shall premise the proof of lemma 5 with

Lemma 7. The function P has the following properties:
i) $\quad \int_{R^{n}} P(t, x) d x=\psi(t, 0) \sqrt{H(0)}$ sgut $=$

$$
=\left\{\begin{array}{cl}
\exp \left\{\frac{t}{2 a_{00}}\left[-a_{0}-\left(a_{0}^{2}+4 a_{00} h^{2}\right)^{1 / 2}\right]\right\} & t>0 \\
-\exp \left\{\frac{t}{2 a_{00}}\left[-a_{0}+\left(a_{0}^{2}+4 a_{00} h^{2}\right)^{1 / 2}\right]\right\} & t<0
\end{array}\right.
$$

ii) $\int_{|x|>\lambda}|P(t, x)| d x \leq C \frac{|t|}{\lambda}$
where λ is any positive number and the constant C is independent of t and λ.

Proof of lemma 7. i) follows from (46), substituting $\xi=0$.
Estimate (45) implies the chain of inequalities

$$
|P(t, x)| \leq C^{\prime} \frac{|t|}{\left(t^{2}+|x|^{2}\right)^{\frac{n+1}{2}}} \leq C^{\prime} \frac{|t|}{|x|^{n+1}}
$$

where C^{\prime} is a constant ; hence ii) is easily obtained by integration.
Now, we can prove lemma 5: we observe that i) is an immediate consequence of Young's inequality on convolution and i) in lemma 7.

In order to show ii) we proceed as follows:

$$
\begin{aligned}
&\|v(t, \cdot)-g\|_{L^{p}\left(R^{n}\right)} \leq\|v(t, \cdot)-\psi(t, 0) \sqrt{H(0)} g\|_{L^{p}\left(R^{n}\right)}+ \\
&+ {[1-\psi(t, 0) \sqrt{H(0)}]\|v\|_{L p_{\left(R^{n}\right)}} }
\end{aligned}
$$

It is evident, from the definition (22) of ψ, that it is enough to prove that

$$
\|v(t, \cdot)-\psi(t, 0) \sqrt{H(0)} g\|_{L^{p}\left(R^{n}\right)} \rightarrow 0 \text { as } t \rightarrow 0+
$$

Making use again of i) in lemma 5, we get

$$
v(t, x)-\psi(t, 0) \sqrt{H(0)} g(x)=\int_{R^{n}} P(t, z)\left[g\left(x-z_{j}-g(x)\right] d z .\right.
$$

From Minkowski's inequality and ii) in lemma 7 we infer that

$$
\begin{aligned}
&\|v(t, \cdot)-\psi(t, 0) \sqrt{H(0)} g\|_{L^{p}\left(R^{n}\right)} \leq \int_{R^{n}}|P(t, z)|\left(\int_{R^{n}}|g(x-z)-g(x)|^{p} d x\right)^{1 / p} d z \leq \\
& \leq w(\lambda) \int_{|x| \leq \lambda}|P(t, z)| d z+2\|g\|_{L^{p}\left(R^{n}\right)} \int_{|x|>\lambda}|P(t, z)| d z \leq \\
& \leq \psi(t, 0) \sqrt{H(0)} w(\lambda)+2 C\|g\|_{L} p_{\left(R^{n}\right)} \frac{|t|}{\lambda}
\end{aligned}
$$

where λ is any positive number and $w(\lambda)=\operatorname{Sup}_{|z| \leq \lambda}\left(\int_{R^{n}}|g(x-z)-g(x)|^{p} d x\right)^{1 / p}$ tends to 0 as λ tends to $0+$: hence ii) follows at once.

Proof of lemma 6. The analyticity of v is a consequence of the estimates

$$
\begin{equation*}
\left|D^{r} P(t, x)\right| \leq[(|\gamma|+1)!] O^{|\gamma|+2}\left(t^{2}+|x|^{2}\right)^{\frac{-n-|\gamma|}{2}} \exp \left[-\theta \delta\left(t^{2}+x^{2}\right)^{1 / 2}\right] \tag{48}
\end{equation*}
$$

where δ is defined by (33) and $0<\theta<1$: they follow from (42) and lemma 4. Olearly v is a solution of the equation $L v(t, x)=0 t>0$.

For the proof of i) and ii) it is necessary to observe that (46) asserts that $\frac{\partial P}{\partial t}(t, \cdot), \frac{\partial P}{\partial x_{j}}(t, \cdot)$ belong to $L^{1}\left(R^{n}\right)(j=1, \ldots, n)$ for all $t \neq 0$. Moreover

$$
\begin{equation*}
\int_{R^{n}} \frac{\partial P}{\partial x_{j}}(t, x) d x=0 \quad \text { for all } t \neq 0 \quad(j=1, \ldots, n) \tag{49}
\end{equation*}
$$

For, from the equation

$$
\left[\mathscr{F}_{x} \frac{\partial P}{\partial x_{j}}(t, \cdot)\right](\xi)=i \xi_{j}\left[\mathcal{F}_{x} P(t, \cdot)\right](\xi)=i \xi_{j} \psi(t, \xi) / \overline{H(\xi)} \mathrm{sgnt}
$$

(49) follows, substituting $\xi=0$. Hence
(50) $\quad \frac{\partial v}{\partial x_{j}}(t, x)=\int_{R^{n}} \frac{\partial P}{\partial z_{j}}(t, z) g(x-z) d z=\int_{R^{n}} \frac{\partial P}{\partial z_{j}}(t, z)[g(x-z)-g(x)] d z$

$$
(j=1, \ldots, n)
$$

From the identity

$$
v(t, x)=\psi(t, 0) \gamma \overline{H(0)} g(x)+\int_{R^{n}} P(t, z)[g(x-z)-g(x)] d z
$$

we get

$$
\begin{equation*}
\frac{\partial v}{\partial t}(t, x)=\frac{\partial \psi}{\partial t}(t, 0) \sqrt{H(0)} g(x)+\int_{R^{n}} \frac{\partial P}{\partial t}(t, z)[g(x-z)-g(x)] d z \tag{51}
\end{equation*}
$$

