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\S 1. Introduction.

Shapes of compact metric spaces were introduced by K. Borsuk [3]. He

generalized in [2] and [4] this concept to general metric spaces by defining

weak shapes and positions. The notions of shapes or weak shapes of spaces

give classifications of spaces coarser than homotopy type and they are deter-

mined by circumstance under which the space is embedded into an AR as a
closed set. In this paper we shall show that a given metric space $X$ is em-
bedded into an AR with a convenient structure for investigating shape theo-

retical properties of $X^{\prime}$. By making use of this embedding, for a locally com-
pact metric space $X$, it is shown that there is a locally compact $\Delta$ -space whose

weak shape is equal to $X’ s$ . In case $X$ is compact this fact has been proved

in [12] by Marde\v{s}i\v{c}-Segal approach to shape [13]. However the compactness

of a space is essential in Marde\v{s}i\v{c}-Segal approach and we can not use it for

our case. The concept of fundamental skeletons of a space is introduced.
Every $\Delta$ -space has fundamental skeletons, but it is known that there is an AR

which does not have fundamental skeletons. Finally a partial answer to a
problem concerning position raised by Borsuk [4] is given.

Throughout this paper all of spaces are metric and maps are continuous.
By an AR and an ANR we mean always an AR for metric spaces and an ANR

for metric spaces, and by dimension we imply the covering dimension.

\S 2. Embedding of spaces into ANR.

Let $X$ and $Y$ be metric spaces and let $f:X\rightarrow Y$ be a continuous map.
We define a metrizable maPping cylinder $M(X, Y, f)$ as follows. It is obtained
by identifying points $(x, 1)\in X\times\{1\}\subset X\times I$ and $f(x)\in Y$ for $x\in X$ in a topo-

logical sum $X\times I\cup Y$ , where $I=[0,1]$ . Let $p;X\times I\cup Y\rightarrow M(X, Y, f)$ be a
quotient map. We denote $p(x, t)$ for $(x, t)\in X\times I$ by $(x, t)$ and $p(y)$ for $y\in Y$

by $y$ simply. We consider $X$ and $Y$ as subsets of $M(X, Y, f)(X$ is identified

with the set $\{(x, 0):x\in X\})$ . We give $M(X, Y, f)$ the following topology. A
point $(x, t),$ $x\in X$ and $0\leqq t<1$ , has a neighborhood system consisting of all

sets of the form $U\times V$ , where $U$ and $V$ range over neighborhoods of $x$ and $t$
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in $X$ and $[0,1$ ) $=\{t;0\leqq t<1\}$ respectively. For a point $y\in Y$ , the collection

{ $W\cup f^{-1}(W)\times\{t:1/n<t<1\}$ : $W$ is a neighborhood of $y$ in $Y$ and $n=1, 2, $}
forms a neighborhood base at $y$ in $M(X, Y, f)$ . Obviously $M(X, Y, f)$ is metri-

zable and it contains $X$ and $Y$ as closed sets. If $Y$ consists of one point, then

we obtain a metrizable cone $C(X)$ over $X$. The following theorem is essentially

due to Bothe [5].

THEOREM 1. Let $X$ be a finite dimensional metric space. Then there is an
ANR $M(X)$ satisfying the following conditions.

(1) $M(X)$ contains $X$ as a closed set.
(2) $w(M(X))=w(X)$ , where $w(X)$ is the weight of $X$.
(3) dim $M(X)=\dim X+1$ .
(4) If $X$ is complete, then $M(X)$ is complete.

(5) If $X$ is locally compact, then $M(X)$ is locally compact.

PROOF. Choose a sequence of locally finite open covers $\{\mathfrak{U}_{n} : n=1, 2, \}$

of $X$ such that order of $\mathfrak{U}_{n}\leqq\dim X+1,$
$\mathfrak{U}_{n+1}>\mathfrak{U}_{n}\star$ for each $n$ and mesh $\mathfrak{U}_{n}\rightarrow 0$

$(n\rightarrow\infty)$ . Here we mean by $\mathfrak{U}>\mathfrak{V}$ (resp.
$\mathfrak{U}>*\mathfrak{V}$

) that $\mathfrak{U}$ is a refinement (resp.

star refinement) of $\mathfrak{V}$ . By $K_{n}$ we denote the nerve of $\mathfrak{U}_{n}$ with metric topology.

