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ON ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

by L. NIRENBERG (New York) (¥

Outline.

This series of lectures will touch on a number of topics in the theory
of elliptic differential equations. In Lecture I we discuss the fundamental
solution for equations with constant coefficients. Lecture .2 is concerned
with Calculus inequulities including the well known ones of Sobolev. In le-
c¢tures 3 and 4 we present the Hilbert space approach to the Dirichlet pro-
blem for strongly elliptic systems, and describe various inequalities. Lectures
5 and 6 comprise a self contained proof of the well known fact that « weak»
golutions of elliptic equations with sufficiently « smooth » coefficients are
classical solutions.

In Lectures 7 and 8 we describe some work of Agmon, Douglis,
Nirenberg [14] concerning estimates near the boundary for solutions of
elliptic equations satisfying boundary conditions. This work is based on
explicit formulas, given by Poisson kernels, for solutions of homogeneous
elliptic equation with constant coefficients in a half space.

Throughout, for simplicity we treat one equation in one unknown.
The material will on the whole be self contained, though of course not
all proofs can be included. However, we shall attempt to indicate those
of the main results.

(*) Questo eiclo di conferenze d stato tenuto a Pisa dal 1° al 10 settembre 1958, e
ha fatto parte del corso del C.I.M.E. che ha avuto per tema: «Il principio di minimo
e sue applicazioni alle equazioni funzionali ». Tale corso si & svolto in collaborazione con
la Scnola Narmale Superiore e DlIstituto Matematico dell’Universita di Pisa. In questi
Annali saranno successivamente pubblicati i corsi di conferenze tenuti dai professori
C. B. Morrey e L. Bers.

1. Aanali della Scuola Norm. Sup. - Piea.



116 L. NIReNBERG : On elliptic partial

Leeture I. The Fundamental Solution.

I would like to start with a few general and somewhat unrelated
comments. In studying differential equations one is usually interested in
obtaining wunique solutions by imposing suitable boundary or initial condi-
tions, the kind depending on the so - called «type» of the equation - elliptic,
hyperbolie, etc. However, the type classification for general equations has
not been carried out, and in many cases it is not known what boundary
conditions to impose. Indeed for equations that ehange type — and we
are all familliar with the initial work in this field due to Professor Tricomi —
the nature of the boundary conditions is far from obvious.

Thus if one considers an arbitrary equation withont regard to type it
is a mnatural question to ask whether there exist solutions at all. In fact
there are occasions when one simply wants some solntions. Such ocecur
often in differential geometry. Take a well known case: to introduce
isothermal coordinates with respect to a given Riemannean metric on a
two dimensional manifold. This reduces to a local problem of finding
nontrivial solutions of a differential equation in a neighborhood of a point.

Another question is: are there solutions in the large of a given
equation. For the preceding this is answered by uniformization theory for
Riemann surfaces.

In this talk we will consider for some special cases the question: For
a given differential operator I are there solutions of Lu == f for « well
behaved » functions /. Of course equations with analytic enefficients always
have local solutions, obtained for instance by power series expansions
(Cauchy-Kowalewski).

Recently Hans Lewy [1] exhibited an equation with 0> coefficients
having no solutions ewen locally. Since it is easy to describe, we present it :

In 3-space with coordinates «, y, t, set s =« -} iy, write the Cauchy-

. 0 1 . : . .
Riemann operator ag§ — = — (ai -+ zg—) , and consider the differential
x Yy

0z 2
equation

Lu:(—a;—}—zz—a—)uzaw—(t)

0z at ot

where the right hand side is a continuous real function of ¢ alone which,

for convenience, is written as a derivative of a real fonection .
THEOREM : If there is a continuously differentiable solution w of the

equation in « neighborhood of the ovigin, then w(t) is real analytic.
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Thus for any non-analytic v there is no solution near the origin. (The
proof may be easily modified to show that there are also no « generalized
solutions »).

Proof: If we integrate 62 d 6 over a circle |zP=28=0, z=2s12¢9,

0z
we establish easily the identity

27t

fﬁi‘de_ e do.

Now set { —=s -+ it and U () :fz ud0. Integrating the equation for

over the circle we find that U satisfies

0 .0 . dvy
(08 +1—> U=27g—

or

(3‘9 i §t>(U—l—2ﬂW>—0
It follows that V()= U 4+ 2n iy is a holomorphic function of L =s -+ it
in a domain near the origin with re { =8> 0. But on s = 0 the function
U, i.e. the veal part of V, vanishes, and therefore V can be continued
analy tically across s —= 0. Hence y is analytic.

[1] Lewy ualso constructs a function F such that the equation
Lu= 1 has no «smooth» solution in the neighborhood of any point.
Lewy also conjectures that there are homogeneous equations with €= coeffi-
cients having no solutions in the neighborhood of any point,.

The simplest class of differential operators I of arbitrary type, for
which one might expect solutions u of

(L.1) Lu=f

to exist, for all well behaved functions f, are operators with constant
coefficients. In the last few years a considerable study has been made of
general differential operators with constant coefficients. (See Ehrenpreis [2],
Hormander [3], Mulgrange {4]. Solutions of (1.1) can be found, at least
locally, if one knows that a fundamental solution F of L F = ¢ (the Dirac
d function) exists, This is a (possibly generalized) function Z such that

B+ Lu=u
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for all (¢ functions % with compact support. We shall denote the class
of such functions by 0., Here * denotes convolution. Then if f is in C;°
the funetion » = E » f is a solution of (1.1).

Malgrange [4] and Ehrenpreis [2] proved the existence of a fundamental
solution for any differential operator with constant coefficients. However it
is not difficult to construct one explicitily, as Hérmander, and also Tréves [5],
have shown, and we ghall now describe such a construction.

First we fix our

NoTATION: We consider functions « (x) of n variables « = (x,, ..., Zy)
and denote the differentiation vector by D= (D,,..,Dy), Di=0/dx;.
The letters g, y, u, » will denote vectors = (8,,..,f,) With non-negative
integral coefficients 8;, and we set |f|= X f;. Otherwise for any vector
E=(& ,.., &), | £] will represent its Euclidean length | &[> = X | &[?, and
Ep=2&n . We write

& — p’ = ph.. ol
for convenience we sghall also, on oecasion, express a general m' order
partial derivative of a function u by D™ -y’ will denote the class of €%
fanctions with compact support.

We consider now a differential operator L of order k with constant
coefficients, which we may write as a polynomial in D of order k.

L= L (D).

In construeting the fundamental solution let us first argue in a heuristic
manner. Introduce the Fourier transform of the function u (x)

(&) =fe“"”‘5 u(x)d ez,

integration heing over the entire n-space. Then
(Dl ~s

LDy = L(i £ u(&).

So if u:E*Lu_—_jE(w——y)Lu(y)dy then

w=HE Li&uE)

or
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or

n M 2
(1.2) E{x) = (2n) / A as.
Problem : give formula (1.2) @ meaning.

In attempting to do this (and there are many ways) there are two
difficulties that ocecur. The first is the non-integrability at infinity, duo to
the fact that we are integrating over the full n-space. The second difficulty
is caused by the real roots & of the polynomial L (¢ §).

The first difficulty is easily overcome. It essentially expresses the fact
that is general H is a distribution, i.e. a finite derivative of a continuwous
function. Instead of constructing K directly we shall construct the funda-
mental solution By of the operator (1 — AN L =(1— =z DHNL (D). We

]

shall construet a fundamental solution Ey having continuous derivatives
up to any given order, by taking N sufficiently large. We may then take,
in the distribution sense,

(1.3) B=(1 — AN By,
i.e. for fin (5 the function
U = EN* (1 — A)Nf

is a solution of Lu ==Ff.
Thus we consider, for p (§)=1 - 2 &

elx-&

PO LEE

(1.4) By = (27" f

Taking N large eliminates the first difficulty, i.e. the trouble at infinity.

Now to handie the second difficully. We may assume, after a possible
rotation of coordinates, that the coefficient of D¥ in LDy is =0, say
unity. Cousider L (i&) as a polynomial in &,. We shall first integrate in
(1.4) with respect to the variable &,, keeping & = (&,..,& 1) fixed,
however we shull move the line of integration from the real line to a
parallel line lying in the complex &, plane.

For fixed real £ there arve k roots &, of L(¢& . In the strip

1 .
|dm &, | << - in the complex £, plane there is therefore a line parallel to

the real axis whose distance from any root is at least (2k 4 2)~1, as one
easily sees. Let us a choose one such line Jm &, = ¢ (&”) whose distance to
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any root is at least (4 k -+ 4)~1. The choice of ¢ (&) depends on &, but it
is easy to see that ¢ = ¢ (§’) may be chosen so as to be continuous except
on a set of & of (n — 1)-dimensional measure zero.

Setting 5 = (&)= (0, ¢ (&) we now take as definition
(1.4 E @) "f i (EHin(En) .
. VN — ) - — . ¢
o PN (E+ i) LG i)

where integration is first with vespect to &, .
Since

[PE+in@) =2 and |LGE+in) =@kt 4

we see that Hy has derivatives up to any given order, if N is large enough.
We have finally to verify that for ue€ Oy

u=EN*(1—A)NLuEfEN(x——y)(l*—-A)NLu(y)dy.

Setting (1 — AN L (D)= Ly (D), the right hand side equals

ellae—y) - (E-in) -
(275—12[[ LN@(E—l—q, dé:LN(D)u@/)dy’

Since % has compact support its Fourier transform u (§) can be extended
to complex vectors & as an entire analytic function, and since € 0 the

derivatives of % die down faster that any power of |&] as we go to infinity

in a strip | Im &| < constant. Thus, mte]changmg the order of integration
in the above, we find that it equals

—n eRE+in) . . ~ .
(27) /mLN(@(f‘Js‘“ﬂ) w(E4indé=

= (2" f e Hin) (£ - i) d§

Because of the behaviour of w of infinity we may shift the line of inte-
gration of the &, parallel to itself and find that this expression

= (2n)—nfeiw-65 EdE=u(x).
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Thus the function Hy defined by (1.4) is a fundamental solution for the
operator Ly. The desired fundameuntal solution of Lu then is given by (1.3).

One sees easily that the fundamental solution Ey given by (1.4)" has
exponential growth in the x, variable.

For further important work on fundamental solutions for equations
with constant coefficients we refer to Hormander [6].

