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ON EMBEDDINGS BETWEEN CLASSICAL LORENTZ SPACES

M. CARRO, L. PICK, J. SORIA AND V. D. STEPANOV

Abstract. Let p ∈ (0,∞) , let v be a weight on (0,∞) and let Λp(v) be the classical Lorentz
space, determined by the norm ‖f ‖Λp(v) := (

∫∞
0 (f ∗(t))pv(t) dt)1/p . When p ∈ (1,∞) , this

space is known to be a Banach space if and only if v is non-increasing, while it is only equivalent
to a Banach space if and only if Λp(v) = Γp(v) , where ‖f ‖Γp(v) := (

∫∞
0 (f ∗∗(t))pv(t) dt)1/p .

We may thus conclude that, for p ∈ (1,∞) , the space Λp(v) is equivalent to a Banach space if
and only if the norm of a function f in it can be expressed in terms of f ∗∗ . We study the question
whether an analogous assertion holds when p = 1 . Motivated by this problem, we consider
general embeddings between four types of classical and weak Lorentz spaces, namely, Λp(v) ,
Λp,∞(v) , Γp(v) , Γp,∞(v) , where Λp,∞(v) and Γp,∞(v) are certain weak analogues of the
spaces Λp(v) and Γp(v) , respectively. We present a unified approach to these embeddings,
based on rearrangement techniques. We survey all the known results and prove new ones. Our
main results concern the embedding Γp,∞(v) ↪→ Λq(w) which had not been characterized so
far. We apply our results to the characterization of associate spaces of classical and weak Lorentz
spaces and we give a characterization of fundamental functions for which the endpoint Lorentz
space and the endpoint Marcinkiewicz space coincide.
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