From (48), (49), (50) and Minkowski's inequality we infer that

$$
\begin{equation*}
\left\|\frac{\partial v}{\partial x_{j}}(t, \cdot)\right\|_{L^{p}\left(R^{n}\right)} \leq 0^{\prime} \int_{R^{n}} \frac{L(z)}{\left(t^{2}+|z|^{2}\right)^{\frac{n+1}{2}}} d z \tag{52}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\frac{\partial v}{\partial t}(t, \cdot)\right\|_{L_{\left(R^{n}\right)}^{p}} \leq\left|\frac{\partial \psi}{\partial t}(t, 0)\right| \sqrt{H(0)}\|g\|_{L_{\left(R^{n}\right)}}+C^{\prime} \int_{R^{n}} \frac{L(z)}{\left(t^{2}+|z|^{2}\right)^{\frac{n+1}{2}}} d z \tag{53}
\end{equation*}
$$

where $L(z)=\left(\int_{R^{n}}|g(x-z)-g(x)|^{p} d x\right)^{1 / p}$ and C^{\prime} is a constant.
Now we show that
(54)

$$
I=\left[\int_{0}^{+\infty} t^{p(1-s)-1}\left(\int_{R^{n}} \frac{L(z)}{\left(t^{2}+z^{2}\right)^{\frac{n-1}{2}}} d z\right)^{p} d t\right]^{1 / p} \leq C^{\prime \prime}|g|_{W^{z, p}\left(R^{n}\right)}
$$

where $C^{\prime \prime}$ is a constant depending only on n, p, s. For, 'Minkowski and

Hölder's inequalities yield the following chain of inequalities

$$
\begin{aligned}
& I=\left[\int_{0}^{+\infty}\left(\int_{R^{n}} t^{-s-\frac{1}{p}} \frac{L(t z)}{\left(1+z^{2}\right)^{\frac{n+1}{2}}} d z\right)^{p} d t\right]^{1 / p} \leq \\
& \leq \int_{R^{n}}\left(\int_{0}^{+\infty} t^{-s p-1} L^{p}(t z) d t\right)^{1 / p} \frac{d z}{\left(1+|z|^{2}\right)^{\frac{n+1}{2}}} \leq \\
& \leq \int_{R^{n}}\left(\int_{0}^{+\infty} r^{-s p-1} L^{p}\left(r \frac{z}{|z|}\right) d r\right)^{1 / p} \frac{|z|^{s}}{\left(1+|z|^{2}\right)^{\frac{n+1}{2}}} d z= \\
& =\int_{0}^{+\infty} \frac{\varrho^{s+n-1}}{\left(1+\varrho^{2}\right)^{\frac{n+1}{2}}} d \varrho \int_{|\zeta|=1}^{+\infty}\left(\int_{0}^{+\infty} r^{-s p-1} L^{p}(r \zeta) \mathrm{d} r\right)^{1 / p} \mu(d \zeta) \leq \\
& \leq \omega_{n}^{1-\frac{1}{p}}\left(\int_{0}^{+\infty} \frac{\varrho^{s+n-1}}{\left(1+\varrho^{2}\right)^{\frac{n+1}{2}}} d \varrho\right) \cdot\left(\int_{|\zeta|=1} \mu(d \zeta) \int_{0}^{+\infty} r^{-s p-1} L^{p}(r \zeta) d r\right)^{1 / p}= \\
& =C^{\prime \prime}\left(\int_{R^{n}} \frac{L^{p}(z)}{|z|^{n+s p}} d z\right)^{1 / p}=C^{\prime \prime}|g|_{W^{s, p}\left(R^{n}\right)}
\end{aligned}
$$

where $\mu(d \zeta)$ denotes the Lebesgue measure on $|\zeta|=1$ and

$$
C^{\prime \prime}=\omega_{n}^{1-\frac{1}{p}} \int_{R^{n}} \frac{\varrho^{s+n-1}}{\left(1+\varrho^{2}\right)^{\frac{n+1}{2}}} d \varrho
$$

Now, ii) is an immediate consequence of (52) and (54) with $C_{2}=C^{\prime \prime} C^{\prime}$, while i) follows from Minkowski's inequality with measure $t^{p(1-s)-1} d t$, applied to (51) and from the equation

$$
\begin{array}{r}
\left(\int_{0}^{+\infty} t^{p(1-s)-1}\left|\frac{\partial \psi}{\partial t}(t, o) \sqrt{H(0)}\right|^{p} d t\right)^{1 / p}=\left(\int_{0}^{+\infty} t^{p(1-s)-1} \exp (\operatorname{tpz}(0)) d t\right)^{1 / p}\left|z_{1}(0)\right|= \\
=p^{s-1} \Gamma(p-p s)\left|z_{1}(0)\right|^{s}
\end{array}
$$

The constant C_{1} is given by $\max \left[p^{s-1} \Gamma(p-p s), C_{2}\right]$.

4. The Neumann problem.

Consider the function

$$
\begin{equation*}
N(t, x)=-\int_{i}^{+\infty} P(s, x) d s \tag{55}
\end{equation*}
$$

Since $P(t, x)>0$, if $t>0$, it follows that

$$
\begin{equation*}
N(t, x)<0 \quad t>0 \tag{56}
\end{equation*}
$$

Moreover, the following estimate holds:

$$
\begin{equation*}
|N(t, x)| \leq C_{\theta}\left(t^{2}+|x|^{2}\right)^{-\frac{n-1}{2}} \exp \left[-\theta \alpha\left(t^{2}+|x|^{2}\right)^{1 / 2}\right] \quad t \geq 0 \tag{57}
\end{equation*}
$$

where α is defined by (18), $0<\theta<1$ and C_{θ} is a constant. For, (45) implies that, for every $0<\theta<1$, there exists a constant O_{θ}^{\prime} such that

$$
|P(t, x)| \leq C_{\theta}^{\prime} \frac{t}{\left(t^{2}+|x|^{2}\right)^{\frac{n+1}{2}}} \exp \left[-\theta \alpha\left(t^{2}+|x|^{2}\right)^{1 / 2}\right] \quad t>0
$$

