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ON ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

by L. NIRENBERG (New York) (*)

Outline.

This series of lectures will tonch on a number of topics in the theory
of elliptic differential equations. Iii Lecture I we discuss the fundamental

solution for equations with constant coefficients. Lecture .2 is concerned

with Calculus inequalities including the well known oues of Sobolev. In le-
ctures 3 and 4 we present the Hilbert space approach to the Dirichlet pro-
blem for strongly elliptic systems, and describe various inequalities. Lectures
5 and 6 comprise a self contained proof of the well known fact that « weak »
solutions of elliptic equations with sufficiently « smooth &#x3E;&#x3E; coefacients are

classical solutions.

In Lectures 7 and 8 we describe some work of Agmoii, Douglis,
Nirenberg [14] concerning estimates near the boundary for solutions of

elliptic equations satisfying boundary conditions. This work is based on

explicit formulas, given by Poisson kernels, for solutions of homogeneous
elliptic equation with constant coefficients in a half space.

Throughout, for sirnplicity we treat one equation in one unknown.

The material will on the whole be self contained, though of course not

all proofs call be included. However, we shall attempt to indicate those
of the main results. 

, ,

(’) Questo ciclo di conferenze è stato tenuto a Pisa dal 1° al 10 settembre 1958, e
ha fatto parte del corso del C. I. M. E. ohe ha avuto per tema : i « Il principio di minimo
e sue applicazioni alle equazioni fnnzionali ». Tale corso si o svolto in collaborazione con
la Scuola Narmale Superiore e Illstituto Matematico dell’Universita di Pisa. In questi
Annali saranno sacoessivamente pubblicati i corsi di conferenze tenuti dai professori
C. B. Morrey e L. Bers.
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Lecture I. The Fundamental Solution.
’ 

I would like to start with a few general and somewhat unrelated

comments, In studying differential equations one is usually interested iu

obtaining unique solutions by imposing suitable boundary or initial condi-

tions, the kind depending on the so - called «type&#x3E;&#x3E; of the equation - elliptic,
hyperbolic~ etc. However, the type classification for general equations has
not been carried out, and in many cases it is not known what boundary
conditions to impose. Indeed for equations that change type - and we
are all familliar with the initial work in this field due to Professor Tricomi -

the nature of the boundary conditions is far from obvious.

Thus if one considers an arbitrary equation without regard to type it

is a natural question to ask whether there exist solutions at all. In fa,ct

there are occasions wben one simply wants some solutions. Such occur

often in differential geoinetry. Take a well known case : to introduce

isothermal coordinates with respect to a given Riemannean metric on a
two dimensional manifold. This reduces to a local problem of findirlg
nontrivial solutions of a differential equation in a, neighborhood of a point.

Another question is: are there solutions in the large of a given
equation. For the preceding this is answered by uniformization theory for
Riemann surfaces.

In this talk we will consider for some special cases the question: For
a given differential operator L are there solutions of Lu = f for « well
behaved » functions f. Of course equations with analytic coefficients always
have local solutions, obtained for instance by power series expansions
(Cauchy-Kowalewski).

Recently Hans Lewy [1] exhibited an equation with C°° coefficients

having no solutions ewen locally. Since it is easy to describe, we present it :
- In 3-space with coordinates x , y 7, t, set z = x -~- i y ~ write the Cauchy-

Riemann operator as

equation

aod consider the differential

where the right hand side is a continuous real function of t alone which,
for conveuience, is written as n derivative of a real function 1.fJ.

If there is ct continuously diffrrentiable solution u of the

equation in (t, neighborhood o/’ the then 1jJ (t) is real analytic.
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Thus for any non-analytic w there is no solution near the origin. (The
proof may be easily modified to show that there are also no « generalized
solutions »).

If we integrate over a circle 
° 

&#x26;z

we establish easily the identity

Now and ~7(~)=== ~ z u d 8 . Integrating the equation for 1t

over the circle we tind that U satisfies

or

It follows that V(E) = U + 2 x is a holomorphic function of c = s + i t
ill a domain near the origin with re ,== 8 j 0 . But on s = 0 the function

U, I i. e. the real part of vanishes, and therefore V can be continued
analy tica,lly across s = 0 . Hence V is analytic.

In [1] Lewy also constructs a function F such that the equation
Lu=F has no « smooth » solution in the neighborhood of any point.
Lewy also conjectures that there are homogeneous equations with C°° coeffi-

cients having no solutions in the neighborhood of any point.
The sirnplest class of differential operators I~ of arbitrary type, for

which one might expect solutions u of

to exist, for all well beluaved fiinctions f, are operators with constant
coefficients. Irl the last few years a considerable study has been made of
general differential operators with constant coefficients, (See Ehrenpreis [2],
H6rmaiider [3], Malgrange [4]. Solutions of (1.1) can be found, at least

locally, if one knows that a fundamental solutions .E of L E = 3 (the Dirac
3 function) exists. This is a (possibly generalized) function E such that
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for all C°° functions u with compact support. We shall denote the clasps

of such functions by C". Here * denotes convolution. Then if f is in Co
the function u = E f is a solution of (1.1).

Malgrange [4] and Ehrenpreis [2] proved the existence of a fundamental
solution for any differential operator with constant coefficients. However it

is not difficult to construct one explicit,ily, as Hormander, and also TrAves [5],
have sliown, and we shall now describe such a construction.

First we fix our 
’

NOTATION : We consider functions u (x) of rc variables x = (x1, ... , xn)
and denote the differentiation vector by D = (D1, ... , Dn) , Di --- 

The letters # , y , v will denote vectors # _ ((31 , ... , (3n) with non-negative
integral coefficients and we Otherwise for any vector

8 = (1, ... , a2) , I will represent its Euclidean length [ $ [2 = Z ) B2, and
8 . q We write

for convenience we shall also, on occasion, express a general order

partial derivative of a function u by will denote the class of C°°
functions with compact support.

We consider now a differential operator L of order lc with constant

coefficientsy which we may write as a polynomial in D of order k.

In constructing the fundamental solution let us first argue in a heuristic

manner. Introduce the Fourier tr;nsforin of the function u (x)

integration being over the entire n-space. Then

So if d y then

or
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or

Proble1n : give formula (1.2) a meaning.
In attempting to do this (and there are many ways) there are two

difficulties that occur. The first is the non-integrability at infility, duo to
the fact that we are integrating over the full n-space. The second difficulty
is caused by the real roots $ of the polynomial L(i$).

The first difficulty is easily overcome. It essentially expresses the fact
that is general .E is a distribution, i. e. a fioite derivative of a continuous

function. Instead of constructing E directly we shall coi&#x3E;struct the funda-

ineiit;I solution EN of the operator (1 ® d)N Z = (1- D2)NZ (I)) . We
I 1,

shall construct a fundamental solution EN having continuous derivatives
up to any given order, by taking -A7 sufliciently large. We may then take,
in the distribation sense,

i. e. for/’in Co the function

is a solution of Zu =1.
Thus we consider, for

Taking N large eliminates the first difficulty, i. e. the trouble at infinity.
Now to haodle the second difficulty. We may assume, after a possible

rotation of coordinates, that the coefficieut of D~ in E (D) is # 0 , say

unity. Consider L(i~) as a polynomial in ~n . We shall first integrate in

(1.4) with respect to the variable ~~ , keeping $’= (~1, 7 ...~ ~n_1) fixed,
however we shall move the line of integration from the real line to a

parallel line lying in the complex En plane.
For fixed real $’ there are k roots ~n of L (i ~) . In the strip

C 1 in the complex en plane there is therefore a line parallel to
2

the real axis whose distance from any root is at least (2k + 2)-1, as one
easily sees. Let us a choose one such line = c (~’) whose distance to
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any root is at least (4 k + 4)-1. The clioice of c (’) depends 011 E’, but it

is easy to see that c = c (~’) may be chosen so as to be continuous except
on a set of $’ of (n - 1) dimensional measure zero.