Take a vertex $v$ of $K_{n+1}$ and let $V$ be the element of $\mathfrak{U}_{n+1}$ corresponding to $v$ .
Let $\sigma(v)$ be the closed simplex of $K_{n}$ which is spanned by vertices correspond-

ing to all elements of $\mathfrak{U}_{n}$ containing $V$ . Map $v$ to the barycenter of $\sigma(v)$ . By

extending linearly this map we obtain a map $\pi_{nn+1}$ ; $K_{n+1}\rightarrow K_{n}$ which is a sim-
plicial map from $K_{n+1}$ into the barycentric subdivision of $K_{n}$ . The inverse
sequence $\{K_{n}, \pi_{nn+1}\}$ is called a barycentric system on the sequence $\{\mathfrak{U}_{n}\}$ by

Isbell [8]. The limit space $\lim_{\leftarrow}\{K_{n}\}$ is equal to a completion $x*$ of $X$ (cf. [14,

Theorem 14.4] and [8, Lemma 33]). Let $\mu_{n}$ : $x*\rightarrow K_{n}$ be the projection and

put $\pi_{n}=\mu_{n}|X,$ $n=1,2,$ $\cdots$ By $M(K_{n+1}, K_{n}, \pi_{nn+1})$ denote a metrizable mapping

cylinder. Consider a topological sum $N=\bigcup_{n=1}^{\infty}M(K_{n+1}, K_{n}, \pi_{nn+1})$ . For each $n$ ,

by identifying $K_{n+1}\times\{0\}$ of $M(K_{n+1}, K_{n}, \pi_{nn+1})$ and $K_{n+1}$ of $M(K_{n+2}, K_{n+1}, \pi_{n+1n+2})$

in $N$ we obtain a metrizable space $M$ in which each $M(K_{n+1}, K_{n}, \pi_{nn+1})$ has a
proper topology as a closed set. Since $\pi_{nn+1}$ is piecewise linear, $M$ is a cell

complex. Put $M(X)=M\cup X$ . Give $M(X)$ the following topology: $M$ is open

in $M(X)$ and has its proper topology. Take $x\in X$ . For $n=1,2,$ $\cdots$ , let $V$ be

an open star containing $\pi_{n}(x)$ in $K_{n}$ . For $m>n$ , consider an open set $(\pi_{nm})^{-1}V$

$\times[0,1)$ of $M(K_{m+1}, K_{m}, \pi_{mm+1})$ , where $\pi_{nm}=\pi_{nn+1}\cdots\pi_{m-1m}$ . The collection of

$openstarscontaining\pi_{n}(x)inK_{n},$

$n=1,2thesetsoftheform(\pi_{n}^{-1}(V)\cap X)\cup\bigcup_{m=n+1}^{\infty}(\pi_{n.m}.)^{-1}V\times[0,1),$
where $V$ ranges over

, forms aneighborhood base of
$x$ in $M(X)$ . Obviously $M(X)$ is a metrizable space with dim $M(X)=\dim X+1$

and contains $X$ as a closed set. For each $n$ , let $M_{n}$ be the subspace



Embeddings of spaces into ANR and shapes 535

$\bigcup_{m=1}^{n+1}M(K_{m+1}, K_{m}, \pi_{mm+1})$ of $M(X)$ , where $M_{1}=K_{1}$ . Define $\nu_{n}$ : $M(X)\rightarrow M_{n}$ by

putting
$\nu_{n}(x)=\pi_{n}(x)$ , $x\in X$ ,

$\nu_{n}(x, t)=\pi_{nm+1}(x)$ , $(x, t)\in M(K_{m+1}, K_{m}, \pi_{mm+1})$ , $m\geqq n$ ,

$\nu_{n}(x, t)=(x, t)$ , $(x, t)\in M(K_{m+1}, K_{m}, \pi_{mm+1})$ , $m<n$ .