Hence

$$
\begin{aligned}
& \begin{aligned}
&|N(t, x)| \leq C_{\theta}^{\prime} \int_{i}^{+\infty} \frac{s}{\left(s^{2}+|x|^{\frac{n+1}{2}}\right.} \exp \left[-\theta \alpha\left(s^{2}+|x|^{2}\right)^{1 / 2}\right] d s \leq \\
& \quad \leq \mathrm{C}_{\theta}^{\prime} \exp \left[-\theta \alpha\left(t^{2}+|x|^{2}\right)^{1 / 2}\right] \int_{i}^{+\infty} \frac{s}{\left(s^{2}+|x|^{2}\right)^{\frac{n+1}{2}}} d s= \\
&=\frac{C_{\theta}^{\prime}}{n-1}\left(t^{2}+|x|^{2}\right)^{\frac{1-n}{2}} \exp \left[-\theta \alpha\left(t^{2}+|x|^{2}\right)^{1 / 2}\right]
\end{aligned}
\end{aligned}
$$

From (57) one recognizes easily $N \in L^{1}\left(R_{+}^{n+1}\right)$ and $N(t, \cdot) \in L^{1}\left(R^{n}\right)$ for all $t>0$. Moreover, the Fourier transform of $N(t, \cdot)$ is given by

$$
\begin{equation*}
\left[\mathcal{F}_{x} N(t, \cdot)\right](\xi)=\frac{\exp \left(t z_{1}(\xi)\right)}{z_{1}(\xi)} \quad t \geq 0 \tag{58}
\end{equation*}
$$

This follows from (46) and the fact that $P \in L^{1}\left(R^{n+1}\right)$.
We remark also that, for (48), N is a real analytic function, that satisfies the equation $L N=0$ in R_{+}^{n+1}.

In particular, if $L=\sum_{r, j=1}^{n} a_{r j} \frac{\partial^{2}}{\partial x_{r} \partial x_{j}}+\frac{\partial^{2}}{\partial t^{2}}+\sum_{j=1}^{n} a_{j} \frac{\partial}{\partial x_{j}}-h^{2}$, (i. e., if the coefficients $a_{0 j}(j=1 \ldots n)$ and a_{0} vanish), then P coincides with $2 \frac{\partial E}{\partial t}$ and, hence, N with $2 E$.

Consider the convolution

$$
\begin{equation*}
u(t, x)=\int_{R^{n}} N(t, x-z) g(z) d z \quad t>0 \tag{59}
\end{equation*}
$$

The following lemma holds:
Lemma 8. If $g \in W^{1-\frac{1}{p} \cdot p}\left(R^{n}\right)$, then
i) $u \in W^{2, p}\left(R_{+}^{n+1}\right)$;
ii) $\|u\|_{W^{2, p}{ }_{\left(R_{+}^{n+1}\right)} \leq C\|g\|_{W^{1-\frac{1}{p}, p_{\left(R^{n}\right)}}}, ~}$,
where C is a constant independent of g :
iii) $u(0+, \cdot)=N(0, \cdot) * g$;
iv) $\frac{\partial u}{\partial t}(0+, \cdot)=g$

Moreover, u is an analytic function in the half-space R_{+}^{n+1} and is a solution of the equation $L u=0$.

Proof. The analyticity of u follows, as before, from estimates for the kernel : they are
(60) $\left|D^{r} N(t, x)\right| \leq$

$$
\leq[(|\gamma|+1)!] C_{\theta}^{|r|+2}\left(t^{2}+|x|^{2}\right)^{\frac{1-n-|\gamma|}{2}} \exp \left[-\theta \delta\left(t^{2}+\left.|x|^{2}\right|^{1 / 2}\right] \text { if }|\gamma| \geq 1\right.
$$

where δ is defined by (33) and $0<\theta<1$. For the derivation of (60) we use the formula

$$
D^{r} N(t, x)=\frac{\partial^{|\gamma|} \mid N}{\partial t^{\gamma_{0}} \partial x_{1}^{\gamma_{1}} \ldots \partial x_{n}^{\gamma_{n}}}(t, x)=\int_{i}^{+\infty} \frac{\partial^{|\gamma|} P}{\partial s^{\gamma_{0}} \partial . x_{1}^{\gamma_{1}} \ldots \partial x_{n}^{\gamma_{n}}}(s, x) d s
$$

and estimates (48) for the derivatives of P.
Clearly $L u(t, x)=0$ if $t>0$.

To show i) it suffices, for the usual reasons of density, to suppose $g \in O_{0}^{\infty}\left(R^{n}\right)$. Young's inequality and (58) imply

$$
\|u(t, \cdot)\|_{L^{p}\left(R^{n}\right)} \leq\|N(t, \cdot)\|_{L^{1}\left(R^{n}\right)}\|g\|_{L^{p_{(}}\left(R^{n}\right)}=\frac{\exp \left(t z_{1}(0)\right)}{\left|z_{1}(0)\right|}\|g\|_{L^{p}\left(R^{n}\right)}:
$$

hence

$$
\begin{equation*}
\|u\|_{L^{p}\left(R_{+}^{n+1}\right)} \leq p^{-1 / p}\left|z_{1}(0)\right|^{-1-\frac{1}{p}}\|g\|_{L^{p}\left(R^{n}\right)} \tag{61}
\end{equation*}
$$

In order to prove that the second derivatives of u with respect to x are in $L^{p}\left(R_{+}^{n+1}\right)$, we use the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x_{r} \partial x_{j}}=\left(\mathcal{F}_{x}^{-1} q_{j} \mathcal{F}_{x}\right) \frac{\partial v}{\partial x_{r}} \quad(r, j=1,2, \ldots, n) \tag{62}
\end{equation*}
$$

where v is defined by (47) and

$$
\varphi_{j}(\xi)=\frac{i \xi_{j}}{z_{1}(\xi)} \quad(j=1,2, \ldots n)
$$

(62) is a consequence of (46), (58) and i) in lemma 5 : for

$$
\frac{\partial^{2} u}{\partial x_{r} \partial x_{j}}=-\mathscr{F}_{x}^{-1}\left[\xi_{r} \xi_{j} \mathscr{F}_{x} N \mathscr{F}_{x} g\right]=\mathscr{F}_{x}^{-1}\left[i \xi_{r} \varphi_{j} \mathscr{F}_{x} P \mathscr{F}_{x} g\right]=\left(\mathscr{F}_{x}^{-1} \varphi_{j} \mathscr{F}_{x}\right) \frac{\partial v}{\partial x_{r}}
$$