Setting r~ = r~ (~’) = (o , ... , c (~’)) we now take as definition

where integration is first with respect to $n .
Since

and

we see that EN has derivatives up to any given order, i f N is large enough.
We have finally to verify that for u E (’o

Setting the right hand side equals

Since it has compact support its Fourier tiaiisform aB ($) can be extended
to complex vectors ~ as an entire analytic functiop and since the

derivatives of u die down faster that any power of ) $) I as we go to infinity
in a strip constant. Thus, interchangiug the order of integration
in the above, we find that it equals .

Because of the behaviour of infinity we may shift the line of inte-

gration of tl&#x3E;e $,, parallel to itself and find that this expression
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Thus the function EN defined by (1.4)’ is a fundamental solution for the

operator LN. The desired fundamental solution of L2c then is given by (1.3).
One sees easily that tlce fundamental solution .EN given by (1.4)’ has

exponential growth in the Xn variable.
For further inyortuvt work on fundamental solutions for equations

with constant coefficients we refer to Hormander [6].
Consider now elliptic differential operators with constant coefficientx.

These are operators L whose leading part L’ - consistiug of the terms
of highest order - satisfy

for real

We shall have need later of the fundamental solution for a lioinoge-
neous elliptic operator with constant coefficients, i. e..L’ == 11. For such,
of course, the fundamental solution first constructed by Herglotz is well

belaved at infinity. We shall use the following form of it, given in F.
John’s book [7 J. ,

where integration is over the full unit sphere with d mi as the element of

area, q is a non-negative integer of the same parity n, i. e. q + n is even,
alld the principal branch of the logarithm is taken with the plane slit

along the llegative real axis.
From (1.5) we obtain as a special case, for L = 4 power~ the following

identity which is due to F. John and used extensively in [7], represen-
ting function in terms of plane waves : For u in Co

In [7] John derives "(1.6) from the known expression for the fUlldamen.
tal solution for a power of the Laplacean, and then derives (1.5) from (1.6).
This may be done as follows. Suppose g (x . ~) satisfies

then a fundamental solution of the operator .L is given by
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But such u K is easily found. If we then satisfies

a solution of which is

with an appropriate constant. If we insert this into the above expres-
sion for the fundamental solution of .L we obtain the expression

which differs from (1.5) only by the term involving ck,q . Bnt this term is

‘a polynomial of degree which is therefore a solution of G v = 0 ~ 7
and so may be ignored.

It should also be possible to derive (1.5) from the heuristic formula

(1.2). (1.5) aserts that

n+q

is a fundamental solution for the operator A 2 L. Let us attempt to de-

rive this expression from the corresponding expression of (1.2) :

Arguing lleurisitically again let us modify the expression by introducing
polar coordinates in the ~ space

Then (1.8) becomes
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Let us now write the heuristic expression
T

as a well defined coutour integral

where the contour G is a curve which goes from + oo in the complex e
plane, encircles the origin counterclockwise and i-eturiis to + 00 along
the real axis, the branch for the logarithm is the same as above, and the
constant c is chosen so that

The expressions (1.9)’ may be evaluated eglrlicity, and on ilrsertion

into (1.8)’, yields the expression (1.7). We leave the calculation to the

reader.

Lecture II. Calculus Inequalities.

A priori estimates pla~y a central role in the theory of partial diffe-

rential equations. They are of various kinds - hointwise estimates for

derivatives of solutions and their modulus of continuity, and estimates of,
say, L~ norms of solutions and their derivatives - and it is naturally
important to understand the relationships between these various estimates.

For instance, the well known results of Sobolev assert that if-the n1’th
order derivatives of a function ?t (x, , ... , x,,) (with compact support)
are in 1 then lower order derivatives belong- to

Zp for some p, if r is sufficiently high, the Di it are bounded and

satisfy a H61der condition with n certain exponent a .

Since we shall often make use of it, let ns recall here the notion of

HOLDER CONTINUITY. A function f(x) defined on in set S iii a Euclidean

space satisfies a Holder couditioll there with exponent oc , 0  a "1 , I if
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is finite. It is Holder continuous (exponent a) in a domain if it satisfies a

Holder coldition with exponent a in every compact subset of the domain.
This lecture is concerned with calculus inequalities relating integral

and pointwise estimates of functions and their derivatives. The recent

imnportant result of de Giorgi [11] on the differentiability of solutions

of regular variational problems seems in fact to be based on a calculus ine-

quality asserting that certain integral estimates imply Holder continuity.
We shall consider functions u(x) defined in n-dimensional Euclidean space
and belonging to and whose derivatives of order m belong to .Lr ,
1 ~ c)o We shall present interpolative inequalities for the Lp and
Holder norms [ ]~ of derivatives for the maximal range
of p and a. Our inequalities are a combination of, and include, those

usually called of Sol&#x3E;olev type (wlich hold also for fractional derivatives,
and rather straightforward proofs of which may he found in [8]), and fami-
liar interpolative ineq ual ities such as 

’

where Ili is e . u . b . of the .L~ norms of the derivatives of order i of a

function = 0 1 , 2 . The proofs use only first principles and are enti-
rely elementaty. (No attempt will be made here to obtHin best constants).
The inequalities is this section were presented at the Congress in

Edinburgh August 1958, where we learned that almost equivalent results

had also been proved by E. Gagliardo.
Iv this lecture we shall use the following

we defins the norms and seminorms
p

for functions 1£ (x~ defined in a domain CD in n-dimensional spaces e
0

1 == the L~ norm of u iia CD. 
’

For p  0 set and define

if

if
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where e . u . b . is taken with respect to all partial derivatives Ds of order

s, and over points in ~D .
We define as the maximum of the I lp norms of all j-th order

derivatives of 1t .

We shall express our result for functions u defined in the entire

it-space Extension to other domains Will be described briefly in the
remarks after the theorem.

THEOREM : Let u belong to .Lq in Ell and its àe1’ivatives ot order tit
Dm lu 7 belong to 1 C q, r - 00. I’or the derivatives Di u , 0 C j C 
the following inequalities hold

where

for all a in the interval

(the constant depending only on n, I nz ~ j , q , ’J", a) , with the following
exceptional cases

1. If j = 0, r i- ’In  n, q = oo then we mcrke the additional assumption
N

that either u tends to zero at infinity or u E Lq jot’ jinite q &#x3E; 0 .
2. 1f I  i-  00, I and ’In -~? - it/r is a non negative integer thpn (2.2)

holds only for it satisfying j/l1t ---- a 1.
We shall not give a complete proof of the theorem here but shall

indicate the Blain steps. First soitie conllnellts.

1. The value of p is deterlnined simply by dimensional analysis.
2. For a =1 the fact that u is contained ill Lq does not enter in

the estimate (2.2), and the estimate is equivalent to the results of Sobolev
(note that we permit i- to be unity).