Consgider now elliptic differential operators with constant coefficients.
These are operators I, whose leading part L” — consistiug of the terms
of highest order — satisfy

L’(&) =0 for real £3<0.

We shall have need later of the fundamental solution for a homoge-
neous elliptic operator with constant coefficients, i.e. I/ = L. For such,
of course, the fundamental solution first constructed by Herglotz is well
behaved at infinity. We shall use the following form of it, given in F.
John’s book [7].

. 1 n-q (@ - £)k+q x. £
= L T e

where integration is over the full unit sphere with d w; as the element of
area, ¢ is a non-negative integer of the same parity n, i.e. ¢ - n is even,
and the principal branch of the logarithm is taken with the plane slit
along the negative real axis.

From (1.5) we obtain as a special case, for L = A power, the following
identity which is due to F. John and used extensively in [7], represen-
ting the J function in terms of plane waves: For w in Cy°

1 rtg x . &
. =— 442 - & log ——
(1.6) u CETE {f(w &) log ; dowsru
[&]=1
In [7] Jobn derives (1.6) from the known expression for the fundamen-

tal solution for a power of the Laplacean, and then derives (1.5) from (1.6).
This may be done as follows. Suppose K (v - &) satisfies

LE@ §=@-frlog L,

then a fundamental solution of the operator I is given by
1 g
2mi)yq!

A2 | K@ &dao;.
1&l=1
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But such a K is easily found. If we set # . £ = ¢ then K (o) satisfies

L@ (- 7o) K (0) = otlog of,
a solution of which is
1 q!
reE g (o F o)

with ¢, an appropriate constant. If we insert this into the above expres-
sion for the fundamental solution of I we obtain the expression

K (o) =

n+tgq k
1 x . E)ta
2 (- §) (log r

@aiyk+q)! J L
|&]=1

3 + c}gﬂ)

which differs from (1.5) only by the term involving ¢, . But this ferm is
‘a polynomial of degree k-—n which is therefore a solution of L v =20,
and so may be ignored.

It should also be possible to derive (1.5) from the heuristic formula
(1.2). (1.5) aserts that

1 (. &Fte . &
1.7 (27” k—l—q)'f ARG log ; d wg

n+q
is a fundamental solution for the operator A4 2 I . Let us attempt to de-

rive this expression from the corresponding expression of (1.2):

n+q P &
(1.8) (—1) 2 (2m)— /|§|”+qu§ di.

Arguing heurisitically again let us modify the expression by introducing
polar coordinates in the & space

E=on, o=|&], |n|=1.

Then (1.8) becomes

(1.8) (— 1ywtat (2 gy L ik 4 o d .
L (») !

In]=1 o
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Let us now write the heuristic expression
i

©o

(1.9) [ vien 1 g—1=4—k d o

0
as a well defined contour integral

1

271

1.9y

f gex- o—1—a=k (log (— g) + ¢)
é

where the contour € is a curve which goes from 4 co in the complex p
plane, encircles the origin ecounterclockwise and returns to -+ co along
the real axis, the branch for the logarithm is the same as above, and the
constant ¢ is chosen so that

[61’0 oI (lﬂg (—o) +e¢— l;) do = 0.

e

The expressions (1.9) may be evaluated explicity, and on insertion

into (1.8)’, yields the expression (1.7). We leave the calculation to the
reader.

Lecture II. Calculus Imequalities.

A priori estimates play a central role in the theory of partial diffe-
rential equations. They are of varions kinds — pointwise estimates for
derivatives of solutions and their modulus of continuity, and estimates of,
say, L, norms of solutions and their derivatives — and it is naturally
important to understand the relationships between these various estimates.

For instance, the well known results of Sobolev assert that if -the m’th
order derivatives D™ u of a function w»(x,,..,»,) (with compact support)
are in L,, 1 <r < oo then lower order derivatives DJu, j<'m belong to
L, for some p, or, if r is sufficiently high, the DJu are bounded and
satisfy a Holder condition with a certain exponent o .

Since we shall often make use of it, let us recall here the notion of

HOLDER CONTINUITY. A function f(x) defined on a set § in a Huclidean
space satisties a Holder condition there with exponent o, 0 < a <1, if

(21 V= = e.u.p L@ =IO

x,yeS | xr—Yy Ia
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is finite. It is Holder continunous (exponent o) in a domain if it satisfies a
Holder condition with exponent a in every cempact subset of the domain.

This lecture is concerned with caleulus inequalities relating integral
and pointwise estimates of functions and their derivatives. The recent
important result of de Giorgi [11] on the differentiability of solutions
of regular variational problems seems in fact to be based on a calculus ine-
quality asserting that certain integral estimates imply Holder continuity.
‘We shall consider functions u () defined in n-dimensional Euclidean space
and belonging to Ly, and whose derivatives of ovder m belong to L,,
1<Cq, r<<oc. We shall present interpolative inequalities for the L, and
Holder norms [ ], of derivatives Diu, 0<Zj<m, for the maximal range
of p and o. Our iuequalities are a combination of, and include, those
usually called of Sobolev type (which hold also for fractional derivatives,
and rather straightforward proofs of which may be found in [8]), and fami-
liar interpolative inequalities such as ‘

M < constant M, . M,

where M; is e.u.b. of the L, norms of the derivatives of order ¢ of a
function w, i =0,1,2. The proofs use only first principles and are enti-
rely elementaty. (No attempt will be made here to obtain best constants).
The inequalities is this section were presented at the Int’e Congress in
Edinburgh August 1958, where we learned that almost equivalent results
had also been proved by E. Gagliardo.

In this lecture we shall use the following

1 .
NorTaTioN: For — oo < — <7 oo we defing the norms and seminorms
p

|wl, for functions u (x) defined in a domain ) in n-dimensional spaces:
For p >0

| 4|, = the L, norm of » in .

_—:<]|u|i9dw>lp.
D

For p < 0 set s =[—a/p|, — o ==8 4 n/p and define
|u‘p=e.u.b.[1)3u]? if «>0,

lulp=e.u.b.|l)su| if a=0,
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where ¢.u.b. is taken with respect to all partial devivatives D of order
s, and over points in D.

We define | DJ/u|, as the maximum of the | |, norms of all j-th order
derivatives of u .

‘We shall express our result for functions = defined in the entire
n-space E7". Extension to other domains will be described briefly in the
remarks after the theorem.

THEOREM : Let u belong to Ly in E" and its dervivatives of order m ,
Doy, belong to L,, 1 <<q, r<<oo. For the derivatives Diu, 0 <<j < m,
the following inequalities hold

(2.2) | D7 u|y < constant | D™ a |¢ | ]y,
where .
1 j 1 m 1
?——_n*‘i—“(T——n‘)—l—(l—“') rE

for all a in the interval

(2.3) d a1
m

(the constant depending only on n, m, j, ¢, v, a), with the following
exceptional cases

LIfj=0, rm<n,q=oco then we make the additional assumption
that either u tends to zero at infinity or w€ Ly for some finite ’qv> 0.

2. If 1 <Cr <Coc, and m —j— nfr is a non negative integer then (2.2)
holds only for a sutisfying j/m << a< 1.

We shall not give a complete proof of the theorem here but shall
indicate the main steps. First some comments.

1. The value of p is determined simply by dimensional analysis.

2. For a =1 the fact that » is contained in L, does not enter in
the estimate (2.2), and the estimate is equivalent to the results of Sobolev
(note that we permit » to be unity).

3. That j/m is the smallest possible value for ¢« may be seen by
taking w = sin 1 @, { (#) where { is in C;°: For large 1 we have | u |, =0(1),
| Diuj, =014, | D"u|, =0 (A") where no 0 can be replaced by o.

4, It will be eclear from the proof that the result holds also for »
defined in a product domain :

—oo Lo, 0y oo:s=1,.,k:t=k+F1,..,n,

and hence for any domain that can be mapped in a one-to-one way onto
such a domain by a sufficiently «nice» mapping.
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5. For a bounded domain (with «smooth» boundary) the result
holds if we add to the right side of (2.1) the term

constant |« [ .

for any Aj> 0. The constants then depend also on the domain.

6. Similar estimates hold for the L, norms of DJu on linear subs-
paces of lower dimension, for suitable p .

7. Similar interpolation inequalities also hold for fractional deriva-
tives, but their proof is not so elementary.

The theorem, in its full generality should be usefnl in treating nonli-
near problems. We mention in particular that from (2.2) for a =j/m,
q = oo it follows that the set of functions « which are bounded and have
derivatives of order m belonging to L, forms a Banach Algebra. For » =2
this is called the Schauder ring.

The proof of the theorem is elementary and contains in particular an
elementary proof for the Sobolev case a = 1. In order to prove (2.2) for
any given j one has ounly to prove it for the extreme values of a,j/m aund
unity. (If Case 2 holds some additional remark has to be made.) For in
general there is a simple

Interpolation Lemma : if — oo < A<= u<<v < co then

ot pi

v—12% —4

lu|, clul, -lul
= .7 £

where ¢ is independent of u .

The lemma is easily proved; for 2 >> 0 it is merely the usual interpo-
lation ineqnality for L, norms.

Let us turn now to the proof of the theorem, or at least to the main
points. Cousider first the Sobolev case, « =1. It suffices to consider the
case j =0, m = 1, from which the general result may then be derived.
If » > n(2.2) asserts that u satisfies a certain Hdélder condition, and an ele-

mentary proof due to Morrey has long been known. We shall sketeh it here
for functions defined in a general domain .

Definition : A domain D is said to have the strong cone property if there
exist positive constants d, 1 and a closed solid right spherical cone V of fixed
opening and height such that any points P, @ in <D (the closure of D) with

r=g|<a
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are vertices of cones Vp, Vg lying in D which are conrguent to V and
have the following property : the volume of the intersection of the sets:
Ve, Vg, and the two spheres with conters P, @ and radius | P— @], is
not less than 1| P — Q|

We now prove the assertion

If u has first devivatives in L,, » >>n, in a domain D having the strong
cone property, then for points P, in D with | — Q| <d, we have

M < constant | D u |,

|P—@| 7

where the constant depends only on d, A, V, n and »r.

(From this follows easily an estimate for [u]1 «y depending on the

p
domain).

Proof: Set s =| P — Q| and let Sp(8g) be the intersection of Vp(Vy)
with the sphere about P(Q) radius s . Set SpNSy=48. If R is a point
in § we have, on integrating with respeet to B over §,

Volume of S-]u(P)—u(Q)|§_f|u(l’)—u(R)|dR—]—
§

—l—j]u(R)—u(Q)[dR.
3

Because of the strong cone property the left hand side is not less than
Ast|u(P)—u(Q)].