Since the functions φ_{j} are multipliers of type (p, p) for every $1<p<+\infty$ (see proposition 2 in appendix) and the functions $\frac{\partial v}{\partial x_{r}}$, for ii) in lemma 6 with $s=1-\frac{1}{p}$, satisfy the inequality

$$
\left\|\frac{\partial v}{\partial x_{r}}\right\|_{L_{\left(R_{+}^{p+1}\right)}} \leq C_{2}|g|_{W}^{1-\frac{1}{p}, p_{\left(R^{n}\right)} \quad(r=1,2, \ldots n), ~}
$$

then, there exists a constant O^{\prime} such that

$$
\begin{equation*}
\left\|\frac{\partial^{2} u}{\partial x_{r} \partial x_{j}}\right\|_{L^{p}\left(R_{+}^{n+1}\right)} \leq C^{\prime}|g|_{W^{1-\frac{1}{p}, p}\left(R^{n}\right)} \tag{63}
\end{equation*}
$$

Since
(64)

$$
\frac{\partial u}{\partial t}(t, x)=\int_{R^{n}} \frac{\partial N}{\partial t}(t, x-z) g(z) d z=\int_{R^{n}} P(t, x-z) g(z) d z=v(t, x)
$$

lemma 6, with $s=1-\frac{1}{p}$, implies

$$
\begin{equation*}
\left\|\frac{\partial^{2} u}{\partial t^{2}}\right\|_{L_{\left(R_{+}^{n+1}\right)}} \leq C_{1}\left[\left.\left|z_{1}(0)\right|^{1-\frac{1}{p}}\|g\|_{L^{p}\left(R^{n}\right)}+|g|_{W}^{1-\frac{1}{p}, p_{\left(R^{n}\right)}} \right\rvert\,\right. \tag{65}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\frac{\partial^{2} u}{\partial x_{j} \partial t}\right\|_{L_{\left(R_{+}^{n+1}\right)}} \leq O_{2}|g|_{W}^{1-\frac{1}{p}, p}{ }_{\left(R^{n}\right)} \tag{66}
\end{equation*}
$$

Therefore, all the derivatives of u are in $L^{p}\left(R_{+}^{n+1}\right)$: moreover, the inequalities (61), (63), (65), (66) show that $u \in W^{2, p}\left(R_{+}^{n+1}\right)$ and there exists a constant C independent of g such that

$$
\|u\|_{W}^{2, p_{(R+}^{n+1}} \boldsymbol{n + 1} \leq C\|g\|_{W}^{1-\frac{1}{p}, p{ }_{\left(R^{n}\right)}^{n}} .
$$

Thus, also ii) is proved.
iv) is an immediate consequence of (64) and remark 4 after lemma 6, while iii) follows from the property

$$
\|N(t, \cdot)-N(0, \cdot)\|_{L^{1}\left(R^{n}\right)} \rightarrow 0 \quad \text { as } \quad t \rightarrow 0+
$$

that implies

$$
\|N(t, .) * g-N(0, \cdot) * g\|_{L_{\left(R^{n}\right)}^{p}} \rightarrow 0 \quad \text { as } \quad t \rightarrow 0+
$$

Hence the trace of $N(t, \cdot) * g$ must coincide with $N(0, \cdot) * g$.
At last we state the following
Lemma 9. If $(f, g) \in L^{p}\left(R_{+}^{n+1}\right) \times W^{1-\frac{1}{p}, p}\left(R^{n}\right) \quad(1<p<+\infty), \quad$ the Neumann problem

$$
\left\{\begin{array}{l}
L u=f \tag{67}\\
u \in W^{2, p}\left(R_{+}^{n+1}\right) \\
\frac{\partial u}{\partial t}(0+, \cdot)=g
\end{array}\right.
$$

L being defined by (6), admits a unique solution u given by

$$
\begin{equation*}
u(t, x)=\int_{R^{n}} N(t, x-z)\left[g(z)-\frac{\partial w}{\partial t}(0, z)\right] d z+w(t, x) \tag{68}
\end{equation*}
$$

where

$$
w(t, x)=\int_{R_{+}^{n+1}} E(t-s, x-z) f(\mathrm{~s}, z) d s d z
$$

and $\frac{\partial w}{\partial t}(0, \cdot)$ stands for the trace of $\frac{\partial w}{\partial t}$.
Proof. Lemma 2 and remark 3 show that $w \in W^{2, p}\left(R_{+}^{n+1}\right)$ and satisfies the equation $L w=f$. Hence, for lemma $8, u \in W^{2, p}\left(R_{+}^{n+1}\right)$ and satisfies the equation $L u=f$ and the condition $\frac{\partial u}{\partial t}(0+, \cdot)=g$.

Now we prove that u is the unique solution of (67). Let u be an arbitrary function in $C_{0}^{\infty} \overline{\left(R_{+}^{n+1}\right)}$: put

$$
\begin{aligned}
& L u=f \\
& \frac{\partial u}{\partial t}(0+, \cdot)=g \\
& {\left[\mathscr{F}_{x} u(t, \cdot)\right](\xi)=v(t, \xi)} \\
& {\left[\mathcal{F}_{x} f(t, \cdot)\right](\xi)=\widehat{f}(t, \xi)} \\
& \mathscr{F}_{x} g(\xi)=\widehat{g}(\xi)
\end{aligned}
$$

Then v is a solution of the problem

$$
\left\{\begin{array}{l}
\left.a_{00} \frac{\partial^{2} v}{\partial t^{2}}+\alpha(\xi) \frac{\partial v}{\partial t}-\beta(\xi) v=\widehat{f(} t, \xi\right) \tag{70}\\
\frac{\partial v}{\partial t}(0, \xi)=\widehat{g}(\xi)
\end{array}\right.
$$

where $\alpha(\xi)$ and $\beta(\xi)$ are defined respectively by (25) and (26).
Since $v \in L^{2}\left(R_{+}^{n+1}\right)$, from (70) we infer that v can be represented as follows:

$$
v(t, \xi)=c(\xi) \exp \left(t z_{1}(\xi)\right)-\int_{0}^{+\infty} \psi(t-s, \xi) \widehat{f}(s, \xi) d s
$$

where $z_{1}(\xi)$ is the root with real negative part of equation (23), $\psi(t, \xi)$ is defined by (22) and $c(\xi)$ is a suitable ξ - function, that is determined by
imposing the condition $\frac{\partial v}{\partial t}(0, \xi)=\widehat{g}(\xi)$. We get