Obviously $\nu_{n}$ is continuous. Let $U$ be an open set of $M_{n}$ and let $W=\nu_{n}^{-1}(U)$ .
It is easy to show that $U$ is a strong deformation retract of $W$ . Thus we can
know that $M(X)$ is locally contractible. Since $M(X)$ is finite dimensional, $M(X)$

is an ANR by [9, Theorem 1]. If $X$ is complete, then we can choose a sequece

of covers $\{1I_{n}\}$ used in the construction of $M(X)$ such that $X$ is equal to $x*$

$=\lim_{\leftarrow}\{K_{n}\}$ . It is easy to know that $M(X)$ has a complete $\aleph_{0}$ system of open

coverings in the sense of Frolik. From [6, Theorem 2.4] follows the complete-

ness of $M(X)$ . Finally, let $X$ be locally compact. If we choose a locally finite
open cover $\mathfrak{U}_{n},$ $n=1,2,$ $\cdots$ , such that each member of $\mathfrak{U}_{n}$ has a compact closure,

then $X=\lim_{\leftarrow}\{K_{n}\}$ and $M(X)$ is locally compact. By the construction of $M(X)$

it is obvious that $w(M(X))=w(X)$ . This completes the proof.

If we construct a metrizable cone $C(K_{1})$ over the subset $K_{1}$ of $M(X)$ , then

the union $M(X)\cup C(K_{1})$ is an AR. Hence we have

COROLLARY 1. For every finite dimensional metric space $X$ there is an
AR $M(X)$ satisfying the conditions (1) $-(4)$ in Theorem 1.

Let $Y$ be a discrete space consisting of uncountable points. Then there

does not exist a locally compact AR containing $Y$ . Hence we can not streng-

then Corollary 1 by replacing (1) $-(4)$ by (1) $-(5)$ .
COROLLARY 2. Let $\tau$ be an infinite cardinal number. For each $n=0,1,2,$ $\cdots$ ,

there is an AR $A(\tau, n)$ with $ w(A(\tau, n))=\tau$ and dim $A(\tau, n)=n+1$ such that if
$X$ is a metric space with $ w(X)\leqq\tau$ and dim $X\leqq n$ then $X$ is embedded into
$A(\tau, n)$ .

This is a consequence of Nagata [15] and Corollary 1.

\S 3. Fundamental skeletons and $\Delta$-spaces.

Let $X$ be a space and $n=0,1,2,$ $\cdots$ K. Borsuk [1] introduced the concept

of homological and homotopical n-skeletons of $X$. As a shape theoretical modi-

fication of it we introduce the following concept (see [10, p. 44]).

DEFINITION 1. Let $X$ be a space and $n=0,1,2,$ $\cdots$ By a fundamental n-

skeleton $X^{n}$ of $X$ we mean a subset of $X$ satisfying the following conditions:

(i) $X^{n}$ is a closed subset of $X$ with $\dim X^{n}\leqq n$ .
(ii) $Ifx_{0}\in X^{n}$ andi: $(X^{n}, x_{0})\rightarrow(X, x_{0})$ is the inclusion map, then the induced
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homomorphisms $i_{*}$ of $\check{H}_{k}^{c}(X^{n} : G)$ into $\check{H}_{k}^{c}(X:G)$ and of $\underline{\pi}_{k}(X^{n}, x_{0})$ into $\underline{\pi}_{k}(X, x_{0})$

are isomorphisms for $0\leqq k<n$ and epimorphisms for $k=n$ respectively. Here
$\check{H}_{*}^{c}$ is the Cech homology group with compact carriers, $G$ is an arbitrary abelian

group and $\underline{\pi}_{*}$ is the fundamental group defined in [3, \S 32].
The n-skeleton of a simplicial complex is a fundamental n-skeleton of it.

For every continuum $X$, every closed O-dimensional subset of $X$ is its fundamental

O-skeleton. If $X$ is totally disconnected and dim $X>0$ , then there is no funda-

mental O-skeleton of $X$.
EXAMPLE 1. Let $Y$ be a solenoid of Van Dantzig. Then $Y$ has a funda-

mental O-skeleton $Y^{0}$ such that $Y^{0}$ is homeomorphic to a Cantor discontinuum

and the quotient space $Y/Y^{0}$ is arcwise connected.