The first term on the right may be estimated as follows. Introducing polar
coordinates ¢,#, about P>, where y is a unit vector, we find easily that
the first term in the right is bounded by

o

[Q“—ldw,,dgfl g—%'dggconstaut s"/l —g—g
4 Sp

r 0

dax

Qn—l

(where d w is the element of area on the unit sphere, and 4 # is the ele-

ment of volume)
d 1 r r—1
< constant s” (/l g—u d x)’ (/9(15“)"—1 dm) v

sp ¢ Sp

x
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by Holder’s inequality,

< constant . s (f\ o )_

A gimilar estimate holds for the term f|‘u(R) —u(Q)|d R, and the

result follows.
We return now to fanctions defined in the full n-space.
Suppose r < n. We shall prove a stronger formulation of (2.2), namely

1

ou
ﬁxi

r n— 1
2.4 . - -
( ). ‘“l' — 2 n—1r ;

n—1i r

For 1 < r < n (2.4) follows from the special case =1, as one readily
verifies, by simply applying the inequality for r =1 to the function
Hn—1

H—7

V=|u

and using Hoélder’s inequality in a suitable way. Thus it suf-
fices to prove (2.4) for the case r = 1.

(2.4 | <11

We shall prove (2.4) here for n = 3. One sees easily that

ol |5

wheref denotes integration along the full line through « parvallel to

L L
41902)2-(/ dws) .
3

the ¢, axis. Thus
3
> ou
2 <L —
[2u@] _<./‘6'”1
1
Integrating with respect to x, then x,, and then x; we find with the aid
of Schwarz’s inequality

ﬁn(mﬁz dx, g(f
o) (g

(1501; i=1,2,3-

du

oaf( ]2

oz,

ou
6.703

ou
EEN

Jdu

el (22
s ]

1
dacgﬂa'>2 .

.1_
2
’

T3

[Jreanans{ ] \—




and finally
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2 L [ 1 1
Sl an<( [l ool UL o U ol
that is, (2.4Y.

For general n the inequality is proved in the same way with the aid
of Holder’s inequality.

Suppose finally, for j=0, m =1, that » == ; this is the exceptional
case 2, We claim that

Jau
0wy

ou

ou
oz,

dx,

- g
|u|p§ costant | Dw | » |u|pp 0<g<p< oo

where the constant depends only n, ¢ and p. It suffices to show this for
large p and this is easily done by appliyng (2.4) to the function
v =|u |[P0—1" and using Holder’s inequality in a judicions manner.

Let us now consider the other extreme case a —j/m. It suffices to
congider the case j =1, m = 2, the general case may then be proved by
induetion on m . We elaim that the following holds

‘ 11
2 5 - 2 1 1 .
(2.5) |Dul| <c|D u\f[ui; for ?_—T—~}—?,1§q,7500,

with ¢ an absolute constant. Incidentally, as Ungar pointed out, we may
permit ¢ to be any positive number, but I shall confine myself to the case
cited, in fact to the case ¢ finite, 1 <{r < co. The general case may be
obtained by a slightly different argument, or just by letting ¢ tend to oo,
and » tend to 1 or oo in (2.5).

Inequality (2.5) follows from the corrisponding inequality in one
dimension

o\ L 2 1 1
(2.6) |uy |[Pda<eP | e | 2 Jor lulgdaps, = —=— 4 —
o ¢ p r q

which holds for the full, or half-infinite line (with ¢ an absolute constant),
by integrating with respect to the other variables and appliyng Holder's
inequality.
Our proof of (2.6), though elementary, is slightly tricky. Peter Ungar
has found another slightly longer proof which furnishes a better value for c.
The proof is based on a simple lemma which we leave as an
exercise.
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LEMMA : On an interval 1, whose lenght we also denote by A, we have

_ P Y SIS P
(2.7) f| Uy [Pd <P AT </|um |"dw>" +er i (et "> (fuq dw)q
i i i

with ¢ an absolute constant.

We shall prove that for any interval L:0<x < L the following
inequality holds

L oo =%}
19.8) flum|P(7w§2;P<f]zbmw|"dw>;(/lu quw>£.
0 0 i

(2.6) follows easily from (2.8).

In proving (2.8) we may suppose that | g, |»=1. We shall cover the
interval L by a finite number of successive intervals 1,,4,,.., each one
having as inifial point the end point of the preceding. Tor %k a fixed posi-

L . L .
tive integer, choose first the interval 1: ngg—c, and consider (2.7) for

this interval. If the first term on the right of (2.7) is greater than the
second set 1, == 1; we then have

- (L _2
fintras <ot
i

since |ty |r = 1. If however the second term of (2.7) is the greater extend
the interval 1 (keeping its left endpoint fixed) until the two terms of the

right of (2.7) become equal. Since 1| p —%)—> 0 equality of these two

terms must occur for a finite value of 1. Let 1, be the resulting interval.
‘We then have

— r P
f|1¢wlpdx§2cp(/|umm|"dw)z_r(/lulqdw)z_q.
i i

A
Starting at the end point of 1, repeat this process, keeping k fixed,
choosing A,,2;,..., until L is covered. There are clearly at most k such

intervals 1;. If we now sum our estimates for u,|Pdx we find, with
j

A



differential equations 131

the aid of Holder’s inequality (recall that %—{—%: 1) that

L oo '

- P — : P
f|uw|1"dx§2cp<%)l+p_7-k-—|—2 c”(/]um|"dw)2r-
0 0

P
-(/|u]qdm>2_q.
o

If we now let k— co the first term on the right of the preceding tends
to zero, because » > 1, and we obtain (2.8), completing the proof of (2.5).

Lecture III. The Dirichlet Problem.

We consider now elliptic differential operators, confining ourselves for
simplicity to a single equation for one unknown. Let L (x, D) be a partial
differential operator with complex valned coefficients, and let L’ be the
part of highest order. L is elliptic if there are no real characteristics, i. e.,

(3.1) I(x,8 =40, real £0.

It is easily seen that for more than two variables, n > 2, ellipticity implies
that the order k of L is even. In treating the Dirichlet problem we shall
assume that k=2m is even and that the operator is strongly elliptic,
i. e. that (efter possibly multiplying by a suitable complex function)

(3.2) Fe L' (x, &) =0, real &0,
The Dirichlet problem consists of finding a solution in a domain @ of

Lu=f in D

J .
(i)u:‘ﬁy on D, j=0,.,m—1,
on

where 8/8_7; represents differentiation normal to the boundary. Here f and
®; are given functions in ¢ and D respectively.

We shall describe here the Hilbert space approach to the Dirvichlet
problem, which is based on some form of the projection theorem, and is
reluted to the classical method of minimizing the Dirichlet integral. In its

2. Annali della Scuola Norm. Sup. - Pisg.
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present form the existence theory is mainly due to G;rding, Vishik, Browder
and others; we refer the reader to [9] and [C] for expositions and references.
This and the following lecture comprise a brief description of [9]. The
theory is based on a single L, inequality, chu-ding’s inequality, expressing
the positive definiteness of the Dirichlet integral associated with the diffe-
rential operator.

Since this approach to the Dirichlet problem requires considerable
differentiability assumptions on the coefficients we shall assume for sim-
plicity that they are of class (¢ in D and that the boundary QD is
sufficiently smooth. We shall also assume ) to be bounded. Furthermore
if the @; are sufficiently smooth we may subtract from u a function having

the same Dirichlet data as #, so we shall consider the ease where the
@; vanish

(3.3) Tu=f in Q
oV )
(—_,)u::O on D, j=0,..,m—1,
on

The Hilbert space approach yields at first « generalized solutions » of
(3.3) which we must define. A function u which belongs, say, to L, in
every compact subdomain of () is a « weak » solution of Lu = f if

(3.4) . (u, L* ¢) = (fs9)

for every ¢ which belongs to OF (D), i.e. is of the class ¢ and has
compact support in ). Here ( , ) denotes the L, scalar produet, and I*
is the formal adjoint of L. In addition to the L, norm we also introduce
the Hilbert spaces Hj(ﬁj), j a non-negative integer. These are the closures
in the norm (using the notation of Lecture I)

== i | D asf

of the spaces € (D) 07 (D). The associated norm and spaces relative to a
subdomain & will be denoted by || ||;9,HJQ,IOLQ. Clearly H, =ﬁ=L2.
We remark that for j>>+i H; c H; and the set || u||; << constant is
compact in H;.
Following Sobolev and Friedrichs we say that a function w in <0 has
strong derivatives in L, up to order j in Q)@) if ¥ belongs to H]Q(H f’) for
every compact subdomain & of ). With the aid of the results of the
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preceding lecture we see that a function in H; is continuous if 25 >n.
Funections in flm satisfy the boundary conditions of (3.3) in a generalized
sense.

We now formulate the

GENERALIZED DIRICHLET PROBLEM: Given fin H find a weak solution
u in lolm of Lu=yxf.

Using the mnotation of Lecture 1 we may write the operator I in the
form

L= 3 Dfag,Dr.

18], lyl=m

If # is a weak solution in ﬁm we may then carry out some partial inte-
gration in equation (3.4) and write it as

(3.4)  Blu,¢l=3(— 1) as, Dru, DEg)=(f,9), 9 in 05 (D).
B[u,v] is linear in «, antilinear in v and satisfies, by Schwarz’inequality
(8.5) | B, v]| << constant ||« ||u + || © ||l .

We shall agsume the strong ellipticity (3.2) to hold uniformly, i, e.
for some positive constant ¢,

Re (— 1)mw| ﬁ g, (@) EB &Y = ¢y | & [2m | & real,
y {Y|=m

for all ¢ in . Our main result is

THREOREM : For O sufficiently large the gemeralized Dirichlet problem JSor
the equation (L 4 O)u=f admits a unique solution. For the equation Lu =f
we have the Fredholm alternative.

The L, estimate on which the theorem is based is

GAORDING’S INEQUALITY : There exist constants ¢ >0 and C such that

(3.6) 363[‘?’?‘P]2$"’(L‘P,‘P)20”(p”fn_OHQQH(%

holds for every ¢ in Cy (D).

This will be proved in the next lecture. It is clear from (3.5) that the
inequality extends also to functions in lolm, and it follows from (3.6) that
the only solution in JoIm of (L4+C)u=01is u=0.