3. That is the smallest possible value for it may be seen by
taking it = sin ~, (x) where is in 0 - : For large 2 we have I u Iq =0 (1),

= 0 (A j) r u 1)0 = 0 (~,~z) where no 0 can be replaced by o .

4. It will be clear from the proof that the result lolds also for u

defined in a product domain 
’

and hence for any domain that can be mapped in a one-to one way onto

such a domain by a sufficiently « nice » mapping.
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5. For a bounded domain (with « smooth » boundary) the result

holds if we add to the right slde of (2.1) the term

constant 

for auy q &#x3E; 0 . The constants then depend also on the domain.
6. Similar estimates hold for the Lp, norms of Dj u on linear subs-

paces of lower dimension, for suitable p .
7. Similar interpolation inequalities also hold for fractional deriva-

tives, but their proof is not so elementary.
The theorem, lll its full geiiertility should be useful iu treating nonli-

near problem. We mention II1 particular that from (2.2) for 

q = oo it follows that the set of fiiiictious ii which are bounded and have

derivatives of order 7~z belonging to L,. forms a Banach Algebra. For If = 2
this is called the Schauder ring.

The proof of the theoreln is elementary and contains in particular an

elementary proof for the Sobolev case cc = 1. Iu order to prove (2.2) for

any given j one has only to prove it for the extreme values aiid

unity. (If Case 2 holds some additional remark has to be made.) For in

general there is a simple .

Interpolation then

where c is independent of u .
The lemma is easily proved; for À &#x3E; 0 it is merely the usual interpo-

lation inequality for L~, norms.
Let us turn now to the proof of the theorein, or at least to the main

points. Consider first the Sobolev =1. It suffices to consider the

case j = 0 , 1n =1, from which the general result may then be derived.

If r &#x3E; u (2.2) asserts that u satis6es a, certain Holder condition, and an ele-
nlentary proof due to Morrey has long been known. We shall sketch it here
for functions defined ia a general domain (7).

DeJillition: A domain C7) is said to have the strong cone property if there
exist positive constants d, A, and a closed solid right spherical cone V of fixed

opening and height such that any points P, Q iu Q (the closure of with



127

are vertices of cones Vp , 7 lyiiig in ~D which are conrguent to V and
have the following property : the volume of the intersection of the sets :

and the two spheres with conters P, Q und radius I P - Q I , is

not less than 2 P - Q ~.
We now prove the assertion

If u has first in Ln ’r &#x3E; in it domain (7) haring the strong
cone property, then points P, Q in (7) witlz I 1’ - Q I  d, UJe have

whe)-e the constant depeiids only on d , ~, ~ ~~~ .

(From this follows easily an estimate for 
11 1 depending on the

r

domain).
Pi-oof : Set ~==~JP2013~ I and let be the intersection of Vp ( VQ)

with the sphere about P (Q) radius s . Set k9p n 8Q = 8 . If R is n point
in S we have, on integrating with respect to R over 8,

I 

Because of the strong cone property the left hand side is oot less than

The first term on the right may be estimated as follows. Introducing polar
coordinates 0,,q , about P, where n is a iiiiit vector, we find easily that
the first term in the right is bounded by

(where d co is the element of area on the unit sphere, is the ele-

ment of volume)
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by Holder’s inequality, y

A similar estimate holds for the (R) - u (Q) and the

s
result follows. &#x3E;

We return now to functions defined in the full ii-space.

Soppose ’r  n. We shall prove a stronger formulation of (2.2), namely

For 1~’~ (2.4) follows from the special case If == 1, as one readily
verifies, by simply applying the inequality for r = 1 to the function

n-1 
,

In-t. and using Hölder’s inequality in a suitable way. Thus it- suf-

fices to prove (2.4) for the case r = 1 .

We shall prove (2.4)’ here for it = 3 . One sees easily that

-where f denotes integration along the full line throngh x parallel to

i

the xi , axis. Thus

Integrating with respect to x1 then x2 ~ then x3 we find with the aid

of Schwat-z’s inequalit,y 
°
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and finally

that is, (2.4)’.
For general it the inequality is proved in the same way with the aid

of H61der’s inequality.
Suppose finally, for j = 0, »1 = 1, tlmt r = this is the exceptional

case 2. We claim that

where the constant depends only y q and p . It suf6ces to show this for

large and this is easily done by app1iyng (2.4)’ to the function

v = I u I p(1-1/n) , and using Hölder’s inequality in a judicious 
Let us now consider the other extreme It snffiees to

consider the case j = l ~ y III = 2, y the general case may then be proved by
induction on m .  We claim that the following holds

with c an absolute constant. Incidentally, ;is Ungur pointed out, we may

permit q to be any positive number, but I shuH confine tuyself to the case

cited, in fact to the case q finite, 1  r  oo . The general case may be

obtained by a slightly different argument or just by letting q tend to ooy
and l’ tend to 1 or CX) in (2.5).

Inequality (2.5) follows from the corrisponding inequality in one

dimension

which holds for the full, or half-infinite line (with c an absolute constant
by integrating with respect to the other variables and appliyng Holder’s

inequality.
Our proof of (~.6)~ though elementary, is slightly tricky. Peter Ungar

has found another slightly longer proof which furnishes a better value for c.
The proof is based on a simple lemma which we leave as an

exercise.
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LEMMA: On an interval l, whose lenght we also denote by A , we 

with c an absolute constant.

We shall prove that for any interval L : 0  x  L the following
inequality holds

(2.6) follows easily from (2.8).
In proving (2.8) we may suppose that = 1 . We shall cover the

interval L by a finite number of successive intervals ,1 , ... each one
having as initial point the end point of the preceding. For k a fixed posi-

tive integer, choose first the interval :02013 and consider (2.7) for
- - k 7 ( )

this If the first term on the right of (2.7) is greater than the
second we then have

since u~x ~r =1. If however the secood term of (2.7) is the greater extend
the interval Å (keeping its left endpoint fixed) until the two terms of the

right of (2.7) become equal. Since 1--- p - 0 equality of these two
11

terms must occnr for a finite value of A. Let Al be the resulting interval.
We then have

Starting at the end point of 21 repeat this process, keeping k fixed,
, choosing 22, A3 ... , until L is covered. There are clearly at most lc such

intervals Åj. If we now sum our estimates for we find with

xi
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the aid of H61der’s iuequality (recall that that

If we now let k - oo the first term on the right of the preceding tends
to zero, because i- &#x3E; 1 , y and we obtain (2.8), completing the proof of (2.5).

Lecture III. The Dirichlet Problem.

