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1. Introduction

Let R" be the N-dimensional Euclidean space, let Q = R® be a bounded
(open) domain and let M be a non-empty closed subset of RY—Q. For xeR"
set

dy (x) = dist (x, M).

Let e€R, keN, 1 < p < 2. The weighted Sobolev space W*?(Q; dy, €) is
the set of all measurable functions u on Q such that

(1) lullw = (%, [ID*u(x)|"d3 (x)dx)"" < o,

la| Sk 02

where a = (ot;, ..., ay) €ENY, |o| = &, + ... +ay and the D*u are distributional
derivatives of u. The expression (1) defines a norm in W*?(Q; d,,, &) which
provided with this norm is a Banach space.

In [5] and [1] it was proved that under certain assumptions on ¢, k, p,
Q and M the space W*?(Q; d,,, ¢) is continuously embedded in another
weighted space of Sobolev type H*?(Q; d,,, £) which consists of all functions
u such that

2 Il = (3, §ID*u(o dig “~ 07 (x)dx)"” < .
lx| <k €2

(H*?P(Q; dy, €) is also a Banach space when equipped with the norm (2).)

The spaces H“?(Q; d,, ¢) are worth studying for several reasons: the
exponents of the weight d,, in (2) are less than the ones in (1), so that the
norm (2) reflects more finely the behaviour of functions; in (2) there may be
exponents of different signs, i.e. the norm (2) admits simultaneous appearance
of weights with both degeneracy and singularity; the spaces H*?(Q; dy, €)
occur in applications to boundary value problems.

[331]
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Let Wy?(R2; dy, ¢) and H%P(RQ; dy, ) be the closures of the set
Cu(Q) = veC®(Q); suppvn M = Q)

in the spaces W*?(Q;d,, ¢ and H*?(Q; d,,, ¢) respectively. In [1] it is
claimed that for all ¢€R,

H?(Q; dy, &) = WiiP (Q2; dy, €)

(the symbol < denotes continuous embedding). Unfortunately, that assertion
(Theorem 1.2 in [1]) does not hold, because the assumptions on 2 and M
are too weak and in the proof the estimate preceding (1.13) contains a
mistake. We shall give here a correct version of the theorem proving at the
same time a bit more: the embedding into H%P(Q; d,,, €). In Section 3 we
shall discuss the existence and value of traces of functions from weighted
Sobolev spaces.

2. Embeddings

Throughout this section we shall suppose that the domain Q has the segment
property outside the set M and satisfies the inner cone condition in a
neighbourhood of the boundary of the set 62— M; more precisely: There
exists an open covering {U;!3-, of Q with the following properties:

(a) If
3) UinM=0,

then there exists a vector &; € R¥ —{0} such that x+t¢;€Q for all xeU; N Q
and 0 <t <1.
(b) If

) UnMnIQ-M#0,

then there exists an open cone C; with vertex at the origin, congruent to a
given cone C, and such that (x+C) = Q for all x eU; nQ.
(c) If neither (3) nor (4) holds then U; N (02— M) = Q.

THEOREM 1. Let 1 <p < oo, keN and ¢eR. Then
H*?(2; d\,, €) = HF (R2; dy, €).

Proof. Let ueH"?(Q; d,,, ¢). Evidently, it suffices to find a sequence of
functions w,eC%(Q) converging to u in H*?(Q;d,, ¢). For h >0, xeR",
denote by B, (x) the ball in RV of radius h with center at x. Let |y;)5., be a
partition of unity on Q subordinate to the covering {U;}5-,. Put u; = uy;
and extend it by zero outside Q. Let ¢ eCZ(R") be a non-negative function
such that suppep < B,(0), [ ¢(x)dx=1 and put @,(x) =h""¢(x/h) for

[ o
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h > 0. Write 6 = mindist(U;, M), where the minimum is taken over all j
satisfying (3). For a function v on Q and t > 0 define v (x) = v(x) if dpy (x)
>t and xe, v (x) = 0 otherwise.

Take j=1,...,s.

First suppose that (3) holds. Then 6 < dy(x) < diam Q+ dist (2, M)
<o for xeU;NnQ, so that H""’(Uij; dy, €) coincides with the non-
weighted Sobolev space W*?(U; n€) and we can construct in a usual way,
by the use of translation and mollification arguments, a sequence of functions
v s €C®(RY) such that

%) suppv;, "M = Q,
(6) vjp—u;in H*?(Q;dy,e) as h—0.

Next, suppose (4). The cone C; from condition (b) can be expressed in
the form
() Ci= U 1B,(¢).