Let us now prove the theorem. Suppose first that the operator is
symmetric, i. e. Blp, @] is real. and that the constant ¢ in (3.6) vanishes
— which we may achieve by considering L 4 C in place of L. It follows
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from (3.5), (3.6) (with € = 0) that B{u, v| serves as an alternative scalar
product in the Hilbert space H,,; the norms B{u, u] and ||u ||, are equi-

valent. We gee that the antilinear functional (f, ¢) defined for all ¢ in H,,
satisfies

Lo <o T llo < [1/1o !l @ lm éc_%llfllo Bly, ¢I*

and is therefore a bounded functional. By the well known representation
theorem there exists therefore a function  in the Hilbert space H,, such that

(fy@)=Blu, ¢|;

% is then the golution of the Dirichlet problem, and we have proved the
first part of the theorem with ¢ = (. To prove the second part we write
the equation Lw = f in the form (L + O)= Cu -+ f or

w=C(L+ O tu+(L+ O f.

Since (L 4 O)~! maps H; boundedly into f[m it is completely continuous
in H,, by a previous remark, and from the Riesz theory for completely
continuous operators we derive the second part of the theorem.

Suppose now that B, ¢] is not symmetric. If we add C (¢, ¢) to B

so that it satisfies
B[(p)(p]EOll(PH%n’ qOEHmy

then we may still rely on a generalized representation theorem due to Lax
and Milgram. We conclude the lecture with this

REPRESENTATION THEOREM: Let B(x,y) be a form defined for pairs

of vector x,y in « Hilbert space H (norm| |, whick is linear in x,
antilinear in y, and satisfies

(3.7) | B(z,y) | < constant ||z || - |y .

Suppose that for some positive constant ¢ the inequality

(3.8) | B@,a) | =c| x|

holds jfor every x in H. Then every bounded antilinear functional I (x)
admits the representation

Faoy=B@w,z)= B{z,w).

For fized elements vy w which are wnique.
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Proof: For any fixed element v, B(v,x) is a bounded antilinear fun-
ctional of x and therefore admits the representation

B@,x)=,?)u

for some element y, where ( , )y denotes the scalar product in H. This
defines a mapping y= Av which is clearly linear. Letting = v and
applying (3.8) we find that

clvP<|B@,n) <@, da<llyll-lv],
or

loll<eliyll.

It follows that the operator A has a bounded inverse and that its range
is closed. Furthermore the » corresponding to any y is unique. To see that
the range of A is the whole space H suppose that 2 is orthogounal to it.
Then we have B(v,2)=0 for all ». From (3.8) it follows, by setting
v=2, that 2=0., Thus A maps onto the entire space, and therefore
every antilinear functional F(x) being of the form (y, x)y admits the
representation ¥ (x) = B (v, #). The other representation is proved in a
similar way.

Leeture IV. A Priori Estimates.

Before proving G;rdiug’s inequality let us make some general remarks
about a priori estimates. Consider a differential equation Lu = f of order
k and assume that the solution has been made unique by some auxiliary
conditions. One wants to study the inverse operator — to see, for
instance, to what class of functions the solution belongs, if f belonge to a
given class. For this problem, and also for the existence theory, a priori
inequalities play a basic role. Let us suppose that the auxiliary conditions
are homogeneous, then a typical a priori estimate would assert that for
some norm || ||

I| Dfu || << constant || Lu || Il < K.

For instance, if we know that the equation has a solution of class CK for
all f of class ¢/ then indeed, by a simple application of the closed graph
theorem, we would have

| Df w || < constant || Lu || , |pl<K—j,
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with || || the usual norm in ¢. In general if Lu has finite || || norm we
will not obtain such an inequality for K =k, rather K <Tk; that is we
cannot estimate individually all dervivatives entering in L. However I
believe that elliptic equations can be characterized as those for which one
can estimate all derivatives, i.e.

(4.1) | Dfw || << constant || Lu ||, | Bl <k,

for a wide class of norms (this is stated as a convietion not a theorem).

Congider now an elliptic equation Lu = f with sunitable homogeneous
boundary conditions. Most a priori estimates are just of the type (4.1) or,
if one does not assume uniqueness, of the form

(4.2) | DFu | < comstant (| Lu |+ lwll) | B|=rE.

Indeed much of the theory of elliptic equations is concerned with proving
such estimates for various norms || |, and proving analogous estimates
for functions with no boundary restrictions:

(4.2) | Dfw ||¥ < constant (|| L ||? + ||| |l <Fk.

Here @ is any compact subdomain of @, and the norm || ||? is considered
only for functions defined in & .

A word of caution: The estimate do not hold for the most obious
norm that one would try, namely the maximum (or €°) norm nor in general
for €7 morms, however they do hold for CVt* norms, 0 <o <1, and for
many integral norms.

‘We quote some immediate consequence of (4.2), (4.2).

1. If f and the coefficients of L are in (= then a solution of
Lu=f is also in . This follows fairly easily from (4.2).

2. Solutions of Luw— 0 with bounded norm || || form a compaet
family. This follows from (4.2) and the

Calenlus Lemma: The set || u | -+ || Du || constant is compact in the
space with || || as norm.

This lemma holds for a wide class of norms.

3. The set of solutions of Lu = 0 satisfying the boundary conditions
(so that (4.2) holds) is finite dimensional. This follows with the aid of the
Caleulus Lemma. '

I would like to describe briefly a general recipe for proving such
estimates, This consists of several steps:

1. In case of (4.2) prove it first for equations with constant coeffi-
cients and omly highest order terms, and for functions of compact support.
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In case (4.2), prove it also for such equations and for functions defined in
a half space, vanishing near infinity, and satisfiyng (on the planar boundary)
the boundary conditions. These are also assumed to have constant coeffi-
cients (i. e. to be translation invariant).

2. Now eliminate the hypothesis of compact support.

3. Extend the estimmate to variable coefficients as follows: with the
aid of a partitions of unity write the function « as a sum of functions «; with
small support, in each of which the leading coefficients are close to constants,
and treat the variation from constant as an error term, using the results
of Step 2 and the following lemma which may also be used in the proof
of Step 2.

Calculus Lemma : For appropriate constants ¢, , ¢y

(4.3) N D7 || ey || D [P [ [P ey [ ]

where for functions of compact support we may take ¢, = 0 and ¢, independent
of the support of w.

This holds for a wide class of norms.

In case the support of u; tonches the boundary, make a local change
of variable to flatten out the boundary so that Steps 1 and 2 can be applied.

The main step here is Step 1. We remark that in Step 3 we rely on
(at least) the continnity of the leading coefficients of L, or on the fact
that they differ little from constants in small domains. Because of this one
does not obtain in this way the more refined estimates requived for treating
nonlinear problems, such as those in Bers, Nirenberg [10], de Giorgi [11],
or Nash [12].

The norms for which such estimates are easiest to derive ave the L,
norms for fauctions and their derivatives, and we shall illustrate the recipe
for these by proving G;rding’s inequality in its general form.

Consider a quadratic integral form defined for (> functions with
eompaect support in a bounded domain D

(4.4) - Biu,uj= = (cz, DPu,D"uw)

18], ly|=m

and suppose that the (complex valued) coefficients cg, are continuous in D.
A necessary and sufficient condition for the existence of positive constants
¢, U so that the inequality

(4.5) =S 0 e B [, ] 4 €l u |}
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holds for all we CF (D) is that for some positive constunt e,

(4.6) Re 3 ep, 8 E =0, | & |pm for all real &.
181, lyl=m
Here the notations of Lecture 3 is used.
Proof: We prove first the sufficiency, following our recipe. The Calculus
Lemma (4.3) will be used in the form: For every &> 0 there is a constant
C (¢) such that for every (= function u with compaet support

@ lul, < ellulz, + Cf k-

This is contained in our inequalifies of Lecture 2, but is most easily proved
with the aid of Fourier transforms. ’
We consider now the different steps in proving (4.5), the Step 2 of the
recipe does not oceur here since our functions have eompact support.
1. Suppose that the ez, ave constant and vanish unless |f|=|y|=m.
‘We introduce the Fourier transform of u

J(g)zfe—iw'fu(x)dx.
By Parseval’s theorem we have
A Bfu,u) = a8 3 [ o, 00 F @ a8

2<2n>—"eof1512m @ |ae

= ¢l wlf,
proving (4.5) for this special case.
We now consider the variable coefficient case and break Step 3 into
two parts.
2. Suppose that the support of » is sufficiently small, contained,
say, in a small sphere about the origin. Then accorfing to the preceding
inequality we have

Glulfe=eBlu,ul+ R 3 | (ep, (0) — 5, @) DPu Druda—

|Bl=Iy|=m

—Re 3 foﬂ,y(x) DfuDrude.
1Bl+1rl<<2m
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If now the support of u is so small that cg, has small oscillation there
we see that the second term on the right may be bounded by

1
5 bl

The third term is trivially bounded by constant || o ||n || % |[m—1
Thus we find that

; e || wlfo < Re B [u,u] + constant || w |l || @ |-

from which follows the inequality

[| = Hgn < constant K. B [u, u] 4- constant || u H?”—l .

(4.5) now follows with the aid of (4.7). -
3. Consider now the general case. Construct a partition of unity in D,

1

I

N
%' w5 €0y,
with the support of each w; as small as desired. \Then
Re B [u,u] = 5%2[013,,, Diuw D ude=
%3162 ija}j'- cpy DPu Drudo=
= 8833 [[eg, D 3y D7 0 0) Ao - 0 ] 1)

=constant X 3 | | Di(wju)Pda—+ 4+ 0 w]|m- || %]m-1)

[Bl=m j

by the preceding Case 2,

= constant, | w | - 0 (| w [l - | 4 flues),

and the desired vesnlt now follows easily with the aid of (4.7).
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We see that the constants ¢, ¢ in (4.5) depend on ¢,, an upper
bound for the |¢g,|, and on the modulus of continuity of the leading
csy With || =]y | =m, and finally on the domain Q.