We consider now elliptic differential operators, confining ourselves for
simplicity to a single equation for one unknown. Let be a partial
differential operator with coinplex valued coefficients, and let ~’ be the

part of higlrest order. L is elliptic if there are no real characteristics, i. e.,

real

It is easily seen that for more than two variables, n &#x3E; 2, ellipticity implies
that the order of Z is In treating the Dirichlet problem we shall
assume that k = 2 1n is even and that the operator is strongly elliptic,
i. e. that (efter possibly rnultiplying by a suitable complex function)

real

The Dirichlet problem consists of finding a solution in a domain 9D of

in

on

where represents differentiation normal to the boundary. Here f and

Ti are given functions in CD and % respectively.
We shall describe here the Hilbert space approach to the Dirichlet

problem, which is based on some form of the projection theorem and is

related to the classical method of minimizing the Dirichlet integral. In its

2. Annali della Scuola Norm. Sup. - Pi8a.
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. 

o

present form the existence theory is mainly due to Garding, Vishik, Browder
and others ; we refer the render to [9] aud [C] for expositions and references.
This and the following lecture comprise a brief description of [9]. The

o

theory is based on a single L2 inequality. Garding’s inequality, expressing
the positive de6oiteness of the Dirichlet integral associated with the diffe-

rential operator.
Since this approach to the Dirichlet problem requires considerable

differentiability assumptions on the coefficients we shall assume for sim-

plicity that they are of class C°° in (1) and that the boundary T) is

sufficiently smooth. We shall also assume CD to be bounded. Furthermore

if the Ti are sufficiently smooth we may subtract from u a function having
the same Dirichlet data as u , so we shall consider the case where the

4$; vanish
in

ou

The Hilbert space approach yields at first « generalized solutions of

(3.3) which we must define. A function u which belongs, say, to L2 in
I 

every compact subdoinain of D is a « weak » solution of Zu = f if

for every (p which belongs to C~ (Q)). i. e. is of the class C°° and has

compact support iii 0. Here ( , ) denotes the L2 scalar product, and L*
is the formal adjoint of L. In addition to the .L2 norm we also introduce

0 

the Hilbert spaces a non-negative integer. These are the closures
in the norm (using the notation of Lecture I)

of the spaces 000 (T)) C7 (If)). The associated norm and spaces relative to a
a e 0 (g 0

subdoniain 6t will be denoted by III Ilj, Hj , Clear]y *

We remark that for j &#x3E; i Hj c Hi and the set 11 u lij C constant is

compact in 

Following Sobolev and Friedrichs we say that a function u in 9D has

strong derivatives in L2 up to order j if it belongs to .ff (g j ) fori J

every compact subdomain Ct of With the aid of the results of the
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preceding lecture we see that a function in hj is continuous if 2j &#x3E; n .
0 

Functions in Hm satisfy the boundary conditions of (3.3) in a generalized
sense.

We now formulate the

GENERALIZED DIRICHLET PROBLEM : Gioeh f in Ho find a 10eak solutions
o

u in o f 
Using the notation of Lecture 1 we may write the operator L in the

form

o

If u is a weak solution in we may then carry out some partial inte-

gration in equation (3.4) and write it as

B [u, v] is linear in u, antilinear and satisfies, by Schwarz’inequality

We shall assume the strong ellipticity (3.2) to hold uniformly, I, e.

for some positive constant co

for all x in Our main result is

T!lEoREM: For 0 sufficiently large the generalized for
tlce equation (L + 0) u = f unique the equation Lu = f .
we have the F’redho lm alternative.

The L2 estimate on which the theorem is based is
0

GARDINGIS INEQUALITY : There exist constants c &#x3E; 0 and C slcch that

holds for every g~ in C- 
This will be proved in the next lecture. It is clear from (3.5) that the

o

inequality extends also to functions in and it follows from (3.6) that
o

the only solution in $~ of (L + 0) u = 0 is u = 0 .
Let us now prove the theorem. Suppose first that the operator is

symmetric, i. e. B [99 , (p] is. real. and that the constant C in (3.6) vanishes
- which we may achieve by considering- L + C in place of . It follows



134

from (3.5), (3.6) (with C = 0) that serves as an alternative scalar
o

product in the Hilbert space the norms B [u , MJ and 11 u 11m are equi-
0

valent. We see that the antilinear functional ( f , 9,)) defined for all (p in Hn,
satisfies

and is therefore a bounded functional. By the well known representation
0

theorem there exists therefore a function u in the Hilbert space such that

u is then the solution of the Dirichlet problem, and we have proved the
first part of the theorem with G’ = C. To prove the second part we write

the equation Lu = f in the form (L + C) = Cu -~- f or

o

Since (L -~- maps .ffo boundedly into H,,, it is completely continuous
ill by n previous remark, and from the Riesz theory for completely
continuous operators we derive the second part of the theorem.

Suppose now that B ~g~ ~ g] is not symmetric. If we add 0 (~ ~ rp) to B
so that it satisfies

then we may still rely on a generalized representation theorem due to Lax
and Milgram. We conclude the lecture with this

REPRESENTATION Let B (x , y) be If, forn defined for pairs
of vector x, y in rc Hilbert space 11 which is linear in x,
antilinear in y, satisfies

Suppose that some positive constant c the inequality

holds for every x in H. Then every bounded aittilinear functional F (x)
admits the representaJtion

For fixed ele1uents ua art3 



135

Proof : For any fixed element v, B (v, x) is a bounded alltlllllear fun-

ctional of x and therefore admits the representation

for some element y, where ( , )H denotes the scalar product in H. This

defines a which is clearly linear. Letting x = v and

applying (3.8) we find that

or

It follows that the operator A has a bounded inverse and that its range
is closed. Fnrtherinore the v corresponding to any y is unique. To see that
the range of A is the whole space H suppose that z is orthogonal to it.

Then we have B (v, z) = 0 for all v. From (3.8) it follows, by setting
z~ = z , that z = 0 . Thus A maps onto the entire space~ and therefore

every antilinear functional being of the form admits the

representation F (x) = B (~ , x) . The other representation is proved in a

similar way.

Lecture IV. A Priori Estimates.

0

Before proving Garding’s inequality let us make some general remarks
about a priori estimates. Consider a differential equation Eu = f of order
k and assume that the solution has been made unique by some auxiliary
conditions. One wants to study the inverse operator - to see, for

instance, to what class of functions the solution belongs, if f belonge to a
given class. For this problem, and also for the existence theory, a priori
inequalities play a basic role. Let us suppose that the auxiliary conditions
are homogeneous, then a typical a priori estimate would assert that for
some norm 11 II

For instance, if we know that the equation has a solution of class CK for

all f of class Ci then indeed, by a simple application of the closed graph
theorem, we would have
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with 1B II the usual norm in Ci. In general if Lu has finite II 11 norm we

will not obtain such an inequality for g - k , that is we

cannot estimate individualiy all deiivatives entering in L. However I

believe that ellipt,ic equations can be characterized as those for which one
can esti luate all derivatives, i. e.

for a wide class of noiins (this is stated as a conviction not a theorem).
Consider now an elliptic equation L1t =f with suitable lioiiiogeiieotis

boundary conditions. Most a priori estimates are just of the type (4.1) or,
if one does not assume uniqueness, of’ the form

Indeed inuch of the theory of elliptic equations is concerned witl proving
such estimates for various norms || 11 , 

and proving analogous estimates
for functions with no boundary restri;tioiis :

Here 67 is ally compact subdomain of (7), and the norm II 1161 is considered

only for functions defined in 6t -

worll of’ caution: The estimate do not hold for the most obious

norm that one would try, namely the maximum (or Cl) norm vor in general
for Ci norims, however they do lold for iioriiis, 0  a  I , and for

many integral norms.
We quote some immediate consequence of (4.2), (~.2)’.

1. If’ f and the coefficients of L are in C°° then a solution of

Lu=f is also in C°°. This follows fairly easily from (4.2)’.
2. Solutions of Zu = 0 with bounded norm 1B form a compact

family. Thins follows from (4.2)’ and the
Calculus Tfie set 111t II + 11 Du 1B constant is compact in the

space with 11 11 as nor1n.