0<t<i

where ¢;eR"—10}, 0 <r <|&)|. Set 6 =r"'|{) >1 and define functions
v;,€C®(RY), h >0, by

®) vin(X) = | ou(x=y)uM(y+hr=1§)dy.
p

We shall prove that the v;, satisfy (5) and (6). The index j will be omitted.
() If xeUNnQ is such that dy(x) < 3oh, then for yeB,(x) we have
dy(y+hr ' & <dy(x)+|y—x|+hr ' || < 5ch. Hence,

b va(x) =0

and (5) holds.

(i) Let xeUnNQ be such that 30h <dp(x) <7oh. Then for
YEB +ma(x) we get oh <dy(y) <90oh, ie. dy(x) ~dy(y) ~ h (a ~ b means
that the ratio a/b is bounded from above and from below by positive
constants). Hence, if x| < k, we can write

Doy = b [ ) (S sy bt oy
N h
and

|D* v, (x)| < suplD@ ()| h~N"¥ | |u(y+hr='&)ldy
z By(x)

Se h™ Mk Ju(y)ldy.
B({ + g)p(®)
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It follows that
(10) Do, (AP () < 3 1Braan™" [ ()P () dy

B(1 + o)h(x)

S C2 M(ud%[—k) (X),

where the c; are positive constants, |B| denotes the Lebesgue measure of B
and M is the Hardy-Littlewood maximal operator defined by
Mf (x) = sup|B,(x)|™" [ [f(ldy.
t>0 By(x)

(i) Suppose that xeU nQ is such that for some [ 3> 7, loh <dy(x)
< (I+1)oh. Then y€B; +qu(x) implies 5¢h < (I—2)oh < dpy(y) < (I+3)ah, ie.
dp(x) ~ dp(y) ~ lh, and u°P(y) = u(y). Moreover, x+C.c Q by (b), which
together with (7) yields B = B,(x+hr~! &) = Q. Thus for |a| < k we have

D*vy(x) = D* [ @u(x+hr~ ' E—y)u(y)dy
B

=h""{o, (x_y+r‘l é)D“u(y)dy,
B

h
and
(1) |D*v, ()| dfP~** 1 (x) < suple@)| ™™ |  |ID*u()ld{p~**" (y)dy
' z B(1 + g)n(®)
< ¢3 M(D*udslp~**1ely(x).
Put
(12) G (x) = max M (D* ud¥p~**1*)(x).

la| <k

Since u e H*?(Q; d,,, €), the functions D*ud%f~**!* belong to L?(R) and to
L?(R™) as well. The boundedness of the maximal operator M in L?(R") now
implies that G e LP(RY) and by (9), (10), (11) we have

\.

(13) [D*v, (X)) dip~ 1l (x) € G (x), |of < k.
It suffices to select a subsequence {v, },2; of {vy}s>o such that
(14) D*v, (x) »D*u(x) for |a| <k and for ae. xeQ.

Then by the Lebesgue Dominated Convergence Theorem, (6) holds with h,
instead of h. The construction of {”h..} relies on the properties of the mollifier

and can be done in the same way as in the proof of Theorem 1.2 in [1].
Finally, if neither (3) nor (4) holds, then (02 —-M)NU; = @. We define

via(x) = [ @u(x—1»)u®® (y)dy
Py
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and proceed like in the case of (4): if dp(x) <2h, 2h <dy(x) < 4h or
lh <dp(x) <(I+1)h, 1 =>4, then (9), (10) or (11) holds respectively, and we
again construct a subsequence of {r,) converging to u in H*?(Q; dy, ¢).

" The functions w, = Z;=1 v;4, form the desired sequence.
Corol1.1ARY. Under the assumptions of Theorem 1 the embedding
H“?(Q; dy, &) & WP (Q; dy, €)

holds.

Proof. Since  is bounded, d,(x) <diamQ+dist(2, M) <oo and
llullw < cllully.

Remark 1. In other words, Theorem 1 and the corollary establish the
density of the set Cg(Q) in H*?(Q; d,, ¢) (with respect to both norms (1)
and (2)).

We got the approximation by functions smooth up to the boundary 0Q2
at the cost of relatively strong assumptions. In [7] H. Triebel proved
(without any assumptions on M and Q) that in the weighted (fractional
order) Sobolev space W=*P(Q;d\,¢) the set {f;feW P (Q;dy, ¢),
suppf NM = Q) is dense.

Let us recall the inverse embedding proved in [1].