Now for the proof of the nacessity of (4.6). Suppose that (4.5) holds
and that the left hand side of (4.5) vanishes for some real £=4¢", |£|'=1,

and some point in ), say the origin. TFollowing the ergument in Step 2
in the proof of sufficiency we see that the inequality

(4.5 || ul[3 = constant (éfia " ﬁ‘zm 5y (0) DFu DPuwdaw 4 || u Hé)

holds for all C<wu with support in some fixed neighborhood U about the
origin and in @. Set u = "= (x) for real 1, where [ (x) is a fixed real
C>= function with support in U and in @), One sees readily that as 1 +oco
the left hand side of (4.5) is 0 (4?") und not o (4?») while the right hand
side is 0 (12»—1), so that (4.5) does not hold.

G;rding’s inequality (4.5) is at one end of a whole spectrim of inter-
esting and useful inequalities making different requirements on u at the
boundary, G;rding’s inequality making the maximal requirement -— that
all derivatives of u of order less than m vanish at the boundary. At the
other end of the spectrum is the inequality of Aronszajn [13] involving no
boundary conditions whatsoever.

Aronszajn  considers a number of differential operators IL;(x,.D),
j=1,..,N of ovder m, with coefficients continuous in the closure of a
bounded domain @, and solves the following problem : Under what con-
ditions can one assert that for all €= functions u in ) the inequality

(4.8) | w|f < constant (2 || Lyw s -+ || w5

holds, with the constant independent of «? He gives necessary and
sufficient conditions: )
(a) the operator X L; L} is elliptic, here L} is the formal adjoint of L;.
(b) At any boundary point x of @, if » is the unit normal to
@ and &£ 0 is any real vector tangent to D then the polynomials in 7,

L@, & -|—1:7_{) have no common complex root v. Here L; is the leading
part of L;,

An example of Arvonzsajn’s inequality is the following; for functions
% (x,y) in a bounded domain in the plane

f] Uy |2 dir dy << constant f(| Uy |* T |ty |2+ | 0 2) dav dy .
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Even this simple example is not trivial to prove.

Since the report of Avonszaju a number of people have coonsidered
the problem of proving (4.5) for various quadratic forms (4.4) and under
various differential boundary conditions. For one operator L; Agmon,
Douglis, Nirenberg {14], (in a fortheoming paper which will be discussed
later) have characterized these differential boundary conditions which are
m/2 in number and for which (4.8) holds. Schechter [15] has treated N
operators and general boundary conditions. Aronszajn, in unpublished work,
has treated the general problem (4.5). Also Hormander and Agmon [16]
have solved the general problem for (4.5) and general differential boundary
conditions. The proofs follow the recipe ontlined above, the main step being
the first, for functions in a half space.

We conclude the lectnre with a result that will be used in proving
the differentiability at the boundary of solutions of elliptic equations. In
the following X, denotes the hemisphere || <R, x,=0. We shall
denote the varviable w», by ¢, (&, ,...,2,-1) by  and (x,,-.. ,%,) by (z,?).

Lemma : Let w be a weak solution of a differential equation (of order k)
with, for simplicity, C> coefficients,

(4.9) Lu= X Db
- 18| <k—j~1

in the interior of a hemisphere Z g, where fp are given functions, and assume
that the plane t = 0 is nowhere characteristic, in fact that the coeflicient a of
DY in L does mot vanish. If for every 0> 0 the functions fz, DFu for
|Bl<<j, DyDiu belong to L, in Zgp_s then also the function D has
this property.

For j==1k-—1 there is mnothing to prove, as we may solve for the
fuanction D{'Hu from the differential equation (4.9) operated on by D{'H—k.
Thus we suppose j <k — 1.

The proof makes use of a well known formula giving explicitly a
smooth extension of a funetion » defined in a half space t>>0 to a function
defined in the full space:

(4.10) oy (e, ) =v(x,t) - t> 0
N

@N(w,t)=21jv(x,——jt) t<0
j=1

with the 1; chosen so that

Z(—JjFi=1, k=0,.,N—1,
i
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‘We observe that,

|| ow || = constant Il e k=0,..,N—1.

Here the norm on the left is over the full space while on the right it is
over the half space ¢t > 0. .

Proof of the Lemma: Choose a fixed 6 > 0, let {(x,?) be a fixed C=
funetion with support in |z > 4 ¢* < R?® and which equals one in Jp_,,
and set fau=v. If we can prove that Dtj“v belongs to L, then, since
a==0 it follows easily that DtH"lu is in L, in Xy 5. From our assumptions
we see that v is a weak solution of a differential equation of the form

(4.11) Div= 3 D}Djv,
s+ly|sk—j—1

where the wv,, belong so L,, and that derivatives D, /v and v itself
belong to L, .

For N sufficiently large we now extend the functions v, v, to nega-
tive ¢, defining vy by (4.10) and v,, v by

Vs,pN (@ 1) = Vs,p (@ t) ) t >0
Vs,y,N (¥, 1) = .21 Ai(— s vs, (@, —j 1), t<0.
=

One may then verify that the equation

k S Y
Divy =2 D Djve, N

holds in the entire space in the weak sense, and that the v, n, the deri-
vatives D, D/ vy and vy itself belong to L,.

Let us now take Fourvier transforms with respect to @ and ¢, and
write (£, ..,& 1) =2¢&, & =17. Denoting the trasform of a funetion f
by _7 we find that

(411) G oy = 3 (07 (6 & Tapn s

with o,,y, vy and |£](|£]i 4 |z|i) oy belonging to L, in the (£,7) space.’
To couclude the proof we have to show that /! 7y bélongs to L,.
To this end write

o] <] 5

A emrT o Eg e v

(4.12) |t|i+toy =
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‘We shall show that each term on the right belongs to L,. From (4’.\11) we
find that the first term on the right is bounded by

| T |k+j+1 .
12k—|—1§|2k'+12|’| [ &1 [ o5y ] -
Since s |y|=<<k—j —1 it follows that the factor of v, x is uniformly
bounded, and hence that this term belongs to L,, since the v, n do.

The second term on the right of (4.12) is bounded by

c(&|(&) |+ 1) |vn]

with ¢ an absolute constant, and hence belongs also to L,, by an earlier
remark.
This completes the proof of the Lemma,

Lecture V. The Differentiability of Weak Solutions of
Elliptic Kguations

In this and the next lecture we shall present a self contained proof of
the well known result that solutions of elliptic equations with € coeffi-
cients are of class C=.

Many proofs exist in the literature including proofs for more general
classes of equations, see Hormander [17], Malgrange [18] The proof here
seems rather straigtforward; it iy based essentially on a proof given by
Lax [19] and is closely related to proofs given in lectures by Bers [20]
and Schwartz [21] (see also [9]). We confine ourselves as before to a single
equation (not necessarily strongly elliptic) although the argument extends
also to systems.

Differentiability Theorem : If w is a locally square integrable weak solu-
tion of the elliptic equation L w = f, and f€ C> then u€ C*.

Remark : If w is a distribution solution then u — A* » for some conti-
nuous v (here A is the Laplace operator), and v» is then a weak solution
of L A*v=jf. The Theorem holds therefore for this case also.

The proof consists in showing that » has I, derivatives of all orders
in every compact snbdomain. That u € (= then follows from the Sobolev
estimates proved in Lecture 2. However since we only need a very simple
case of the Sobolev lemmas we present a sepavate proof of it here,
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Lemwa (Sobolev): In a «smooth » domain D if w has L, derivatives up
to order s in <) for s >nj2, then u is continuous in P.
In fact

s . 1/2
maxlu\ﬁK(fZlDIu[de) , §>n/2.
j—0

Proof: The first aussertion follows easily from the inequality. To prove
the inequality let ¢, be an inner point in D (for simplicity take x,==10)
and suppose there is a sphere about x, in <) with radins E. Let
farthermorl ¢ (») be a fanction in €=, equal to 1 for 0 <r < R/2, and
vanishing for »>> E. By integration along any radius from x; =0, and
by repeated partial integration we see that

R R

w (0) — —fl W, dr = const[rg—l (%) Cupr.

0 0

integrating over the unit sphere (with area () of radial directions one
finds

| Qu(0) | =] (foustfrs‘”( 0 )S(C wydax| <

ar
J\* 2 1/2
< const (f l <5> (Cuy|d x)]/?(fya(s—n) d :v)

using Schwarz inequality. For s > n/2 the last integral is finite.

If the boundary of @ is such that at any point in D there exists a
cone with a fixed opening and length contained in < then the same proof
holds ; instead of integrating over the full sphere of radial directions, we
merely integrate over the directions lying in the cone.

The proof of the Differentiability Theorem econsists mainly of a series
of simple lemmas of calculus concerned with a special situation) that of
periodic functions, and this lecture will confined to these ealculus statements.

We consider periodic functions u € ¢=° with period 27z in each x;. For
such functions the Fourier series

% = EZuE ewE E= (& . &)

(§; == integer) converges uniformly.
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By Parseval’s equality we have the following estimate for each non-
negative s

(5.1) canstant 3 (1 - | & 2 | ug |? __<:f2 | DiwfPda
& j=0

“

=< constant I (1 4| &Py | u |?
B

where the integral is taken over a period cube.
For any integer s we introduce the following scalar produet and norm,
differing slightly from our previous notation,

(w, o) = @) 2 (1 4 | &2 we vg
|| Hi = (1, u)s.

We write (v, #), = (v, ) and proceed with the
Calculus :
1. || =] is inocreasing in s. Furthermore for t, <8 <t, and any
¢ > 0 there is a constant C (&) such that

(5.2) [l <ellwll+ €] %],
Proof: For any 6 >0, o* <egol-} C(e) oh.
2. 8et p=(1—A)fu,p=(1— A v, se that ¢ = 3 uz (L 4 | £ [} 6%,

From this we find 4
(6.3) llwlls =11 @l = | (1 — A 2 [ls—ze
(5.4) (w,v)s=(u, (1 — M )y = (1 — D wu, v)_;.
As a consequence we have

. Lemma: 1f we 0=, then
(5.5) (@, 2) = (uy o)+ O (| 2 el o flemy + [ 2]l || 2 [l0)-

Proof : Assume t < 0. Using (5.4), (5.3), (5.1), and partial integration, we
find
(@u,v)=(0(1l =D g, p)=(1—NH"p,wy)

=(p,1 —DHoy) =
=(p, 0 (1 —Dty)+ 0| @ |-l wll—tms + | @ l-t—1 [ w |-0
=@, o)+ 0 wlliflolles + || %= | v .

In the case ¢t > 0 the proof is similar.