This lemma holds for a wide class of norms.

3. The set of solutions of Lu = 0 satisfying the boundary conditions

(so that (4.2) holds) is finite dimevsional. This follows with the aid of the

Calculus Lemma. I

I would like to describe briefly a general recipe for proving such
estimates. This consists of several steps :

1. In case of (4.2)’ prove it first for equations with constant coeffi-

cients and only highest order terms, and for functions of compact support.
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Io case (4.2), prove it also for such equations and for functions defined in

a half space, vauishi llg near infinity, and satisfiyng (on the planar boundary)
the boundary conditiom. These are also assumed to have coustant coeffi-

cients (i. e. to be translation iiivtiritnt).
2. Now eliminate the hypothesis of compact support.
3. Extend the estimate to variable coefficients as follows : with the

aid of a partitions of unity write the function n as a sum of functions Ui with
sinall in each of which the leading coefficients are close to constants
and treat the variation from constant as an error term, using the results
of Step 2 and the following lemlna which may also be used ill the proof
of Step 2.

Calculus For appropriate constants C2

’where for junctions of support we take c2 - 0 and C1 independent
o f the of u .

This holds for a wide class of norms. ,

In case the support of ui tonclies the boundary, make a, local change
of variable to flatten out the boundary so that Steps 1 and 2 can be applied.

The main step here is Step 1. We remark that in Step 3 we rely on

(at least) the continuity of the leading coefficients of L, i or on the fact

that they differ little from constants in small domains. Because of this one

does not obtain in this way the more refined estimates required for treating
nonlinear problems, such as those iu Bers, Nirenberg [lo], de Giorgi [11],
or Nash [12].

The norms for which such estimates are easiest to derive are the .L2
norms for functions and their derivatives, and we shall illustrate the recipe

o 

for these by proving Garding’s inequality in its general form.
Consider a quadratic integral form defined for C°° functions with

compact support in a bounded domain T) 

(4.4) 
‘ B [u u] _ 

IPI, 

and suppose that the (complex valued) coefficients are continuons in CJ).
A necessary and sufficient condition the existence of positive constants

c, 0 so thtit the inequality

(4.5) 0
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holds all u E Co is that for positive constant co

for all I real

Here the notations of Lecture 3 is used.

1’roof : We prove first the sufficiency, following our recipe. The Calculus
Lemma (4.3) will be used in the form : For every e &#x3E; 0 there is a constant

C(s) such that for every C° function u with compact support

This is contained in our inequalities of Lecture 2, but is inost easily proved
with the aid of Fourier transforms. 

°

We consider now the different steps in proving (4.5), the Step 2 of the
recipe does not occur here since our functions have compact support.

1. Suppose that the are constant and vanish unless 

We i n troduce the Fourier transform of u

By Parseval’s theorem we have

proving (4.5) for this special case.

We now consider the variable coefficienti case and break Step 3 into
two parts.

2. Suppose that the support of u is sufficiently small, contained,
say, in a small sphere about the origin. Then accorfing to the preceding
inequality we have
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If now the support of it is so small that cP’i’ has small oscillation there

we see that the second term on the right may be bounded by

The third term is trivially boiiiided by constant I u 11m II u 
Thus we find that

from which follows the inequality

(4.5) now follows with the aid of (4.7). 
_

3. Consider now the general case. Construct a partition of unity iu T)y

with the support of each coj as small as desired. Then

by the preceding Case 2,

and the desired result now follows easily with the aid of (4.7).
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We see that the constants c, 7 C in (4.5) depend on co, I an upper
bound for the c,y , and ou the modulus of continuity of the leading

I == ?)t , and finally on the domain T).
Now for the proof of the nacessity of (4.6). Suppose that (4.5) holds

and that the left hand side of (4.5) vanishes for some 
and some point in T)y say the origin. Followiug the eiguinent iii Step 2
in the proof of sufficiency we see that the inequality

holds for all COCJ ~¿ with support in some fixed neighborhood IT a,bout the

origin and iu Set u = (.1:) foa real A , where’ (x) is a fixed real

C°° function with support in U aiid in Cj). One sees readily that as A - oo
the left hand side of (4.~)’ is 0 (22HI) and not 0 (12»» while the right hand
side is 0 (A2--l), so that (4.5)’ does not hold.

Garding’s inequality (4.5) is at one end of a whole spectrim of inter-

esting and useful inequalities making different requirements on u at the
o 

,

boundary, Garding’s inequality making the maximal requirement - that
all derivatives of u of order less than Tn vanish at the boundary. At the
other end of the spectrum is the inequality of Aronszaju [13] involving no

boundary conditions whatsoever.

Aronszajn considers a number of differential operators 
j = I , ... , N of order 1n, with c;oefficiens continuous in the closure of a

bounded domain D, and solves the following problem: Under what con-
ditions can one assert that for all C°° functions in Cj) the inequality

holds, with the constant independent of u ? He gives necessary and

sufficient conditions : 
-

(a) the operatori .L~ Zj~ is elliptic, here Z~ is the formal adjoint of Lj.
(b) At any boundary point r of T) y if n is the unit normal to

c1J and  -+ 0 is any real vector tangent to Cb then the polynomials in T I
.L (x, z ) have ao common complex root z . Here Lj is the leadiug
part of L~ .

Au example of Aroiizsaju7s inequality is the following ; for functions

u (X, y) in a bounded domain in the plane
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Even this simple example is not trivial to prove.

Since the report of Aronszajn a number of people have coonsidered
the problem of proving (4.5) far various quadratic forlns (4.4) and under
various differential boundary conditions. For one operator Zy Agmon,
Douglis, Nirenberg [14], (in a forthcoming paper which will be discussed

later) have characterized these differential boundary conditions which are

m/2 in number and for which (4.8) holds. Scleclter [15J has treated N
operators and general boundary conditions. Aronszajn, lIl unpublished work,
has treated the general problem (4.5). Also Hörlnander and Aginoii [16]
have solved the general problem for (4.5) and general differential boundary
conditions. The proofs follow the recipe outlined above, the main step being
the first, for functions in a half space.

We conclude the lecture with a result that will be used in proving
the differentiability at the boundary of solutions of elliptic equations. Iu

the following ZR denotes the hemisphere I x  R, XU &#x3E; 0 . We shall

denote the variable Xu by t, I (xl 7 ... by x and ..., by (x, t) .
Let u be a weak solution of a l equation (of order k)

with, for simplicity, coo coefficients,

in the interior o f a where ffl are given functions, anil 
that the plltne t = 0 is nowhere in that the coefficient a of
1)" in L does not vanish. If for every 6 &#x3E; 0 the .functions D# u 

c~ , belong to L2 then (tlso the function has

this property.
For k - I there is nothing to prove, as we lnay solve for the

function u froiii the differential equations (4.9) operated on by -DJ+l-k
Thus we suppose j  k - 1 .

The proof makes use of a well I known forlnula giving explicitly a
sinooth extension of a function v defined in, a half spaee t &#x3E; 0 to a function

defined in the full space:

with the Aj chosen so that
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We observe tbat,

Here the norm on the left is over the full space while on the right it is

over the half space t ~ 0 ..