ProrosiTiON ([1], Theorem 2.3). Let 1 <p <00, keN and e¢€R. Let
me0,1,..., N—1!, M c 0Q. Suppose that there exists an open covering
U2 o (w0 < oc) of Q with the properties:

() U;_, Ui > M, and there exists s€N such that every system of s+1
sets U; is disjoint;

(ll) Uo M= @;

(ii1) there are numbers c,, c; >0 and a system of one-to-one mappings
T: 0 -QnU;, Q=(0, )", such that

T({x€Q; Xpsy = ... = xy = 0) = M " T,

and
alx—y) <ITX)-TWI <c;lx—yl  for all x,yeQ,i=1,2,..., 0.
Then

V o HYP(Q; dy, ¢),
where

V=W-rQ:dy e ife>kp+rm—N ore<m—N,

and

V=WpQ;dy, e ife#jp+m—N,j=1,... k.
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The absence of the values ¢ =jp+m—N, j=1, ..., k in Proposition is
essential. J. Kadlec and A. Kufner [2] proved for Q with Lipschitzian
boundary and for M = dQ that if ¢ =jp—1 with some j=1, ..., k, then
WoP(2; dy, €) (= Wsg(R2; dy, €) is equivalent to the space HEP(R;dy, ¢)
of functions with the norm

R -p
llla, = ( Y [IDPu(x)rdy * e (108 p) (x)) dx
M

2l €k—j R

1/p
+ Y [ID‘u(x)l"d“M"“‘“"'"”(x)dx) <o
k-j<|a|<k 2

(R > 0 is a sufficiently large number). This result can be extended to more
gener_al domains 2 and sets M. Define H(‘_,{M(Q;du, ¢) as the closure of
Cr(Q) in HE (Q: dy, ¢).

THEOREM 2. Let p, k, €, 2 and M satisfy the assumptions of Theorem 1
and let j=1,..., k. Then

Ht’:)p(g; dM’ 8) QH&){M(Q; dM, 8) (=% W:l'p(Q; dM’ 8).

THEOREM 3. Let p, k, m, Q and M satisfy the assumptions of Proposition.
Let ¢ =jp+m—N for some j=1, ..., k. Then

WEP(Q; dy. &) & HY(Q: dy, ©).

Proof of Theorem 2 or 3 can be done step by step as the proofs of
Theorem 1 or of Proposition (Theorem 2.3 in [1]) and the corresponding
theorem in [2].

3. Traces

In this section we suppose that the domain Q has a Lipschitzian boundary,
i.e. there exist a finite number m of coordinate systems (y;, yin), Vi
=(yiy» ..., Vi.v—1) and of functions a; = a;(y/) Lipschitzian on the closures of
the (N—1)-dimensional cubes 24, = {y;; Iyl <26 for j=1,...,N—-1}
(i=1,...,m and such that: ‘

(i) for each xe€0f there is at least one i€{l,...,m} such that x
= (v, yin) and yiy = a;(y), yi€d;i = \yi; Iyl <d for j=1,...,N-1},

(ii) there exists B > 0 such that the sets B; = {(y}, yin); yi€24;, a;(y})
—2B <yin <a;(y)+2B] satisfy

Ui =B;nQ = |(yi. yin); ¥i€24;, a;(y)—2B <yin <a;(y)}
and
;= B;n 02 = (¥, yin); ¥ €24;, yin = & (y))}
i=1,...,m.
Further, let us suppose that the set M is a subset of the boundary 0. It
is easily seen that conditions (a), (b), (c) on Q and M from Section 2 are
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satisfied. Set M; = M N B;. By. L?(0£2; d\, €) we denote the space of functions
u defined a.e. on 02 and such that the surface integral

(15) '(oj I (x)|Pd (%) dS ()"
n .

is finite.
It can be proved that

16) (5§ (et @ O i, (x1 @ )],

i=1 4;

where we put dq’(x) =1, is a norm in L*(0R; d\, ¢) which is equivalent to
the norm (15).

We shall study the existence of traces on I; of functions from
H*?(Q; d\,, €) for some index i =1,..., m. If M; =, then

0 <min(B, §) <dy,(x) <diam® for xeB,

and the problem can be reduced to the non-weighted case which is well
known.

Thus, suppose M; # (. We shall omit the index i. Take x'e4 and
suppose first that (x', a(x))¢ M, i.e. dy(x', a(x)) > 0. Following the consider-
ations in the proof of Theorem 2.6 in [3] we can write for u €C® () and for

17 a(x)—min (B, d(x', a(x))) <s < a(x)
that -
(18)  |u(x', a(x))|" <277 {u(x’, )P+( | IDyu(x’, 1) dr)’}

<27 {u(x, s)P+dy(x', a(x))’” !
a(x’)
X ] IDyu(x’, t)|Pdt}.
a(x’) — dpg(x’,a(x’))

The triangle inequality and the Lipschitz property of the function a yield

1 _dy(x', a(x))
g M 0 o
(19) . 2 dy(x', 5) “

for s satisfying (17).
Integrating (18) with respect to s from a(x’)—dy(x', a(x')) to a(x’), using
estimates (19) and integrating over 4* = {x'€4; (x', a(x))¢ M} we obtain

200 [[u(x’, a(x))"ds Pt (x', a(x))dx’
< ¢ {[lu(x)|Pdig P(x)dx+ [|Dyu(x)|®d3y(x)dx].
v v

The last estimate together with Theorem 1 implies

22 — Banach Center (. 22
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Turorem 4 Ter 1 p s ceR. Then there exists a unique bounded
linear operator Z: H"P(Q; dy, &) > LP(0Q2—M; dy. e —p+1) such that Zu
= U|gn-m for all ueCy(Q).