$$
c(\xi)=\frac{\widehat{g}(\xi)}{z_{1}(\xi)}+\frac{1}{z_{1}(\xi)} \int_{0}^{+\infty} \frac{\partial \psi}{\partial t}(-s, \xi) \widehat{f}(s, \xi) d s:
$$

hence
$(71) \quad v(t, \xi)=\frac{\exp \left(t z_{1}(\xi)\right)}{z_{1}(\xi)} \widehat{g}(\xi)+\frac{\exp \left(t z_{1}(\xi)\right)}{z_{1}(\xi)} \int_{0}^{+\infty} \frac{\partial \psi}{\partial t}(-s, \xi) \widehat{f}(s, \xi) d s+$

$$
-\int_{0}^{+\infty} \psi(t-s, \xi) \widehat{f(s, \xi)} d s
$$

From the formula

$$
\left[\mathscr{F}_{x} \frac{\partial E}{\partial t}(t, \cdot)\right](\xi)=-\frac{\partial \psi}{\partial t}(t, \xi)
$$

that is a consequence of lemmas 3 and 4 , we infer
(72)

$$
\begin{aligned}
& \int_{0}^{+\infty} \frac{\partial \psi}{\partial t}(-s, \xi) \widehat{f}(s, \xi) d s= \\
& =-\int_{0}^{+\infty} d s \int_{R^{n}} \exp [-i(x, \xi)] d x \int_{R^{n}} \frac{\partial E}{\partial t}(-s, x-z) f(s, z) d z= \\
& =-\int_{R^{n}} \exp [-i(x, \xi)] d x \int_{R_{+}^{n+1}} \frac{\partial E}{\partial t}(-s, x-z) f(s, z) d s d z= \\
& =-\int_{R^{n}} \exp [-i(x, \xi)] \frac{\partial w}{\partial t}(0, x) d x
\end{aligned}
$$

w being defined by (69).
Moreover, for (22)
(73)

$$
\int_{0}^{+\infty} \psi(t-s, \xi) \widehat{f}(s, \xi) d s=
$$

$$
\begin{aligned}
& =-\int_{0}^{+\infty} d s \int_{R^{n}} \exp [-i(x, \xi)] d x \int_{R^{n}} E(t-s, x-z) f(s, z) d z= \\
& =-\int_{R^{n}} \exp [-i(x, \xi)] w(t, x) d x .
\end{aligned}
$$

(58), (71), (72), (73) imply that u is of the form (68): since $O_{0}^{\infty}\left(\overline{R_{+}^{n+1}}\right)$ is dense in $W^{2, p}\left(R_{+}^{n+1}\right)$ the uniqueness is proved.

5. Proof of the theorem.

The proof of the theorem follows easily from lammas 10 and 11 stated below.

Notations: we denote by E^{+}, P^{+}, N^{+}, respectively the fundamental solution and the Poisson kernels related with the operator L^{+}in (1). The functions E^{-}and P^{-}are analogously defined with regard to L^{-}in (1); while N^{-}is defined as follows:

$$
\begin{equation*}
N-(t, x)=-\int_{-\infty}^{t} P^{-}(s, x) d s \tag{74}
\end{equation*}
$$

Moreover, the functions $\alpha^{ \pm}, \beta^{ \pm}, H \pm$ are connected with $L^{ \pm}$, according to formulas (24), (25), (26); z_{1}^{+}and z_{2}^{-}denote the roots of the equations

$$
a_{00}^{ \pm} z^{2}+\alpha^{ \pm}(\xi) z-\beta \pm(\xi)=0
$$

respectively with negative and positive real parts.
Lemma 10. Let $u \in W^{2, p}\left(R^{n+1}\right)(1<p<+\infty)$ be a solution of (1). The assertions stated below are true:
i) the following representation formula holds:

$$
u(t, x)= \begin{cases}\int_{R^{n}} N^{+}(t, x-z)\left[g(z)-\frac{\partial w^{+}}{\partial t}(0, z)\right] d z+w^{+}(t, x) & t>0 \tag{75}\\ \int_{R^{n}} N-(t, x-z)\left[g(z)-\frac{\partial w^{-}}{\partial t}(0, z)\right] d z+w^{-}(t, x) & t<0\end{cases}
$$

where g is the trace of the normal derivative of u on the hyperplane $t=0$
and

$$
\begin{equation*}
w^{ \pm}(t, x)=\int_{R_{ \pm}^{n+1}} E^{ \pm}(t-s, x-z) f(s, z) d s d z \tag{76}
\end{equation*}
$$

ii) $g=\frac{\partial u}{\partial t}(0, \cdot)$ is a solution belonging to $W^{1-\frac{1}{p}, p}\left(R^{n}\right)$ of the integral equation

$$
\begin{equation*}
\int_{R^{n}} N(x-z) g(z) d z=(U f)(x) \tag{77}
\end{equation*}
$$

where

$$
\begin{equation*}
N(x)=N-(0, x)-N+(0, x) \tag{78}
\end{equation*}
$$

and

$$
\begin{align*}
(U f)(x) & =\int_{R^{n}} N-(0, z) \frac{\partial w^{-}}{\partial t}(0, z) d z- \tag{79}\\
& -\int_{R^{n}} N+(0, z) \frac{\partial w^{+}}{\partial t}(0, z) d z-w^{-}(0, z)+w^{+}(0, z)
\end{align*}
$$

Vice versa, if there exists $g \in W^{1-\frac{1}{p}, p}\left(R^{n}\right)(1<p<+\infty)$ that satisfies equation (77), then the function deflned by (75) belongs to $W^{2, p}\left(R^{n+1}\right)$ and is a solution of (1).

The operator U, defined by (79), is bounded from $L^{p}\left(R^{n+1}\right)$ into $W^{2-\frac{1}{p}, p}\left(R^{n}\right)(1<p<+\infty)$.

Lemma 11. The integral equation

$$
\begin{equation*}
\int_{R^{n}} N(x-z) g(z) d z=f(x) \tag{80}
\end{equation*}
$$

where N is defined by (78) and f is any given function in $W^{3-\frac{1}{p}, p}\left(R^{n}\right)$, admits a unique solution $g \in W^{1-\frac{1}{p}, p}\left(R^{n}\right)(1<p<+\infty)$. Moreover, g veri. fies the inequality

$$
\begin{equation*}
\|g\|_{W}^{1-\frac{1}{p}, p_{\left(R^{n}\right)}} \leq C\|f\|_{W}^{2-\frac{1}{p}, p_{\left(R^{n}\right)},} \tag{81}
\end{equation*}
$$

O being a constant independent of f.