146 L. NireNBERG : On elliptic partial

3. Schwar(t)s’s inequality :

(5.6) (o) | < || % |st || @ |5t (Clear !)
In fact
6.7) o lors=1.u.5. ‘(‘ “'fstl

Proof: According to (5.6) the left side of (5.7) is not smaller than the
right side. If however we set v = (1 — AY¥ u, then, by (5.4)

(u [ U)s — (u ’(1 T A>t u’)s (’M u)s—!—t . ” . “ )
Uolloms 10— Diufloe (o flore o

proving (5.7).

We can now formm Hilbert espace H; by completing €= functions in
the mnorms || |s. For s> 0 these agree with our previous definitions.
Obviously I, H; for s >t. All the previous results hold for funections
with the appropriate noring finite, for instance (5.7). We may regard H, a8
given by a formal Fourier series with finite || ||, norm.

‘We remark that the scalar produet

(u, v)

is defined, by extension, for any functions n€¢ Hy,v€ H_;, and that any
bounded linear functional f(w) detined on H, may be represented in the form

Su)=(u,?)

with » € H_,; this follows immediately from the Fourier series representa-
tion, so that we wmay rvegard H_; as dual to H,.

Though we shall not use this, we rvemark that the closed unit ball
|wl|s <1 in H is compact in H; for s >t.
‘We continue with the calculus.
4. Consider any differential operator L of order k with (% coefficients.
Claim :
(5.8) | Lulls < const || 4 ||s1s -
More precisely

5.9) N Z s <0 K |l e+ ¢ B [0 ot

where ¢ ==¢(k,n), K is a bound for the leading coefficients, and K’ is a
bound for all coefficients and their derivatives up to order |s|.
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Proof : Since obviously || DJu,|| < const || ul||s4; it suffices, in order to
prove (5.9), to show that if a € ¢* then

(6.10) lawis<elk'| ulls+ & || wlls—

where k&’ and k¥’ are bounds for |a| and | D7 a|(j<|s]|) respectively.
Proof of (5.10): Consider first the case s§<70. Set ¢ = (1 — Ay u
w = (1 — 4)° au then we have, by (5.4), and partial integration,
lawli=ly | =(au,v) =@l —=D"¢,y).

Integrating the last by parts (— s) times we find it is not greater than

ckll@ll-sllwll—s+ ok [l @ ll-s-1-

So dividing by ||y ||—s we have, with the aid of (5.3),

[wll-s=llaul<ck| @] s+ ek | @
=ck| ul|s+ck | v]— by (5.3).
In case s >0 we have o
“au“f:(a u, (1 — A7 aw),
and may integrate by parts as above.

So L can be extended to all of H, and maps it boundedly into H, ;.
This operation of I, agrees with that of I acting on u, regarded as a
distribution.

Technical Lemma : Suppose w is a 0 real function, then
(5.11) (L (@ ), Ly = || Lo 20) [la 4 0 (|| # [lox || # srr—) -

Proof:

(L(w?w), Lu)s = (w L{(wwu)y Lu) 4 0| |stx| % |s+r—1) by (5.8)
= (L(w ), © L)+ 0 (|| w]fssie | # [lusnms) by (5.5)
== (L (0 u), L{ww)s + 0 (|| 4 |lsts || ¥ ||sx—1) DY (5.8)

To conclude this lecture we consider
Difference Quotients: For a given vector h let

h=u(m+h)—u(w)

I7]

U

3. Annalt della Scuola Norm. Sup. - Pisa.
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be the difference quotient. One verifies easily: || u (@ 4 k)|, = || u (@) ||s,
(5.12) ot s <[] o floa -

Furthermore : 1f w€ H,, w* € H, and ||u” ||, <% for each h, then || u|j,4; <F%.
Corollary : 1f w€ Hy, || ul || <k for each kb, then u € Hoyy and || u oy < k.
Proof; Let w=Zuge®¢, and let uy—= 3 uz€®*, One finds

&

|6|=N
| lless <E. Q. B D.

Lecture VI. Proof of the ])ifferentiability Theorem.

Let now L be an elliptic operator of order k. In the periodic case we
prove the Differentiability Theorem in the form

DIFFERENTIABILITY THEOREM: If wé¢Hy, Lu€ Hy 1y, then w€ Hsyy.
So it follows that if we H; and Lue Hy 4, then ne H;.

The non-periodiec case is easily reduced to this as follows; We prove
successively that » has L, first order dervivatives, then second order deri-
vatives, then second order derivatives, and so on.

To carry out this reduction let ¢ be a (= funection defined in a
neighborhood of a point and with compact support. Let v = ¢ » and extend
v and the coefficients of L as periodie functions. So

Lv=LCw=/4y

where f=C Luw, g=L({u)—{Lu; g containg only derivatives of u up
to order ¥ — 1, and so, as is easily seen with aid of (5.8) has finite
| lli=% norm.

So LveH , 5, therefore v€ H;, and so u has L, derivatives in a nei-
ghborhood of the point. Using this one repeats the argument for a smaller
neigborhood, and sees that Lv€¢ H, ;, so ve H,, and 80 on.

The proof of the Differentiability Theorem in the periodic cuse follows
easily, in turn, from the following estimate which is the analogue of G;u‘ding’s
inequality.

Basic Estimate : For any s, s,

(6.1) |} % ||s4x < constant || L u ||, + constant || u |, .

Postponing the proof of (6.1) let us prove the Differentiability Theorem.
Consgider a difference quotient u®. If I* represents the operator obtained by
replacing each coefficient in L by its difference quotient we see that Lut =
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= (Lu)» — L* u (x -+ B) Thus we have, from (6.1)
|| ||s < constant || L u® ||,_x + constant || u* ||s—
< constant || (L u) ||, + constant || L* w (x + &) ||s—
~+ constant || « || by (5.12)
< constaut || L u ||,z + constant || u ||; by (5.12), (5.8)

The desived result follows from the corollary after (5.12).
Proof of the Basic Estimate: Clearly only s, < s+ k is of interest.
The proof counsists of several steps, following our recipe, and the proof of

Gzolrding’s inequality in Lecture 4.
1. L has constant coefficients with leading terms only. Then

IILuII§=(2n>".EEIuEIZIL<5> B+ |&Py

> constant I [ug [ | £ 2 (1 | & P
§

while
[| Hi, = (2 a) g] ug 2(1 4| £ 2.
Hence '
| Lwl? 4|« ”?02 constant X | ug [2 (1 4 | & Pyt =
7

== constant || u |2, , .

2. L has varviable coeffieients with leading coefficients differing from
constant value by less than &, & sufficiently small: Let L, be the operator
with these constant coefficients. By case 1. we have

[| % |ls+% < constant || Ly u ||s + constant || u |,
< constant (|| Lu s + || (Ly — Lu) ||5) + constant || w ||,
< constant || L u ||; + constant ¢ || u || - constant ||« ||,

< constant || Zwl|s + constant & || u |[s4% + -:13— Il ¢ [|s+% ~ constant || « ||,
’ by (5.2),

from which (6.1) follows.

Note : If « has its support in a small set then the leading coefficients,
being continuous, difrer little from constant values. So (6.1) holds in
that case,
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3. General case: Intruduce a partition of wunity over the closed
period cube

1=2w?
PR

with each w; having its support in a small region,

H U H§+Ic = (u ’ u)s—i-k = (]Z‘ w:; U, u)s+k

== Z (a)j U, wj u)s+k + 0 ( H u HS‘HC “ u Hs+k——1) by (5.5) s
.
< constant X (L w; u, Lw; us) + constant X || w; u ||§0 4 0 (|| t||st# || % ||str—1)
j J

(since ; # has its support in a small set)

= constant (L (3 w?u) Lu), 4 0 (] w |ls+k I 2 ||s_|_k_1) , by (5.11),
i

1
<constant || Lu |} + = [« +ell v,

< constant || Lu 24 o [[u [, + el w2 —, by 5.2)

from which (6.1) follows.

We conclude this lecture with some remarks concerning the differen-
tiability near the boundary of the solution of the Dirichlet problem obtai-
ned in Lecture 3. Using the notation of that lecture we vecall that the
solution of L u = f belonged to the space H,,. Since the discussion is
local we may assume that the boundary is given by x, = 0 and that we
have a solution of the equation in the hemisphere Xy (see Lecture 4). It
suffices, by Sobolev, to show that the solution u# has derivatives of all
orders in L, in 2gr_s, for fin ¢*°. We shall merely indicate the first
step — the proof that u has derivatives of order (m | 1) in L, (see [9]) —
and shall use the notation of the lemma at the end of Lecture 4. By that
lemma it sufficés to prove that derivatives of the form D, D™ u belong to
Ly, in Xp_s for any 6 > 0.

This we do with the aid of difference quotients as above. For fixed
6 >0 let { (x,t) be a C> function with support in |z |* 4 3<C R? and which
equals one in Xp_s. Since the function u satisfies

Blu, ] =(f, )
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for all ¢ in ]:'c[m (Zg) it follows that the function v = ¢ w satisfies
B v, ¢] < constant || ¢ ||,—

for suech ¢ . If we nov form difference quotients »* as above with & parallel
to the boundary =0 we find easily that

B [v*, @] < constant || ¢ ||,

for ¢ in ﬁm (Zr). Setting ¢ = v* and applying Gr-;rding’s inequality for
strongly elliptic operators of Lecture 3 we obtuin a bound for

Il 2" |l

which is independent of &, and it follows easily that the derivatives D, D" v
are in L, , hence that Dy D" wue L, in g4 5.

Lecture VII. A Priori Estimates Near the Boundary.

In the remainig time we shall discuss briefly the dervivation of estimates
near the boundary for solutions of elliptic equations in, for simplicity, a
bounded domain ¢). This material is taken from a paper by Agmon,
Douglis, Nirenberg [14] whieh is concerned with both Schauder and I,
estimates near the boundary for solutions satisfying general boundary
condition. As remarked in Lecture 4 the estimates for p = 2 are special
cases of more general results. We wish also to draw attention to a paper
[22] by Hormander concerned with equations L u =0 with constant coeffi-
cients in a half space, and solutions satisfying a number of boundary
conditions Bju = 0 described by differential operators B; with constant
coefficients. Hormander characterizes ull snch systems for which the solu-
tions belong to 0% on the boundary, and also those for which the solutions -
are analytic at the boundary.