By the same mcthod one can prove

Tovorene SoTer 1 - p- v ceR Then there exists a unique hounded
linear operator Z from HP(Q; dy, ¢) into the Lebesgue space L? on ¢Q— M

witl the weight dy " '(.\')( log --——

Now, we turn our attention to the case (X, a(x)) e M. Simple examples
show that functions from H*"(Q:d,,, ¢) for ¢ ~ p—1 may have singularities
on A — although there is a dense set of functions vanishing near M. On the
other hand. if ¢ - p—1 and ueH""(Q:d,,. ¢), then

a(x’) a(x’)
(21) [ lux, s)PdigP(x', s)ds+ [ |Dyu(x', s)Pdy(x', s)ds < o
ax’)y-p alx’y-p

for ae. x'ed. By the Holder inequality we have for a(X)—f -~s - s+h
a(y’)

lu(x', s+h)—u(x', s)|

s+h s+h

< ([ IDyulx', DIPds (<, 0 dt) " ( § dyf PO, yde)"

where the first term on the right-hand side is bounded for a.e. x’ and the
second is o(l) as h —0. Hence, the function u is uniformly continuous on
almost all lines x’ = const and there exists a finite limit
(22) lim u(x, 1) =g(x)

t ca(x’)
which must be zero because of the convergence of the first integral in (21).
Unfortunately, such considerations do not work if ¢ = p— 1. Nevertheless. we
have

ITevvia. Let 0 <a<hb<1, 0<ca< <= and 1 <p < x. Then for
each function u GH"‘”((O 1); d.., p—1) such that u(a) =a, u() = p,

(p—1'*
p

(23) - flu(X)l” +flu ()P xP~ Vdx = 2! TP ——u(b)—u(a)l’

Prooj. We shall only give a sketch of a rather technical proof. The Euler
cquation of the convex functional

d b
J(u) = Hu(x)l" +Hu(v)l"r" Ldx
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has a general solution uy(x) = Ax*+ Bx~*, where 4 = (p— 1)~ "?. If we insert
u, in J taking into account the values u,(a) = a, uy(h) = ff, we can estimate
J(u,) = minJ () from below by the right-hand side of (23).

Now, suppose that the limit (22) does not exist. Then we can choose an
oscillating sequence of values u(a,) such that a, 7 u(x’) and applying the
lemma on the intervals («,,. . d,,) we get a contradiction with (21). Hence.
the limit (22) exists and must be finite for a.e. x' because of (21).

In this way we have proved

THeOREM 6. If &€ < p—1, then functions from H*P(Q:d,, €) have zero
traces on M.

Remark 2. The results of this section can be easily reformulated for the
spaces W*P(Q; dy,, &) and W5P(RQ; dy, €), if we use Theorems 1, 2, 3 and
Proposition.

Remark 3. We treated the question of existence of traces only. The
problem of full characterization of traces by direct and inverse theorems is
still open. For certain results with M = dQ we refer eg. to [4], [6].

References

[1] D.E. Edmunds, A. Kufner and J. Rakosnik, Embeddings of Sobolet spaces with weights
of power type. Z. Anal. Anwendungen 4 (1) (1985), 25--34,

[2] J. Kadlec and A. Kufner, Characterization of functions with zero traces by integrals with
weight functions I, 11, Casopis P&st. Mat. 91 (1966), 463-471; 92 (1967). 16-28.

[3] A. Kufner, Einige Eigenschaften der Sobolevschen Riume mit Belegungsfunktion, Czechoslo-
vak Math. J. 15 (90) (1965), 597-620.

[4] S. M. Nikol’skii, Approximation of functions of several variubles and embedding theorems,
2nd ed., Nauka, Moscow 1977 (Russian).

[S]1 J. Rakosnik, On imbeddings of Soboler spaces with power-1ype weights, Proc. Conference
on Approximation Theory, Kiev 1983 (to appear).

[6] B. V. Tandit, On traces of functions from the cluss W,,, Differentsial'nye Uravnicnia 16

T (1980). 2062-2074.

[7] H. Triebel, A remark on the paper by D. E. Edmunds, A. Kufner and J. Rikosnik

“Embeddings of Soboler spuces with weights of power type”, Z. Anal. Anwendungen 4 (1)

(1985), 35 38.

Presented to the Semester
Approximation and Function Spaces
February 27-May 27, 1986