Proof of lemma 10. Let u be a solution of (1): we denote by u^{+}and u^{-}respectively its restrictions to R_{+}^{n+1} and R_{-}^{n+1}. Then u^{+}and u^{-}are solutions of the Neumann problems

$$
\left\{\begin{array} { l }
{ L + u ^ { + } = f } \tag{82}\\
{ u ^ { + } \varepsilon W ^ { 2 , p } (R _ { + } ^ { n + 1 }) } \\
{ \frac { \partial u ^ { + } } { \partial t } (0 + , \cdot) = g }
\end{array} \quad \left\{\begin{array}{l}
L^{-} u^{-}=f \\
u^{-} \in W^{2, p}\left(R_{-}^{n+1}\right) \\
\frac{\partial u^{+}}{\partial t}(0-, \cdot)=g
\end{array}\right.\right.
$$

Lemma 9, applied to u^{+}and u^{-}, implies that u can be represented as in (75). Moreover, from the equation $u+(0+, \cdot)=u^{-}(0-, \cdot)$, (79) and iii) in lemma 8 , it follows easily that g is a solution of (77).

Vice versa, if $g \varepsilon W^{1-\frac{1}{p}, p}\left(R^{n}\right)$ is a solution of (77) and we denote as before by u^{+}and u^{-}the restrictions to R_{+}^{n+1} and R_{-}^{n+1} of the function u defined by (75), lemma 9 implies that u^{+}and u^{-}are solutions of problems (82). Consequently, u satisfies equation (1): it remains to show that $u \in W^{2, p}\left(R^{n+1}\right)$. This property follows from (82) and equations $\frac{\partial u^{+}}{\hat{\partial} t}(0+, \cdot)=$ $=\frac{\partial u^{-}}{\partial t}(0-, \cdot), u^{+}(0+, \cdot)=u^{-}(0-, \cdot)$: the former is an immediate consequence of iv) in lemma 8 , while the latter is nothing else but a rearren. gement of (77).

Proof of Lemma 11. The existence of a solution of equation (80) belonging to $W^{1-\frac{1}{p}, p}\left(R^{n}\right)$ follows from the property:
i) the operator G, inverse of the convolution with kernel N, is a bounded operator from $W^{2-\frac{1}{p}, p}\left(R^{n}\right)$ into $W^{1-\frac{1}{p}, p}\left(R^{n}\right)$. G is defined for $f \in C_{0}^{\infty}\left(R^{n}\right)$ by the equation

$$
\begin{equation*}
(G f)(x)=\frac{1}{(2 \pi)^{n}} \int_{R^{n}} \exp [i(x, \xi)] \frac{\widehat{f(\xi)}}{\widehat{N}(\xi)} d \xi \tag{83}
\end{equation*}
$$

where \widehat{f} and \widehat{N} denote the Fourier transforms of f and N.
The uniqueness of the solution is an obvious consequence of property i) and the following one:
ii) the convolution with kernel N is a bounded operator from $W^{1-\frac{1}{p}, p}\left(R^{n}\right)$ into $W^{2-\frac{1}{p}, p}\left(R^{n}\right)$.

Both i) and ii) can be shown by interpolation, using a theorem of Hörmander- Mihlin and well-known properties of interpolation spaces $W^{s, p}\left(R^{n}\right)$ $(1<s<2)$. For the sake of brevity we prove i) only.

The quoted interpolation property (see, for instance, [4], p. 399, [5]. chap. VII, § 2, n. 4 or [7] theor. 2.1, 2.8) follows from the assertions:
iii) the operator G, defined by (83), can be extended with a bounded operator from $W^{1, p}\left(R^{n}\right)$ into $L^{p}\left(R^{v}\right)$;
iv) the operator G can be extended with a bounded operator from $W^{2, p}\left(R^{n}\right)$ into $W^{1, p}\left(R^{n}\right)$.

Clearly, iv) follows from iii), since G commutes with differentiations. Then we focus our attention on iii). Observe that from the equations

$$
\begin{aligned}
& \widehat{N}=\widehat{N}-(0, \cdot)-\widehat{N}+(0, \cdot) \\
& \widehat{N}-(0, \xi)=\frac{1}{z_{2}^{-}(\xi)} \\
& \widehat{N}+(0, \xi)=\frac{1}{z_{1}^{+}(\xi)}
\end{aligned}
$$

it follows that

$$
\widehat{N}(\xi)=\frac{1}{z_{2}^{-}(\xi)}-\frac{1}{z_{1}^{+}(\xi)}
$$

where z_{1}^{+}and z_{2}^{-}are defined at the beginning of this section.
We have

$$
(\theta f)(x)=\frac{1}{(2 \pi)^{n}} \int_{R^{n}} \exp [i(\mathrm{x}, \xi)] M(\xi)\left[(1-\Delta)^{1 / 2} f\right]^{\wedge}(\xi) d \xi \quad f \in O_{0}^{\infty}\left(R^{n}\right)
$$

where

$$
M(\xi)=\frac{z_{1}^{+}(\xi) z_{2}^{-}(\xi)}{\left[z_{1}^{+}(\xi)-z_{2}^{-}(\xi)\right]\left(1+|\xi|^{2}\right)^{1 / 2}}
$$

and

$$
(1-\Delta)^{1 / 2} f(x)=\frac{1}{(2 \pi)^{n}} \int_{R^{n}} \exp [i(x, \xi)]\left(1+|\xi|^{2}\right)^{1 / 2} \widehat{f(\xi)} d \xi \quad f \in C_{0}^{\infty}\left(R^{n}\right)
$$

In appendix it is shown that M verifies the following inequalities (that are consequences of the properties of z_{1}^{+}and z_{2}^{-}):

$$
\begin{equation*}
\operatorname{Sup}_{\xi \in R^{n}}\left|\xi\|\gamma\| D^{\gamma} M(\xi)\right| \leq C_{\gamma} \tag{84}
\end{equation*}
$$

γ being any multi-index and C_{γ} some constant depending on γ.
For the theorem of Hörmander-Mihlin inequalities (84) imply that M is a multiplier of type (p, p) for every $1<p<+\infty$. (For terminology see appendix below).