EXAMPLE 2. It is known that every compact ANR has a fundamental k-

skeleton for $k=0,1$ . However there is a compact ANR which has no funda-

mental k-skeleton for each $k=2,3,$ $\cdots$ Such an ANR $X$ is given by a modi-

fication of the example constructed by Borsuk [1]. Consider a 2-sphere $S^{2}$ .
Let $A$ be an arc in $S^{2}$ . Take a map $f$ from $A$ onto the Hilbert cube $Q$ . Let
$X$ be the adjunction space obtained by $S^{2},$ $Q$ and $f$. Obviously $X$ does not

have any fundamental k-skeletons for $k\geqq 2$ .
EXAMPLE 3. Consider the continua $M_{R},$ $M_{Rp},$ $M_{z_{p}}$ and $M_{Q_{p}}$ constructed

in [14, Appendix, pp. 228-230]. Each of them does not have any fundamental
l-skeleton, because any open set in it contains a l-sphere which represents

non homologous cycle.

DEFINITION 2. A metric space $X$ is said to be a $\Delta$ -sPace if there is an
inverse sequence $\{K_{n}, \pi_{nn+1}\}$ consisting of simplicial complexes $K_{n}$ with metric

topology and simplicial maps $\pi_{nn+1}$ ; $K_{n+1}\rightarrow K_{n}$ whose limit space is homeomor-
phic to $X$ (cf. [10] and [12]).

Every polytope is a $\Delta$ -space. As known in [12, Theorem 1] there is a 1-
dimensional compact AR which is not a $\Delta$ -space. For examples given above,

it is known that any solenoid of Van Dantzig is a $\Delta$ -space but each of con-
tinua $M_{R},$ $M_{Rp},$ $M_{z_{p}}$ and $M_{Q_{p}}$ and the AR in Example 2 are not.

THEOREM 2. Let $X$ be a finite dimensional locally compact metric space.
Then there is a locally compact $\Delta$ -sPace $Y$ such that $Sh_{W}(X)=Sh_{W}(Y)$ and

dim $X=\dim Y$ .
Here $Sh_{W}(X)$ is the weak shape of $X$ defined by K. Borsuk (see for defini-

tion [2, p. 79] and [4, \S 5]). In case $X$ is compact, the theorem has been

proved in [12] by using $Marde\check{s}ic^{f}$ -Segal approach to shape [13]. In this

approach by means of ANR sequences, note that the compactness of a space

is essential.

PROOF OF THEOREM 2. We shall make use of an AR $M(X)$ constructed

in the proofs of Theorem 1 and Corollary 1. Let $\mathfrak{U}_{n},$ $n=1,2,$ $\cdots$ , be a sequence
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of locally finite open covers of $X$ such that each member of $\mathfrak{U}_{n}$ has a compact

closure, order of $\mathfrak{U}_{n}\leqq\dim X+1,$
$\mathfrak{U}_{n+1}>\mathfrak{U}_{n}*$ for each $n$ and mesh of $\mathfrak{U}_{n}\rightarrow 0(n\rightarrow\infty)$ .

Let $K_{n}$ be the nerve of $\mathfrak{U}_{n}$ and let $\pi_{nn+1}$ be a simplicial map of $K_{n+1}$ into the

barycentric subdivision of $K_{n}$ such that $\{K_{n}, \pi_{nn+1}\}$ forms an inverse sequence

whose limit is $X$ (see the proof of Theorem 1). Then $M(X)$ is a union of $X$,

metrizable mapping cylinders $M(K_{n+1}, K_{n}, \pi_{nn+1}),$ $n=1,2,$ $\cdots$ , and a metrizable
cone $C(K_{1})$ over $K_{1}$ . Construct an inverse sequence $\{K_{n}^{\prime}, \mu_{nn+1}\}$ as follows. Put
$K_{n}^{\prime}=K_{n},$ $n=1,2,$ $\cdots$ Let $\mu_{nn+1}$ : $K_{n+1}\rightarrow K_{n}$ be a natural simplicial projection,

that is, a vertex $v$ of $K_{n+1}$ corresponding to an element $V\in \mathfrak{U}_{n+1}$ is mapped by