Proof’ of tlce Choose a fixed ð &#x3E; 0, let c (x, t) be a fixed C°°

function with support ill I x ~2 -~- t2 C R2 and which equals one in ~R_~ ,
and set ~ au == ~ . If we call prove that belongs to L2 then, since

it follows easily that is ill .L2 in From our assumptions
we see that v is a weak solution of a differential equation of the form

where the Vs,y belong so and that derivatives and itself

belong to L2 .
For N sufficiently large we now extend the functions to nega-

tive t, I definivg vN by (4.10) and by

One may then verify that the eqlation

holds iu the entire space in the weak sense, and that the the deri-

vatives and ~N itself belong to ~z .
Let us now take Fonrier trmsforms with respect to x and t, and

write (E1 ... , u -1) = ;, EN = 7:. Denoting tlie trasform of a function f

by f we find that

N N

with I VN and belonging to L2 in the (~ ~ z) space. 
"

To conclude the proof we have to show that wiy belongs to L2.
To this end write
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We shall show that each term on the right belougs to L2 . Fron (4.11) we
find that the first term on the right is bounded by

Since s -~- ~ I r c k - j - 1 it follows that the factor of Vs,y,N is uniformly
bounded, and llence that this term belongs to Lz , since the Vs,y,N do.

The second term on the right of (4.12) is bounded by

with c an absolute constant, and hence belongs also to y by an earlier
remark.

This completes the proof of the Lemma.

Lecture V. The Differentiability of Weak Solutions of
Elliptic Equations

In this and the next lecture we shall present a self contained proof of
the well known result that solutions of elliptic equations with C °° coeffi-

cients are of class C°° .

Many proofs exist in the literature including proofs for more general
classes of equations, see Hörmander [17], Malgrange [181 The proof here
seems rather straigtforward ; it ix based essentially on a proof given by
Lax [19] and is closely related to proofs given in lectures by Bers [20]
and Schwartz [21] (see also [9]). We contine ourselves as before to a single
equation (not necessarily strongly elliptic) although the argument extends
also to systems.

Differentiability u is a locally square weak solu-

tion of tlle elliptic equation L u = f, and f E CCXJ then u E 000.

Remark: If u is a distribution solution then u = L1k t’ for some conti-
nuoiis v (here L1 is the Laplace operator), and v is then a weak solution

of The Theorem holds therefore for this case also.

The proof consists in showing that u has L2 derivatives of all orders
in every compact subdomain. That u E G’°° then follows from the Sobolev

estimates proved in Lecture 2. However since we only need a very simple
case of the Sobolev lemmas we present a separate proof of it here.
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Lemuta (Sobolev) : In a CJJ if it has L2 derivatives up
to s in CD s &#x3E; it/2 , it is continuous in CD .

In fact

Proof : The first assertion follows easily from the inequality. To prove
the inequality let xo be an inner point ill Cp (for simplicity take xo = 0)
and suppose there is a sphere -,tbout xo in CD with radius R. Let

furthermorl C(r) be a function 111 C°°, equal 1 to 1 for 0_J/2 and
vanishing for r &#x3E; R . By integration along any radius from xo == 0 , and
by repeated partial integration we see that ..

integrating over the unit sphere (with area S~) of radial directions one

finds

using Seliwarz inequality. For s &#x3E; the last integral is finite.

If the boundary of C7) is such that at any point in CD there exists a

cone with a fixed opening and length contained in ~ then the same proof
holds; instead of integrating over the full sphere of radial directions, we
merely integrate over the directions lying in the cone.

The proof of the Differentiability Theorem consists mainly of a series
of simple lemmas of calculus concerned with a special situation) that of

periodic functions, and this lecture will confined to these calculus statements.
We consider pe1’iodic functions u E C°° with period 2 ~ in each r; . For

such functions the Fourier series

(~~ = integer) converges uniformly.
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By ParsevaFs equality we have the following estimate for each nou-

negative s 
-

where the integral is taken over a period cube.
For any integer s we introduce the following scalar product uttd nonn,

differing slightiy from our previous notation,

We write (u, u)a = (u , u) and proceed with the
Calculus :

1. II u lis is inocrensing lil s. Furthermore for t1  s  t2 and any

E &#x3E; 0 there is a constant C (E) such that

Proof : For any a &#x3E; 0 , as -,u at2 + e (8) 
2, Se~ g~ = ( 1 ® d)t u ~ ~ = (1- d)t v , se that

From this we fi ud

As a consequence we have

. Lemiiia : If co E C°°, then

Proof: Assume t  0. Using (5.4), (5.3), (5.1), and partial integration, we
find

In the case t &#x3E; 0 the proof is similar.
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3. i)tequality :

In fact

P)-oof: According to (5.6) the left side of (5.7) is not smaller than the

right side. If however we set v = (1 2013 4)t u , then, by (5.4)

proving (5.7).
We can now form Hilbert espace Hs by completiug C°° functions in

the norms 1B lis. For s &#x3E; 0 these agree with our previous defiuitious.

Obviously for s &#x3E; t , All the previous results hold for functions

with the appropriate norms fin i te, for instance (5.7). We may regard gs as
giveii by a formal Fourier series with finite || 11, norm.

We remark that the scalar product

is defined, by extension, for any functions u E E and that any

bounded linear functional f(1£) de6aied oll ffs may be represented in the form

with v E this follows immediately from the Fourier series representa-
tion, so that we may regard H_S as dual to Hs.

Though we shall not use tltis, we remark that the closed unit ball

1B u ll,,  1 in .gs is compact iu Ht for s &#x3E; t.

We continue with the calculus.

4. Consider any differential operator L of order k with C°° coefficients.

More precisely

where c = c (k 7 it,) , ~ is a bound for the leading coefficients, and K’ is a

bound for all coefficients and their derivatives up to order I s I.,
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Since obviously 11 Di Us  coiist 11 it it suffices, ill order to

prove (5.9), to show that i f a E C°° thell

where Ic’ and k" are bounds for I a I ) respectively.
of (5.10) : Consider first the case s [ 0 . Set g _ (1 - 

y’ _ (1 - J)s all thelt we have, by (5.4), and partial integratinii,

integrating the last by parts (- s) times we and it is not greater than

So dividing we have, with the aid of (5-3),

Iu case s &#x3E; 0 we have

and may integrate by parts as above.
So L can be extended to all of H, and maps it boundedly into H-k.

This operatiou of L agrees with that of L acting on 1£, regarded as a
distribution. 

Technical Lentrna: Suppose w is a C°° real function, then

To conclude this lecture we consider

Difference Quotients: For a given vector It let

3. Annali della Scuola Norm. Sup. - Pisa.
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be the difference quotieiit. One verifies easily :

Furthermore : If 1t E Hs, Uh E Hs and II uh 11,  k for each h, then 11 11, BIS+1  k .

If it E 11 Ith ll:!!~ k for eacb h, then 1£ E and I  k. ·

Let and let One finds
o 

Lecture V I. Proof of the Differentiability Theorem.

Let now L be an elliptic operator of order k. In the periodic case we

prove the Differentiability Theorem in the form
DIFFERENTIABILITY ’1’HEnREM : 7/ n E Hs, L 1£ E then 2t E 

So it follows that u E Hs (Lnd L 2c E then it E Ht .
The non-periodic case is easily reduced to this as follows ; We prove

successively that 2c has Lz first order derivatives, then second order deri-

vatives, tlien second order derivatives, and so on. 
&#x3E;

To carry out this reduction let be a C °° function defined in a

neighborliood of a point and with compact support. Let, extend

ro aud the coefficients of L as periodic fullctions. So

where g -- L (~ 2c) - ~ .L ~c ; g contains only derivatives of It up

to and so, as is easily seen with aid of (5.8) has finite

II norm.