Moreover, the operator $(1-\Delta)^{1 / 2}$ is bounded from $W^{1, p}\left(R^{n}\right)$ into $L^{p}\left(R^{n}\right)$. This property, that can be easily seen by a further application of the theorem of Hörmander-Mihlin, is a particular case of a theorem of Calderón on spaces of Bessel potentials $L_{s}^{p}\left(R^{n}\right)$. Then, property iii) is proved.

Finally, the estimate (81) follows from i).

APPENDIX

For the convenience of the reader we recall, following [3], the definition of multipliers and some criteria that enable to ascertain whether a given function is a multiplier.

Definition. $M_{p}^{q}\left(R^{n}\right)(p, q \geq 1)$ is the set of Fourier transforms \widehat{T} of all temperate distributions such that

$$
\operatorname{Sup}_{u \in \sigma_{0}^{\infty}\left(R^{n}\right)} \frac{\|T * u\|_{L^{q}\left(R^{n}\right)}}{\|u\|_{L^{p}\left(R^{n}\right)}}<+\infty
$$

The elements in $M_{p}^{q}\left(R^{n}\right)$ are called multipliers of type (p, q).
Theorem. ([3], p. 120) Let $f \in L^{\infty}\left(R^{n}\right)$ and assume that

$$
\frac{1}{r^{n}} \int_{\frac{r}{2} \leq|\xi| \leq r}|r| \gamma\left|D^{\gamma} f(\xi)\right|^{2} d \xi \leq B \quad 0<r<+\infty, \quad|\gamma| \leq k
$$

where B is a constant and k is the least integer $>\frac{n}{2}$.
Then f belongs to $M_{p}^{p}\left(R^{n}\right)$ for every $1<p<+\infty$.
In particular we shall use the following corollary (Mihlin's Theorem, see [8]).

Corollary 1. If $f \in O^{n}\left(R^{n}-\{0\}\right)$ and

$$
\operatorname{Sup}_{\xi \in R^{n}}|\xi|^{|\gamma|}\left|D^{\gamma} f(\xi)\right| \leq B \quad \text { for }|\gamma| \leq n
$$

where B is a constant, then $f \in M_{p}^{p}\left(R^{n}\right)$ for every $1<p<+\infty$.

We prove
Proposition 1. Let P and Q be two polynomials in $(\xi, \eta)\left(\xi \in R^{n}, \eta \in R^{m}\right.$, $n \geq 1, m \geq 1)$ of the same degree $q:$ let $H(\xi)=\left(H_{1}(\xi), \ldots, H_{m}(\xi)\right)$ be a vector in R^{m} with components that are polynomials of degree 2 in ξ and satisfy the following inequalities:
i) $\quad\left|H_{r}(\xi)\right| \geq O^{\prime}\left(1+|\xi|^{2}\right) \quad(r=1, \ldots, n)$
ii) $\quad\left|Q\left(\xi, H_{1}(\xi)^{1 / 2}, \ldots, H_{m}(\xi)^{1 / 2}\right)\right| \geq C^{\prime \prime}\left(1+|\xi|^{2}\right)^{q / 2}$,
C^{\prime} and $O^{\prime \prime}$ being positive constants.
Then the function

$$
R(\xi)=\frac{P\left(\xi, H_{1}(\xi)^{1 / 2}, \ldots, H_{m}(\xi)^{1 / 2}\right)}{Q\left(\xi, H_{1}(\xi)^{1 / 2}, \ldots, H_{m}(\xi)^{1 / 2}\right)}
$$

is a mulliplier of type (p, p) for every $1<p<+\infty$.

Proof. We observe that for i) and ii) R is in $C^{\infty}\left(R^{n}\right)$. Moreover

$$
\left.\begin{array}{c}
\frac{\partial R}{\partial \xi_{j}}=\left[\frac{\partial P}{\partial \xi_{j}}+\frac{1}{2} \sum_{r=1}^{m} \frac{\partial P}{\partial \eta_{r}} \frac{1}{H_{r}^{1 / 2}} \frac{\partial H_{r}}{\partial \xi_{j}}\right] Q^{-1}-\left[\frac{\partial Q}{\partial \xi_{j}}\right.
\end{array}+\frac{1}{2} \sum_{r=1}^{m} \frac{\partial Q}{\partial \eta_{r}} \frac{1}{H_{r}^{1 / 2}} \frac{\partial H_{r}}{\partial \xi_{j}}\right] P Q^{-2}=
$$

where

$$
\begin{aligned}
R_{j} & =\left[\left(\prod_{r=1}^{m} H_{r}\right) \frac{\partial P}{\partial \xi_{j}}+\frac{1}{2} \sum_{r=1}^{m} \frac{\partial P}{\partial \eta_{r}} \frac{\partial H_{r}}{\partial \xi_{j}}\left(\prod_{s \neq r} H_{s}\right) H_{r}^{1 / 2}\right] Q+ \\
& -\left[\left(\prod_{r=1}^{m} H_{r}\right) \frac{\partial Q}{\partial \xi_{j}}+\frac{1}{2} \sum_{r=1}^{m} \frac{\partial Q}{\partial \eta_{r}} \frac{\partial H_{r}}{\partial \xi_{j}}\left(\prod_{s \neq r} H_{s}\right) H_{r}^{1 / 2}\right] P
\end{aligned}
$$

is a polynomial in $\left(\xi, H_{1}(\xi)^{1 / 2}, \ldots, H_{m}(\xi)^{1 / 2}\right)$ of degree less or equal to $2 m+2 q-1$.

Claim : for all multi-index γ the following equation holds:
(A1)

$$
D^{r} R=\left({ }_{r=1}^{m} H_{r}\right)^{-|\gamma|} Q^{-1-|\gamma|} R_{\gamma}
$$

R_{γ} being a polynomial in $\left(\xi, H_{1}(\xi)^{1 / 2}, \ldots, H_{m}(\xi)^{1 / 2}\right)$ of degree less or equal to $|\gamma|(2 m+q-1)+q$.