Since the time is limited we shall restrict ourselves here to the Di-
richlet problem for a single elliptic equations of order 2 m

(7.1) Lu=yf in @
8 \i—1 .
(—_,)u:qjs onP,j=1,..,m,
on

where « represents the unit normal to the boundary.
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The operator L will be required to satisfy a certain condition.
Condition on L: If L’ (x, D) is the leading pwrt of L, we requive that
Jor every pair of independent real vectors £, & the polynomial in <

L (@, 8 47 &)

have exactly m roots on either side of the real © awis.

In three or more dimensions this condition is automatically satisfied.

2
We see however that the operator (% + @aiy) in two dimensions violates

the condition. (This operator and others in two dimensions come under the
theory when treated as a system).

In describing the estimates we make use of the following norms and
seminorms. In lecture 2 we already met the Holder norm, for 0 <o < 1

e Ta]? — |w(P)—u(Q)|
[#]e = [u]® = 1.131‘1(.9:; “P—QF

For functions of classe C* in () we also introduce (differing from the mno-
tation in Lecture 2)

”

[wp =1 w.b.|D*u |
k
lule= 2 [u];
j=0

where the 1. u.b. is takén over all derivatives of order k, and all points

in @. In addition, for fanctions in C* with Holder oontinuous (exponent o)
derivatives of order %k, we introduce

[#]kya = max [D* u],,
| % [ita == | # [& 4 [*]tta

where the max, is taken over all derivatives of order k. The space of
functions with finite | |44, norm is denoted by (k+e(Q). (We also use the
notation of Lecture 3 and 4).

For functions ¢ defined on the (smooth) boundary D of D we also
have analogous norms, defined in a tather obvious way en terms of loecal
coordinates, and which we denote in the same way,
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We now summarize the results without specifying the exact smooth-
ness conditions on the boundary; %k will denote a non-negative integer.
The integral estimates will be stated only for p = 2.

L, Estimates: If u€¢H,, and satisfies, for simplicily, homogyeneous
Dirichlet data, i.e. ;= 0, and if Lu€ Hy, and the coefficients of L belong
to C¥, then u belongs to Haypqr and

(7.2) [| ¢ [Jamtr < constant (|| Lu |+ || «||o) -

Similar results hold for equations in integral, or variational, form.
Schauder BEstimates : If for some positive o, << 1,u€ O 22+e (D), Lue ¢¥+e (Q),
@ € O2mrktl—ite and the coefficients of L belong to Ckte, then w € O 2mth+e and

(1.3) | lamtite < constant (L ulers 4 3 | @) lomgrta—ijta 1 | # o) -
J

&

Similar results hold for equations in variational form. From these one
may derive, dor instance, the following result for solutions of Lu = 0, under
suitable smoothness assumptions on the coafficients :

If we ¢m—1+e(D) and @; € Om—ithte j=1 .. ,m, then u € Om—itkta (D)
and

(7.4) | u l'”—l -l-lc-l—a_<__ canstant (Z l Pj IM—f+k+“ + I u |0) .

The constants in the above are independent of « . In case of uniqueness
of the solution in the class considered the terms ||u||, or |u|, may be
dropped. Miranda [23], using results of Agmon [25], has recently proved
an extended maximum principle for solutions of strongly elliptic equations
(7.1) in two dimensious, which asserts that (7.4) holds for A =a=0.1
believe that this holds true in general for operators satisfying the con-
dition on L.

The Schauder estimates have a number of useful consequences. With
their aid one may prove the existence of solutions of strongly elliptic
equations having merely Holder continuous coefficients. In particular, with
the aid of (7.4) one may solve such equations with the given @; in class
Om—ite,

In addition one can also solve the Dirichlet problem for u wide
class of equations which are not strongly elliptic. Futhermore, and
this is perhaps the wmost useful feature of the estimates, with their
aid one may prove local parturbation theorems for nonlinear elliptie
squations. For example if F,(x,u,..,D* u)=0 is a nonlinear equa-
tion depending on a parameter 1 and <«smoothly» on all variables,
such that for A =0 the function u, is a solution with, say, zero Dirichlet
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data, and if the «fivst variation» of F at wu, is a linear elliptic operator
L which is invertible (i.e. for which the Dirichlet problem (7.1) has one
and only one solution) then for || sufficiently small there exists a unique
solution w; of the nonlinear equation with zero Dirichlet data. The estimates
also yield differentiability theorems at the boundary for solutions of non-
linear elliptic equations.

The estimates are derived following the «recipe» of Lecture 4, the
main step being the first one. That is, one considers equations (7.1) in a
half space #, >0, for operators L with constant coefficients and only
highest, order terms, and (* functious « in ¢t >0 vanishing ountside some
sphere. This system is then treated with the aid of explicitly constructed
Poisson kernels, which will be described in the next leeture, with which
one solves the system (7.1) with f= 0. With the aid of the explieit
representations for v and its derivatives so obtained, the desired estimates
for this constant coefficient case are then obtained with the aid of certain
potential theoretic results.

I would like to describe these results, which I believe should prove
useful for other problems. Since we are operating in a half space z, >0
it is convenient to rename the coordinates, set (x),..,%. ) =x, 2, =1,
(@) yeee g ) = (X, ) = P.

‘We consider integral transforms of functions f(x) into functions w(x,t),
>0, Let K(x¢t) be a kernel defined in the half space =0 and homogeneous
of degree 1 — n. 4

_ 2@ PL,YP)

K (P)

7=
here | P| = (j& >4 ¢3!/?; Assume that £ is continuous on the half sphere
| Pl=1, t=0 and assume also (this condition can be weakened conside-

rably) that 2 has continuous first derivatives on the half sphere which,
together with (2 itself, are bounded in absolute value by x. In addition
we make the basic assumption

Q@,0)dw,=0.
|e]—=1

Here integration is over the unit sphere |x|=1, with d w, as element
of area.

Consider the transformation

u(xat)_——fK(w—'lyt)f(y)dy t>0’
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integration being over the entire y space. Denote the L, norm of f by
|f]L, s and that of w(x,?) in @, for any fixed ¢, by \u\Lp’t.
THEOREM : 1. For 0 <a <1

[u]aéc'” [f]a

where ¢ depends only on a and n. Here the norms vefer to the half space
t >0 for w, and the plane t = 0 for f.
2. For every t >0 and 1 < p < oo,

luILP,técxlfle

where ¢ depends only on p and n.

3. [[[[u(x,t)]gdwdt]llzgcx<f>_1/2

where ¢ is an absolute constant. Here {f)_y;, is defined in terms of the
Fourier transform :f(f) of f by

iy = f HERGIE I

There is an L, analogne of 3, which is however more complicated
to state.

We call Part 1 of the theorem a result of Privaloff type. It is a
simple extension of classical results of H&élder, Giraud and others, to which
it reduces if we set ¢t = 0. Part 2, a vesult of Riesz type, is a straighfor-
watd extension of recent results of Calderon and Zygmund [24], to which
it reduces if we set t = 0. For the special case of the Hilbert transform
for » =2 it is due to Riesz, and in fact it is proved by reduction to the
Riesz result with the aid of a device of [24]. Part 3, is proved with the
aid of Fourier transforms -— one shows that the Fourier transform [/{\(E,t)
of K(x,? with respect to the x variables is bounded in absolate value by
constant (1 - ¢|Z[)~!, from which the result follows easily. Part 3 plays
an essential role in the derivation of the L, estimates.

Lecture VIII. The Boundary Value Problem in a Half Space;
The Poisson Kernels.

In this lecture we shall show how to solve explicity the elliptie
system (7.1) with constant coefficients for the special case of a half space,.
Making a slight change of notation we shall consider the space to be
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n + 1 dimensional, with the first »n coordinates denoted by x = (x,,...,x,)
and the last coordinate by ¢. In the half space ¢t > 0 we consider for sim-

. . d 0 0
licity the homo ab ith Dy ={——,.., — _
plicity the homogeneous equation, wi © (6 0 8.70,,)’ D, Frh)

8.1) L(Dy,D)u=0

where L is an elliptic opervator of order 2m with ouly highest order terms,
satisfying the « condition on L » of the previous lecture, i.e. for fixed real
E= (& ,..,&)F 0 the polynomial L (&,7) has exactly m roots z on each
side of the real axis.

On t =0 we prescribe the derivatives

(8.2) Di7lu = P;(x) j=1,.u,m
with the ®; in O, for simplicity.

The solution will be given in terms of kernels K;(x,t), j=1,..,m,
the Poisson kernels,

(8.3) u(x,t):Zj[Kj(w-—-y,t)@j(y)dy_—_ZKj*(Dj,

where = denotes convolution. Qur construction of the K; is an extension
of the construction giveu by Agmon [25] in two dimensions, n =1, but it
is based on the Fritz John identity (1.6) of Lecture 1: For & (x) in Of

: ——— A+9r | | (x- &) log
(8.4) o CETIT 4 (- &) log

1 .
@Edws*u I}

1&]=1

where ¢ is a non-mnegative integer of the same parity as =, 4 is the
Laplacean, and the principal branch of the lagarithm is taken with the
plane slit along the negative real exis.

First some preliminaries. For fixed real & == 0 denote by 7k =7} (&),
k=1,..,m, the roots 7z with positive imaginary parts of L({{,7)=0,.
and set

M+E,D=a@—gr @)= 2 at@or.
I p=0 »
The coefficients aj are analytic in & for real £ & 0, aud homogeneous of
degree p. With M+ we associate the polynomials (in 7)

=1 ‘ ,
(8.5) Mt (6= F ab(@ o=, J=1,.,m.
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The following relations are easily verified.

Mm—|—1—] (é ’ T) .
8.6 1 = 0% i, k<m
(8.6) sz TEaEes dv = o, 1<j, k<

where p is a rectifiable Jordan contour in the complex t plane enclosing
all the roots (&) in its interior; 6;? is the Kronecker delta.

We can now writhe down the

Poisson Kernels: For j—1=n

Bi | (b, - s+n
(8'7) K] (w 9 t) = 2 ; ifdwf | ﬁ’T €. §+ tT)]_l—“ lOg dz 3
j&l=1 4
for j—1 <

’ j [ M;‘a_ —j .

1&]=1
Here
1
;== — i j — 1
bi @air(j—1—n)! ri—t=n
(8.8)
— 1!
‘31.2(_ 1)1a—j+1(n—])' if j—1<n,

(2 7o)
and y is a Jordan contour in Jm ¢ >0 enclosing all the roots = of M+ (&,7)
Sfor all || =1, & real.