So therefore and so u has L2 derivatives ill a nei-

ghborhood of the point. Using this one repeats the argument for a smaller
neigborhood, and sees that so and so on.

The proof of the Differentiability Theorem in the periodic case followso

easily, in turn, from the fullowing estimate which is the analogue of Garding’s
inequality.

Basic For so

Postponing the proof of (6.1) let us prove the Differentiability Theorem.
Consider a difference quotient uh. If Lh represents the operator obtained by
replacing each coefficient in L by its difference quotient we see that =
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The desired result follows from the corollary after (5.12).
Proof of Basic Esti1nate: Clearly only go  8 -f- k is of interest.

The proof cunsists of several steps, following our recipe, and the proof of
0

Garding’s inequality in Lecture 4.

1. L has constant coefficients with leading terms only. Then

while

Hence

2. L has variable coefficients with leading coefficients differing from
constant value by less y 8 sufficiently small: Let .L~ be the operator
with these constant coefficients. By case 1. we have 

i

’ 

by (5.2),
from which (6.1) follows.

Note : If it has its support in a small set then the leading coefficients,
being continuous, difrer little from constant values. So (6.1 ) holds in

that case.
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. 3. General case: Intruduce a partition of unity over the closed

period cube

with each W j having its support in a small region.

(since Wj u has its support in a small set)

from which (6.1) follows.
We conclude this lecture with some remarks concerning the differen-

tiability near the boundary of the solution of the Dirichlet problem obtai-
ned iu Lecture 3 . Using the notation of that lecture we recall that the

solution of L u = f belonged to the space Hm. Siuce the discussion is

local we may assume that the boundary is given = 0 and that we

have a solution of the equation in the hemisphere 4R (see Lecture 4). It

suffices, by-Sobolev, to show that the solution u has derivatives of all

orders iu L2 in ~~_a ~ for f’ in (Joo. We shall merely indicate the first

step - the proof that u has derivatives of order (1n + 1) in L2 (see [9]) -
and shall use the notation of the lemma at the end of Lecture 4. By that
lemma it suffices to prove that derivatives of the form Dx l)m u belong to

L2 in for any &#x3E; 0 .
This we do with the aid of difference quotients as above. For fixed

6 &#x3E; 0 let ~ (x~ t) be a C°° function with support in ( x i~ + t2 R2, and which
equals one in ~R_a . Since the function u satisfies
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o

for all y iu Hnt (ZR) it follows that the function v = ~ u satisfies

for If we nov form difference quotients Vh as above with It parallel
to the boundary t = 0 we find easily that

o 0

for cp iu Hnt (,Z-R) - Setting 99 = vh and applying Garding’s inequality for

strongly elliptic operators of Lecture 3 we obtain a bound for

which is independent of h , and it follows easily that the derivatives 1)x v

are in L2, 7 hence that Dx Dm u E L2 in 

Lecture Tit. A Estimates Near the Boundary.

In the remainig time we shall discuss briefly the derivation of estimates
near the boundary for solutions of elliptic equations for simplicity, a

bounded domaiu CJ). This material is taken from a paper by Agmon,
vonglis, Nirenberg [14] which is concerned with both Schauder and Zp
estimates near the boundary for solutions satisfying general boundary
condition. As remarked in Lecture 4 the estimates for p = 2 are special
cases of more general results. We wish also to draw attention to a paper

[22] by Hörmander concerned with equations ZM==0 with constant coeffi-

cients in a half space, and solutions satisfying a number of boundary
conditions = 0 described by differential operators Bj with constant

coefficients. Flonnander characterizes nll such systems for which the solu-

tions belong to C°° on the boundary, aiid also those for which the solutions -
are analytic at the boundary.

Since the time is limited we shall restrict ourselves here to the Di-

richlet problem for a single elliptic equations of order 2 i)t

in

on

where it represents the unit normal to the boundary.
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The operator L will be required to satisfy a certain condition.
Condition on L : 1 f L’ (x, D) is the leading p(ri-t o f .L ? we require that
evet-y pair of independent real vectors ~1, ~2 the in 7:

have roots on side o .f the real 7: axis.

In tlii.ee or more dimensions this condition is autoiiiatically satisfied.

We see however that the operator a + i ~2 ill two dimensions violates(a x Y1
the condition. (This operator and others in two dimensions come under the
theory when treated as a system).

In describing the estimates we make use of the following norms and
seminorms. In lecture 2 we already met the Holder norm, for 0  a  1

For functions of classe ek in ~ we also introduce (differing from the no-

tation in Lecture 2)

where the 1. u. b. is taken over all derivatives of order k 7 and all points
in CD. Ill addition, for functions iu Ck with Holder oontinuous (exponents)
derivatives of order k, we introduce

where the max, is taken over all derivatives of order k. The space of

functions with fiiiite I [~+~ norm is denoted by Ck+a (We also use the
notation of Lecture 3 and 4).

For functions p defined on the (smooth) boundary 95 of ~D we also

have analogous nonns, defined iii a tather obvious way en terms of local

coordinates, and which we denote in the same way.
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We now summarize the results without specifyiiig the exact smooth-
ness conditions on the boundary; i k will deiaote a non-negative integer.
The integral estimates will be stated only for p = 2 .

L 2 Esti1nates: If and satisfies, for siniplicity, homogeneous
Dirichlet data, 7 i. e. = 0, and if L u E Hk, the coefficients of L belong
to Ok, then u belongs to H2tn+k and

Similar results hold jor equations in integral, or variational, 
Schauder positive a  1, u E C 2n2+a Lu E C k+a 

g9 E and the coefficients of L belong to 0 k+a, E and

Similar results hold for equations in varilttionlll form. From these one

1nay derive, ’0Y° instance, the following resttlt for solutions of L u = 0, under
suitable snloothness assumptions on the 

-If u E and Tj E = 1 , ..., m, then u E 
and

The constants in the above are independent of 1(, . In case of uniqueness
of the solution in the class considered the terms I u Ilo or may be

dropped. Miranda [23], using results of Agmon [25], has recently proved
au extended maximum principle for solutions of strongly elliptic equations
(7.1) in two diinensions, which asserts that (7.4) holds for k = a = 0 . I

believe that this holds true in general for operators satisfying the con-

dition Oll L.

The Schauder estiiiiates have a nnmber of useful consequences. With

their aid one may prove the existence of solutions of strongly elliptic
equations having merely Holder continuous coefficients. In particular~ with
the aid of (7.4) one may solve such equations with the given 4)j iu class

In addition one can also solve the Dirichlet problem for a wide

class of equations which are not strongly elliptic. Futhermore, and

this is perhaps the most useful feature of the estimates, with their

aid one may prove local parturbation theorems for nonlinear elliptic
squations. For example if is a nonlinear equa-
tion depending on a parameter A and  smoothly &#x3E;&#x3E; ou all variables,
such that the fuuctiou u. is a solution ivith, say, zero Dirichlet
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data and if the «first variation » of F at uo is a linear elliptic operator
.L which is invertible (i. e. for which the Dirichlet problem (7.1) has one
and only one solution) then for 121 I sufficiently small there exists a unique
solution Ul of the nonlinear equation with zero Dirichlet data. The estimates
also yield differentiability theorems at the boundary for solutions of non-
linear elliptic equations.