$\mu_{nn+1}$ to a vertex $w$ corresponding to an element $W\in \mathfrak{U}_{n}$ containing $V$. Then

two maps $\pi_{nn+1}$ and $\mu_{nn+1}$ of $K_{n+1}=K_{n+1}^{\prime}$ into $K_{n}=K_{n}^{\prime}$ are contiguous. Con-

sider an inverse sequence $\{K_{n}^{\prime}, \mu_{nn+1}\}$ and put $Y=\lim_{\leftarrow}\{K_{n}^{\prime}\}$ . It is easy to

know that $Y$ is a locally compact $\Delta$ -space and dim $Y=\dim X$ . By the same
argument as in the construction of $M(X)$ we can construct an AR $M(Y)$ which
is a union of $Y$, metrizable mapping cylinders $M(K_{n+1}^{\prime}, K_{n}^{\prime}, \mu_{nn+1}),$ $n=1,2,$ $\cdots$ ,

and a metrizable cone $C(K_{1}^{\prime})$ . For each $n=1,2,$ $\cdots$ , let $M_{n}^{X}=\bigcup_{m=1}^{n-1}M(K_{m+1}, K_{m}, \pi_{mm+1})$

$\cup C(K_{1})$ and $M_{n}^{Y}=_{m}U_{=1}M(K_{m+1}^{\prime}, K_{m}^{\prime}, \mu_{mm+1})\cup C(K_{1}^{\prime})n-1$ By $\nu_{n}^{X}$ ; $M(X)\rightarrow M_{n}^{X}$ and $\nu_{n}^{Y}$ ;

$M(Y)\rightarrow M_{n}^{Y}$ denote the strong deformation retractions constructed in the proof

of Theorem 1. By local compactness of $X$ and $Y$ each of $\nu_{n}^{X}$ and $\nu_{n}^{Y}$ is a per-

fect map. We define $mapsf_{n}$ : $M(X)\rightarrow M(Y)$ and $g_{n}$ : $M(Y)\rightarrow M(X),$ $n=1,2,$ $\cdots$ ,

as follows. Let $f_{n}^{\prime}$ : $C(K_{1})\cup\bigcup_{k=2}^{n}K_{2}\rightarrow C(K_{1}^{\prime})\cup\bigcup_{k=2}^{n}K_{k}^{\prime}\subset M(Y)$ be the identity map.

For $k=1,2,$ $\cdots$ , $n-1$ , let us extend $f_{n}^{\prime}$ over $M(K_{k+1}, K_{k}, \pi_{kk+1})$ . Since maps
$\pi_{kk+1}$ and $\mu_{kk+1}$ are contiguous, there is a homotopy $H:K_{k+1}\times I\rightarrow K_{k}^{\prime}$ defined

by $H(x, t)=t\cdot\pi_{kk+1}(x)+(1-t)\cdot\mu_{kk+1}(x)$ for $(x, t)\in K_{k+1}\times I$. Define $f_{n}^{\prime}$ on
$M(K_{k+1}, K_{k}, \pi_{kk+1}),$ $k=1,$ $\cdots$ , $n-1$ , by

$f_{n}^{\prime}(x, t)=(x, 2t)$ , $X\in K_{k+1}$ and $0\leqq t\leqq 1/2$ ,

$f_{n}^{\prime}(x, t)=H(x, 2t-1)$ , $x\in K_{k+1}$ and $1/2\leqq t\leqq 1$ .

We obtain a continuous map $f_{n}^{\prime}$ : $M_{n}^{X}\rightarrow M(Y)$ . Let $f_{n}=f_{n}^{\prime}\nu_{n}^{X}$ : $M(X)\rightarrow M(Y)$ .
Similarly let us define $g_{n}^{\prime}$ : $M_{?}^{Y}\rightarrow M(X)$ by

$g_{n}^{\prime}|C(K_{1}^{\prime})\cup UK_{k}^{\prime}=thek=2n$ identity,

$g_{n}^{\prime}(x, f)=(x, 2t)$ , $\chi\in K_{n+1}^{\prime}$ , $0\leqq t\leqq 1/2,$ $k=1,$ $\cdots$ , $n-1$ ,

$g_{n}^{\prime}(x, t)=(2t-1)\cdot\mu_{kk+1}(x)+(2-2t)\cdot\pi_{kk+1}(x)$ , $x\in K_{k+1}^{\prime}$ ,