The proof proceeds by induction: we suppose that (A1) is true for all γ with $|\gamma|=r$ and we show that it is valid for all γ with $|\gamma|=r+1$, For,

$$
\begin{aligned}
& \frac{\partial}{\partial \xi_{j}} D^{\gamma} R=-|\gamma|\left(\prod_{r=1}^{m} H_{r}\right)^{-1-|\gamma|} Q^{-1-|\gamma|} R_{\gamma} \sum_{r=1}^{m}\left(\prod_{q \neq r} H_{s}\right) \frac{\partial H_{r}}{\partial \xi_{j}}+ \\
& -(1+|\gamma|)\left(\prod_{r=1}^{m} H_{r}\right)^{-|\gamma|} Q^{-2-|\gamma|} R_{\gamma}\left[\frac{\partial Q}{\partial \xi_{j}}+\frac{1}{2} \sum_{r=1}^{m} \frac{\partial Q}{\partial \eta_{r}} \frac{1}{H_{r}^{1 / 2}} \frac{\partial H_{r}}{\partial \xi_{j}}\right]+ \\
& +\left(\prod_{r=1}^{m} H_{r}\right)^{-|\gamma|} Q^{-1-|\gamma|}\left[\frac{\partial R_{\gamma}}{\partial \xi_{j}}+\frac{1}{2} \sum_{r=1}^{m} \frac{\partial R_{\gamma}}{\partial \eta_{r}} \frac{1}{H_{r}^{1 / 2}} \frac{\partial H_{r}}{\partial \xi_{j}}\right]=\left(\prod_{r=1}^{m} H_{r}\right)^{-1-|\gamma|} Q^{-2-|\gamma|} R_{\gamma, j}
\end{aligned}
$$

where

$$
\begin{aligned}
R_{r, j}= & -|\gamma| Q R_{\gamma} \sum_{r=1}^{m}\left(\prod_{s \neq r} H_{s}\right) \frac{\partial H_{r}}{\partial \xi_{j}}- \\
& -(1+|\gamma|) R_{\gamma}\left[\left(\prod_{r=1}^{m} H_{r}\right) \frac{\partial Q}{\partial \xi_{j}}+\frac{1}{2} \sum_{r=1}^{m} \frac{\partial Q}{\partial \eta_{r}}\left(\underset{s \neq r}{I I} H_{s}\right) H_{r}^{1 / 2} \frac{\partial H_{r}}{\partial \xi_{j}}\right]+ \\
& +\left(\prod_{r=1}^{m} H_{r}\right) Q \frac{\partial R_{\gamma}}{\partial \xi_{j}}+\frac{1}{2} Q \sum_{r=1}^{m} \frac{\partial R_{r}}{\partial \eta_{r}}\left(\prod_{s \neq r} H_{s}\right) H_{r}^{1 / 2} \frac{\partial H_{r}}{\partial \xi_{j}}
\end{aligned}
$$

Clearly $\boldsymbol{R}_{\gamma, j}$ is a polynomial in $\left.\left(\xi, H_{1}(\xi)^{1 / 2}\right), \ldots H_{m}(\xi)^{1 / 2}\right)$ of degree less or equal to $(1+|\gamma|)(2 m+q-1)+q$ for the hypothesis of induction : the proof of (A1) is fulfilled.

From (A1) and i), ii) and the hypothesis on P and Q we infer that there exists a constant C_{γ} such that

$$
\begin{equation*}
\left|D^{\gamma} R(\xi)\right| \leq O_{\gamma}\left(1+|\xi|^{2}\right)^{-|\gamma| / 2} \quad|\gamma| \geq 0 \tag{A2}
\end{equation*}
$$

From (A2) and an application of corollary 1, the assertion follows.
From proposition 1, iii) in remark 1 after lemma 3, (29), the definitions of z_{1}^{+}and z_{2}^{-}, the fact that A is a symmetric positive definite matrix and $\alpha^{ \pm}(\xi)$, defined as in (25), are linear functions in ξ, there follows easily :

Proposition 2. The following functions are in $M_{p}^{p}\left(R^{n}\right)$ for every $1<p<+\infty:$

$$
\begin{array}{ll}
\varphi_{r j}(\xi)=\frac{\xi_{r} \xi_{j}}{(A \xi, \xi)-i(a, \xi)+h^{2}} & (r, j=1, \ldots, n) \\
\varphi_{j}^{+}(\xi)=\frac{i \xi_{j}}{z_{j}^{+}(\xi)} & (j=1, \ldots, n) \\
\varphi_{j}^{-}(\xi)=\frac{i \xi_{j}}{z_{2}^{-}(\xi)} & (j=1, \ldots, n) \\
M(\xi)=\frac{}{\left[z_{1}^{+}(\xi)-z_{2}^{-}(\xi)\right]\left(1+|\xi|^{2}\right)^{1 / 2}}
\end{array}
$$

REFERUNCES

[1] A. P. Calderón : Lebesgue spaces of functions and distributions. (Partial differential Equations. Proc. Symp. Pure Math. vol. 4. A.M.S. (1961), 33-49).
[2] E. Gagliardo : Proprietà di alcune classi di funzioni di più variabili. (Ricerche Mat., 7 (1958), 102-137).
[3] L. Hörmander : Estimates for translation invariant operators in L^{p} spaces. Acta Math., 104-(1960), 93-109).
[4] J. L. Lions: Théoremes de trace et d'interpolation I. (Ann. Sc. Norm. Sup. Pisa 13 (1959), 389-403).
[5] J. L. Lions-J. Peetre: Sur une classe d'espaces d'interpolation. (Istitat des Hantes Etudes Pabb. Math. 19 (1964), 5, 68).
[6] A. Lortenzi : On elliptic equations with piecewise constant coefficients I (to appear in Applicable Analysis).
[7] E. Magenes : Spaxi di interpolazione ed equazioni a derivate parziali. (Atti VII congresso U.M.I. 1963).
[8] S. G. Mihlin : On lhe multipliers of Fourier integrals. (Dokl. Akad. Nauk, S.S.S.R. (N.S) 109 (1956), 701-703).
[9] S. L. Sobolev: Applioations of funotional analysis in mathematioal physics (Amer. Math Soc. (1963)).
[10] G. Talenti : Spectrum of the Laplace operator acting in $L^{p}\left(R^{n}\right)$. (To appear in Symposia Mathematica).
[11] G. N. Watson: A treatise on the theory of Bessel functions (Cambridge University Press. (1922)).

[^0]: (2) 2 For the properties of Bessel functions see [11].

[^1]: ${ }^{(4)} M_{\tau}$ is the transposed matrix of M.