The estiinates are derived following the of Lecture 4, the
main step being the first ooe. That is, ooe considers equations (7.1) ilr a

half space Xu ] 0, for operators L with constant coefficients and only
higliest, order terms, and C°° functions u in t &#x3E; 0 vanishing outside some
sphere. This system is then treated with the aid of explicitly constructed
Poisson kernels, which will be described in the next lecture, with which
one solves the system (7.1) with f =-- 0 . With the aid of the explicit
representations for u and its derivatives so obtained the desired estimates
for this constant coefficient case are then obtained with the aid of certaiu

potential theoretic results.
~ I would like to describe these results, which I believe should prove

useful for other problems. Since we are operating in a half space 0

it is convenient to rename the coordinates, set ... , = x ~ 7 xit = t,
(t~ , ... , Xy~) = (1t , t) = P .

We consider integral transforms of functions f (x) into functions 
t&#x3E;0. Let K(x,t) be a keriiel defined in the half space t&#x3E;0 and homogeneous
of degree 1-- n . 

°

here I P ~ _ ( x I2 -~- t~)112; Assume that is continuous on the half sphere
~JP~=1, ~~&#x3E;0 and assume also (this condition can be weakened conside-
rably) that Q has continuous first derivatives on the half sphere 
together with S2 itself, are bounded in absolute value by x . In addition
we make the basic assunption

Here integration is over the unit sphere x ( =1 ~ with as element

of area.

Consider the transformation
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integration being over the entire y space. Denote the Lp norm of f by
If and that of u (x, t) in x, f’or any fixed t, by u 

THEOREM: 1. For 0  oc  1

where c depends only on a and 11,. Here the ’refer to the half space
t &#x3E; 0 for u, and the plane t --- 0 for f.

2. For every t &#x3E; 0 and 
’

I

where c depends only and n .

where c is an absolute constant. Here is defined in twrms of the

Fout’ic1" 7(~) of f by

There is an jDp analogue of 3, which is however more complicated
to state.

We call Part 1 of the theorem a result of Privaloff type. It is a

simple extension of classical results of Holder, Giraud and others, to which
it reduces if we set t = 0 . Part 2, a result of Riesz tyPO7 is a straighfor-
watd extension of recent results of Calderon and Zygmund [24], to which
it reduces if we set t = 0 . For the special case of the Hilbert transform
for ~rc = 2 it is due to Riesz, and in fact it is proved by reduction to the
Riesz result with the aid of a device of [24]. Part 3, is proved with the
aid of Fourier transforms - one shows that the Fourier transform K(~,t)

with respect to the x variables is bounded in absolute value by
constant (I + t I ~ )-1, y from which the result follows easily. Part 3 plays
an essential role in the derivation of the .~2 estimates.

Lecture VIII. The Boundary Value Problem in a Half Space;
The Poisson Kernels.

In this lecture we shall show how to solve explicity the elliptic
system (7.1) with constant coefficients for the special case of a half space.
Making a slight change of notation we shall consider the space to be
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rc + 1 dimeiisional, with the first coordinates denoted by x = ... , 

and the last coordinates by t. Iu the half we consider for sim-

plicity the homogeneous equation, with

where L is an elliptic operator of order 2 1n with only highest order terms,
satisfying the  conciition Oil L » of the previous lectnre, i. e. for fixed real

~ = (~1 , ... , ~n) # 0 the polyuoinial L (~ , z) lias exactly 1n roots -c on each
side of the real axis. ,

On t = 0 we prescribe the derivatives 
"

with the ~~ in y for simplicity.
The solution will be given in terms of kernels ... , m,

the Poisson kernels, .

where * denotes convolution. Our construction of the ~a is an extension

of the construction giveu by Agulon [25] in two diiiieiisions, n =1 ~ but it

is based on the Fritz John identity (1.6) of Lecture 1: For 0 (x) iu Co

where q is a noii-negative integer of the same parity as n, 4 is the

Laplacean, and the principal branch of the lagarithm is taken with the

plane slit along the negative real exis.

First some preliminaries. For fixed real $ # 0 denote by = z~ (~~ ~
k =1 ~ ... j m , the roots z with positive imaginary parts of jL(~r)==0~
and set

The coefficients a+ are analytic for 0, 1 and homogeneous of11

degree p. With M + we associate the polynomials (ill z)
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The following relations are easily eerified.

wbere y is a rectifiable Jordan contour in the complex i plane enclosing
all the roots r+($) in its interior; 6~’ is the Kroiiecker delta.

We can now writle down the

Poisson For j 

for

Here

and y is a Jordan contour in enclosing all the roots 1: of 

for I = 1, ; real.
Before proving that these forrnulas represent Poisson kernels we ob-

serve, with the aid of the identities

for integers, and ca, some appropriate constants, that we may represent
the functions Kj in the furm - wit,h q a non-negative integer having the

same parity as n -



158

where, for

and for

It is easily seen that and all its derivatives up to order j + q
are continuous iu the closed half space t ~ 0 .

We now prove that the kernels Kj given by (8.7 ), (8.7)’ are indeed
Poisson kernels. By inspection we see that the g~ are analytic solutions
of Eu == 0 for t &#x3E; 0. Hence defined by (8.3) is a solutiou. Setting

we shall show th-,tt uj belongs to Coo in and that

Consider any partial derivative of order 8 of Choosing all integer
q of the same parity as n, and such that q ~ s -j + 2 we have, for 

after partial integration recalling that Since, as remarked above
is continuous 111 the closed half space t &#x3E; 0 it follows that can

be extended as a continuous function 1l1 the entire closed half space 
Since s is arbitrary we have proved that uj E 000 iii t ~ 0 .
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To verify (8.11) choose q snfficiently large so that

j == 1 , ... , m . Using (8.12) we have, for t = 0 ,

after a change of variable.
Assume first that k # j . Using (8.10)’, (8.10)" we find, for t = 0 , and B

appropriate constants c’, c"

by (8.6). Thus (8.11) is proved for k =F j .
Now suppose k = j . we have, using (8.9) (8.10)’ and (8.6),

for some constant c’

where 1pq (y) is a homogeneous polynomial of degree q.
Similarly we fiml, using and (8.6)

where again Vq denotes a homogeneous polynomial of degree q.
From (8.13), (8.14)’, (8.14)" we find, after inserting the value of (3j from

(8.8), and rechanging variables, that -
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Here we have used the fact that

since is a polynotnial of degree q and is therefore annihilated by
1. By John’s identity (8.4) the right side of (8.15) equals ~’ (x) , and

the proof that the -Bj are Poisson kernels is coinplete.
We remark that the functions are actually analytic io t ~:&#x3E; 0 except

at the origin, and that for s ~ j -~- q , is homogeneous of degree
It follows from oii r proof above that if s==n+q+j-k20

then

Furbennore we see that because of the reproducing properties (8.11) of
the Kj we may assert that

or

for

With the aid of (8p16), (8.16)’ it is not difficult to establish the following
Extended Maximum The solutiolt (8.3) of the Dit’ichlet problem

(8.1), (8.2) satisfies

where the least upper bounds are ta ken with respect to all det’ivatives of order
III -1 cr,7ad, on the left, with t-es_pect to all (x, t) iaa the half space, on the

right wzth respect to cr Ll x.

This is an analogue of a special case of Miranda’s extended maximum

principle of [23]. 
’
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