$1/2\leqq t\leqq 1,$ $k=1,$ $\cdots$ , $n-1$ ,

and let $g_{n}=g_{n}^{f}\nu_{n}^{Y}$ ; $M(Y)\rightarrow M(X)$ . We obtain sequences of maps $\underline{f}=\{f_{n}\}$ : $M(X)$
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$\rightarrow M(Y)$ and $\underline{g}=\{g_{n}\}$ : $M(Y)\rightarrow M(X)$ . Let $F$ be a compact set of $X$ . Let $H_{n}$

be a finite subcomplex of $K_{n}$ consisting of all closed simplexes intersecting
$\nu_{n}^{X}(F)$ and put $F^{\prime}=Y\cap(\nu_{n}^{Y})^{-1}f_{n}(H_{n})$ , where $n$ is any positive integer. Then it

is easy to see that $F^{f}$ is a compact set of $Y$ which is $\underline{f}$-assigned to $F$ (see [4,

p. 142]). Similarly, for a compact set $F^{\prime}$ of $Y$ , if $H_{n}^{\prime}$ is a Pnite subcomplex

of $K_{n}^{\prime}$ consisting of closed simplexes intersecting $\nu_{n}^{Y}(F^{\prime})$ and we put $F=$

$X\cap(\nu_{n}^{X})^{-1}g_{n}(H_{n}^{\prime})$ , then $F$ is a compact set of $X$ being $\underline{g}$-assigned to $F^{\prime}$ . By the

definitions of $\underline{f}$ and $\underline{g}$, since $g_{n}f_{n}\cong\nu_{n}^{X}$ and $f_{n}g_{n}\cong\nu_{n}^{Y}$ for each $n$ , it is easy to

see that $\underline{g}\cdot\underline{f}\cong\underline{i}_{X,M(X)}$ and $\underline{f}\cdot\underline{g}\cong\underline{i}_{Y,M(Y)}$ , where $\underline{i}_{X,M(X)}$ and $i_{Y,M(Y)}$ are the identity

W-sequences for $X$ in $M(X)$ and for $Y$ in $M(Y)$ respectively (see [4, \S 2]).

This completes the proof.

REMARK. If we use the same argument as in the proof of [11, Theorem
2], then it is known that $Sh(X)=Sh(Y)$ for the $\Delta$ -space $Y$ constructed in

Theorem 2. Here $Sh(X)$ means the shape of $X$ defined by Fox [7].

COROLLARY 3. Let $X$ be an n-dimensional locally compact metric space.

For every $m<n$ , there is an n-dimensional $\Delta$ -sPace $Z$ such that $\check{H}_{k}^{c}(X:G)\cong$

$\check{H}_{k}^{c}(Z:G)$ for $k>m+1$ and $\check{H}_{k}^{c}(Z:G)=0$ for $k\leqq m$ , where $G$ is an arbitrary

abelian group and $\check{H}_{*}^{c}is$ the reduced \v{C}ech homology group with compact carriers.

PROOF. Let $Y$ be an n-dimensional $\Delta$ -space such that $Sh_{W}(X)=Sh_{W}(Y)$ .
Let $\{K_{k}, \pi_{kk+1}\}$ be an inverse sequence consisting of simplicial complexes and

simplicial bonding maps whose limit space is $Y$ . Let $m<n$ . Consider the

inverse sequence $\{K_{k}^{m}, \pi_{kk+1}|K_{k+1}^{m}\}$ , where $K_{k}^{m}$ is the m-skeleton of $K_{k}$ , and put

$Y^{m}=\lim_{\leftarrow}\{K_{k}^{m}\}$ . Then it is easy to see that $Y^{m}$ is a fundamental k-skeleton

of $Y$ . Let $N_{k}$ be the union of $K_{k}$ and a metrizable cone over $K_{k}^{m}$ . Extend
$\pi_{kk+1}$ ; $K_{k+1}\rightarrow K_{k}$ naturally to a simplicial map $\mu_{kk+1}$ : $N_{k+1}\rightarrow N_{k}$ . Consider the

inverse sequence $\{N_{k}, \mu_{kk+1}\}$ and put $Z=\lim_{\leftarrow}\{N_{k}\}$ . Obviously $Z$ is an n-

dimensional $\Delta$ -space satisfying the conditions of the corollary.