Before proving that these formulas represent Poisson kernels we ob-
serve, with the aid of the identities

! d \* 2z z
@l [l s e e, mizo,
(8.9)

(— 1ytw d\* st Jop 2| o a0 <0, A4-pu=0
(w4 D (— 1 — ! 82) B) T Aeh =

for 1, integers, und ¢;,, some appropriate constants, that we may represent
the functions K; in the form — with ¢ a non-negative integer having the
gsame parity as n —

(8.10) K= ASY* K, (@, 1)
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where, for j — 1>un,

(j—1—mn)!
(8107 Ko = =1 T 1

j—1-+
dwe UM’:FJFI—:'W&-I—“)J : q(logw.fws_i_tI

e + cu+q,j——1—n) dTJ y

[6l=1 ¥
and for j —1<n

x (—
M i (=Ll — T

+ (. j—1+gq . t
[ | [t g0 et
€]=1

(8.10)"

M+ 1
?

It is easily seen that K;, and all its derivatives up to order j--¢
are continuous in the closed half space t = 0.

We now prove that the kernels K; given by (8.7), (8.7) are indeed
Poisson kernels. By inspection we see that the K; are analytic solutions
of Lu =0 for t > 0. Hence u defined by (8.3) is a solution. Setting

(8.3)j Uj = Kj * @j .
we shall show that wu; belongs to C® in ¢ = 0 and that

(8.11) ' D?_l U = 6}“ D;(2) for t=0, k=1,..,m.

Coungider any partial derivative of order s of u;. Choosing an integer
g of the same parity as n, and soch that ¢ =8 —j -} 2 we have, for {>>0

(8.12) Doy = D / AGTP K (@ —y 1) By (y) dy

— f DK, (w—y,t) AT ;) dy

after partial integration, recalling that &;€ 07°. Since, as remarked above,
D3 K; 4 is continuous in the closed half space ¢t = 0 it follows that D*u; can
be extended as a continuous fanction in the entire closed half space t = 0.
Since s is arbitrary we have proved that u;€ €= in t =0.
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To verify (8.11) choose ¢ sufficiently large so that ¢ >j—Lk 41,
j=1,..,m. Using (8.12) we have, for t =20,

(8.13) DF ta ~—f AP @y DF K (e —y, 0)dy
—fA“W (@ —y) Df T Ky, 0 dy,

after a change of variable.
Agsume first that % 5= j. Using (8.10), (8.10)" we find, for ¢ =0, and »
appropriate constants ¢/, ¢’/

y-£
)

+
DI Ky, 0) = ¢ f Mot1= 1 gy (y . gyi—tta (log + c") dorg =0

Mt
l&l=1 ¥

by (8.6). Thus (8.11) is proved for %k = j.
Now suppose k=j. If j — 1 >n we have, using (8.9) (8.10)" and (8.6),
for some constant ¢’

(8.14) D]t'—l Kj,q (y , 0) — |
— L= M,
‘%n) dooy [(y & <1og £ c)/ Mokt o dr}
lef=1 !
—_1—
_ﬁL_-]__q!*n) f(y 5)’1 ]()g g2 _l__ wq )
|&=1

where y, (y) is a homogeneous polynomial of degree ¢.
Similarly if j — 1 <Cn we find, using (8.10)/ and (8.6)

(=16

814 D7T'Kj,(y,0)= ;
( ) t ]q(./7 )= (n_]) q

f(y £y log L Edwk+wq

Ifl=1

where again y, denotes a homogeneous polynomial of degree ¢.
From (8.13), (8.14), (8.14)” we find, after inserting the value of g; from
(8.8), and rechanging variables, that

1

. J=1,,.
(8'15) D; Uj ({L’ ’ 0) (2ﬂ@)nq (Dpiyi o 1

AT f D; (y) f (x—9)-&2-

[§]=1

-log

(o —@y) & doog dy .
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Here we have used the fact that

f AP B )y (@ — ) dy = f D () ATy (@ —y)dy =0

since v, is a polynomial of degree q and is therefore annihilated by
ATt By Johw's identity (8.4) the rvight side of (8.15) equals ®;(¥), and
the proof that the K; are Poisson kernels is complete.

We remark that the functions K;, are actually analytic in ¢ = 0 except
at the origin, and that for s=j 4 ¢, D3K;, is howogeneous of degree

j—1-4g—s. It follows from our proof above that if s=n—4q-4-j—k=0
then

s k—1 t .
(8.16) | D, Dy K;,(x,t)| < constant . (]—m ’ k.

Furbermore we see that because of the reproducing properties (8.11) of
the K; we may assert that

D{_lKj(w,O)zo for x40,
or

. ¢
’ J=1 3 -
(8.16) Di " Kj(x,t) < constant (@ P F @e

‘With the aid of (8.16), (8.16) it is not difficult to establish the following

Extended Maximum Principle : The solution (8.3) of the Dirichlet problem
(8.1), (8.2) satisfies

Lu. b | D" lu(@,t)< constant 1. u. b. | D"ty (x, 0)]

where the least upper bounds are taken with respect to all derivatives of order
m—1 and, on the left, with respect to all (x,t) in the half space, on the
right with respect to all x .

This is an analogue of a special case of Miranda’s extended maximunm
principle of [23].



differential equations i6i

BIBLIOGRAPHY

[1] H. LewY, An example of a smooth linear partial differential equation without solution,
Annals of Math. 66 (1957) p. 155-158,

[2] L. EBRENPREIS, Solutions of some problems of division I, II. American Journal of Math
76 (1954) p. 883-903, 77 (1955) p. 286-292, The division problem for distributions. Proc.
Nat. Acad. Sei. 41-10 (1955) p. 756-758.

[3] L. HORMANDER, On the theory of general partial differential operators. Acta Math. 94
(1955) p. 160-248,

[4] B. MALGRANGE, Ewistence et approximation des solutions des équations aux dérivées partielles
et des équations de convolutions. Annales de 1/Inst. Fourier 6 (1955-6) p. 271-355.

[3] F. Twrftves, Solutions élémentaire d’équations aux dérivées particlles dépendent d’un para-
métre, C. R. Acad. Sci. Paris 242 (1956) p. 1250-1252.

[6] L. HORMANDER, Local and global properties of fundamental solutions. Math. Scandinavica
5 (1957) p. 27-39. On the division of distributions by polynomials. Arkiv. for Mat. 3 No.
53 (1958) p. 555-568.

[7] F. Joun, Plane waves and spherical means applied to partial differential equations. Inter-
scionce, New York, 1955.

[8] N. pu PLrssis, Some theorema about the Riesz fractional integral. Trans. Amer. Math.
Soe. 80 (1955) p. 124-134.

[9] L. NIRENBERG, Remarks on strongly elliptic partial differential equations, Comm. Pure
Appl. Math. 8 (1955) p. 649-675,

[10] L. BeErs, L. NIRENBERG, (a) On a representation theorem for linear elliptic systems with
discontinuous coefficients and its applications. (b) On linear and nonlinear elliptic boundary
value problems in the plane. Atti de Convegno Inter. sul. Eqnazioni alle derivate Par-
ziali, Trieste, 1954 (published 1955).

[11] DE Giorat, Sulla differenziabilita e Uanaliticitd delle estremali degli integrali multipli
regolari. Mem. della Accad. delle Scienze di Torino. Ser. 3, Vol. 3 (1957) p. 25-43.
[12] J. NasH, Cantinuity of solutions of parabolic and elliptic equations. Amer. Journ, Math,

80 (1958) p. 931-954

[13] N. ARONsZAIN, On coercive integro differential quadratic forms. Conference on Partial
Differential Equations, University of Kansas, 1954, Technieal Report No. 14, p. 94-106.

[t4] 8. AagMmoN, A. Douaris, I.. NIRENBEkG FHstimaies near the boundary for sotutions of
elliptic partial differential equations satisfying general boundary conditions I. To appear in
Comm. Pure Appl. Math, '

[15] M. SCHECHTER, Integral inequalities for partial differential operaiors and functions sati-
sfying general boundary conditions. To appear in Comm. Pure Appl. Math. Vol. 12, No. 1
(1959).

[16] 8. AeMON, The coerciveness problem jfor integro differential forms, Journal d’Analyse
Math. 6 (1958) p. 184-223,

[17] L. HORMANDER, On the interior regularity of the solutions of partial differential equations.
Comm. Pure Appl. Math. 11 (1958) p. 197-218.

[18] B. MALGRANGE, Sur une classe d’opérateurs différentiels hypoelliptiques. Bull. Soe. Math,
France. 85, 3 (1957) p. 283-306.



162 L. NIRENBURG : On elliptic partial

[19] P. D. Lax, On Cauchy's problem for hyperbolic equations and the differentiability of
solutions of elliptic equations, Comm. Pure Appl. Math. 8 (1955) p. 615 633,

[20] L. Brrs, FElliptic partial differential equations. l.ecture mnotes of the Seminar in
Applied Mathematics, University of Colorado, June 1957.

[21] L. Scuwartz, Ecuaciones diferenciales parciales elipticas, l.ectures at Bogota Colombia,
1956.

[22] L. HORMANDER, On the regularity of the solutions of boundary problems. Acta Math 99
(1958) p. 225-264.

[23] C. MirANDA, Teorema del massimo modulo e teorema di esistenza e di unicitd per il pro-
blema di Dirichlet relativo alle equazioni ellittiche in due variabili. Annali di Mat. Pura
ed Appl. Ser. 4, Vol. 46 (1958) p. 265-312.

[24] A. P. CALDERON, A. ZYGMUND, On singular integrals, Amer. Journal Math. 79 (1956)
p- 289-309.

[25] 8. AGgMON, Multiple layer potentials and the Dirichlet problem for higher order elliplic
equations in the plane I. Comm. Pure Appl. Math. 10 (1957) p. 179-239.

ADDITIONAL GENERAL BIBLIOGRAPHY

' .
[A] C. Miranpa, Equazioni alle derivate parziali di tipo ellittico, Springer, Berlin 1955.
[B] Transactions of the Symposium on Partial Differential Equations. Berkeley California,
1955, published in Comm. Pure Appl. Math,, Vol. 9, No. 3 (1956).
[C] B. MacrNEs, G. STampacconia, [ problemi al contorno per le equazioni differenziali lineari

di tipo ellittico. Annali della Scnola Norm, Sup. di Pisa Ser. 3, Vol. 12, Fasc. 3
(1958) p. 297-358. ’