EXAMPLE 4. We can not remove the local compactness of $X$ in Theorem

2. Let $X$ be the set of all rational numbers in a real line. If $Y$ is a O-dimen-

sional metric space such that $Sh_{W}(Y)=Sh_{W}(X)$ , then $X$ and $Y$ are homeomor-
phic by [11, Theorem 1]. Therefore such a space $Y$ is not completely metri-
$z$able. Since every finite dimensional $\Delta$ -space is completely metrizable, $Y$ is

not a $\Delta$ -space.

Finally, we shall give a partial answer to a problem [4, (8.8)] raised by

K. Borsuk.

THEOREM 3. Let $X$ and $Y$ be finite dimensional metric spaces. Supp0se

that there exist sequences of compact sets $\{A_{k}\}$ and $\{B_{k}\}$ of $X$ and $Y$ and a
sequence of onto homeomorphisms $\{f_{k}\},$ $f_{k}$ : $X\rightarrow Y$ , satisfying the conditions;

(1) $A_{k+1}\subset IntA_{k}$ and $B_{k+1}\subset IntB_{k},$ $k=1,2,$ $\cdots$ ,
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(2) $f_{k}(A_{k})=B_{k},$ $k=1,2,$ $\cdots$ ,

(3) $f_{k}|A_{k}\cong f_{k^{\prime}}|A_{k}$ rel. Bd $A_{k}$ in $B_{k}$ , for every $k\leqq k^{f}$ ,

(4) $f_{k}|(X\backslash A_{k})=f_{k^{\prime}}|(X\backslash A_{k})$ for every $k\leqq k^{f}$ ,

where IntA is the interior of $A$ and BdA is the boundary of A. Then

Pos (X, $\bigcap_{k=1}^{\infty}A_{k}$ ) $=Pos(Y,\bigcap_{k=1}^{\infty}B_{k})$ .
For the proof we need the following lemma.

LEMMA 4. Let $X,$ $Y$ be finite dimensional metric spaces and let $\{\mathfrak{U}_{n}^{X}\}$ and
$\{\mathfrak{U}_{n}^{Y}\}$ be sequences consisting of locally finite open covers of $X$ and $Y$ respec-
tively. By $K_{n}^{X}$ and $K_{n}^{Y}$ denote the nerves of Ui and $\mathfrak{U}_{n}^{Y}$ . Let $\pi_{nn+1}^{X}$ ; $K_{n+1}^{X}\rightarrow K_{n}^{X}$

and $\pi_{nn+1}^{Y}$ : $K_{n+1}^{Y}\rightarrow K_{n}^{Y}$ be pjecewise linear maps constructed in the proof of Theo-
rem 1 for $n=1,2,$ $\cdots$ Denote by $M(X)$ and $M(Y)$ ANR’s constructed for the

inverse sequences $\{K_{n}^{X}, \pi_{nn+1}^{X}\}$ and $\{K_{n}^{Y}, \pi_{nn+1}^{Y}\}$ and put $X_{n}=X\cup UM(K_{k+1}^{X},$$ K_{k}^{X}k=n\infty$

$\pi_{kk+1}^{X})$ and $Y_{n}=Y\cup UM(K_{k+1}^{Y}, K_{k}^{Y}k=n\infty\pi_{kk+1}^{Y})$ , where $X_{1}=M(X)$ and $Y_{1}=M(Y)$ .

Let $f:X\rightarrow Y$ be a map such that $\mathfrak{U}_{n}^{X}>f^{-1}\mathfrak{U}_{n}^{Y},$ $n=1,2,$ $\cdots$ Then $f$ has an exten-
sion $f;M(X)\rightarrow M(Y)$ such that $f(X_{n})\rightarrow Y_{n}$ for each $n$ . Let $f$ and $g$ be homo-

topic maPs and let $\xi:X\times I\rightarrow Y$ be a homotopy connecting $f$ and $g$. SuPpose

that for each $n$ there is an open cover $\mathfrak{W}_{n}$ of Isuch that $\mathfrak{U}_{n}^{X}\times \mathfrak{W}_{n}>\xi^{-1}\mathfrak{U}_{n}^{Y}$ . Then

there is a homotoPy $\xi;M(X)\times I\rightarrow M(Y)$ such that $\tilde{\xi}(x, 0)=f(x)$ and $\tilde{\xi}(x, 1)=$

$\tilde{g}(x)$ for $x\in M(X)$ and $\xi(X_{n}\times I)\subset Y_{n}$ for each $n$ .
PROOF. Since $\mathfrak{U}_{n}^{X}>f^{-1}\mathfrak{U}_{n}^{Y}$ for each $n$ , there is a natural simplicial projec-

tion $\varphi_{n}$ : $K_{n}^{X}\rightarrow K_{n}^{Y}$ . Note that $\pi_{nn+1}^{Y}\varphi_{n+1}$ and $\varphi_{n}\pi_{nn+1}^{X}$ are contiguous. Hence

we can define the map $\psi_{n}$ : $M(K_{n+1}^{X}, K_{n}^{X}, \pi_{Jln+1}^{X})\rightarrow\Lambda l(K_{n+1}^{Y}, K_{\tau}^{Y}, \pi_{nn+1}^{Y})$ as follows:

$\psi_{n}(x, t)=(\varphi_{n+1}(x), 2t)$ , $x\in K_{n+1}^{X}$ and $0\leqq t\leqq 1/2$ ,

$\psi_{n}(x, t)=(2t-1)\cdot\varphi_{n}\pi_{nn+1}^{X}(x)+(2-2t)\cdot\pi_{nn+1}^{Y}\varphi_{n+1}(x)$ , $x\in K_{n+1}^{X}$

and $1/2\leqq t\leqq 1$ ,
$\psi_{n}(x)=\varphi_{n}(x)$ , $x\in K_{n}^{X}$ .

Let us dePne $f;M(X)\rightarrow M(Y)$ by $f|X=f$ and $f|M(K_{n+1}^{X}, K_{n}^{X}, \pi_{nn+1}^{X})=\psi_{n},$ $n=$

$1,2,$ $\cdots$ Obviously $f$ is a continuous extension of $f$ and $f\tilde{(}X_{n}$ ) $\subset Y_{n}$ for each $n$ .
The second assertion is proved by the same argument as in the first part and

we omit it.
PROOF OF THEOREM 3. By (3) and (4), for $k<k^{\prime}$ there is a homotopy

$\xi_{kk^{\prime}}^{X}$ : $X\times I\rightarrow Y$ such that

$\xi_{kk^{\prime}}^{X}(x, 0)=f_{k}(x)$ and $\xi_{kk^{\prime}}^{X}(x, 1)=f_{k^{\prime}}(x)$ for $x\in X$ ,

$\xi_{kk^{\prime}}^{X}(x, t)=f_{k}(x)=f_{k^{\prime}}(x)$ for $x\in X\backslash A_{k}$ .
Since $f_{k}^{-1}|B_{k}\cong f_{k^{\prime}}^{-1}|B_{k}$ rel. Bd $B_{k}$ in $A_{k}$ , there is a homotopy $\xi_{kk^{\prime}}^{Y}$ : $Y\times I\rightarrow X$ such
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that
$\xi_{kk^{}}^{Y}(y, 0)=f_{k}^{-1}(y)$ and $\xi_{kk^{\prime}}^{Y}(y, 1)=f_{k^{\prime}}^{-1}(y)$ for $y\in Y$ ,

$\xi_{kk}^{Y},(y, t)=f_{k}^{-1}(y)=f_{k^{\prime}}^{-1}(y)$ for $y\in Y\backslash B_{k},$ $k<k^{\prime}$

Let $\mathfrak{U}_{1}^{Y}$ and $\mathfrak{U}_{1}^{X}$ be locally finite open covers of $Y$ and $X$ such that mesh $\mathfrak{U}_{1}^{Y}<1$ ,

mesh $\mathfrak{U}_{1}^{X}<1$ , order of $\mathfrak{U}_{1}^{Y}=order$ of $\mathfrak{U}_{1}^{X}\leqq\dim X+1$ and $\mathfrak{U}_{1}^{X}>f_{1}^{-1}\mathfrak{U}_{1}^{Y}$. For $n=2$ ,

choose locally finite open covers $\mathfrak{U}_{2}^{X}$ and $\mathfrak{U}_{2}^{Y}$ of $X$ and $Y$ as follows;

(5) $ll_{2}^{Y}>\mathfrak{U}_{1}^{Y}\wedge f_{1}\mathfrak{U}_{1}^{X}*$

,
$\mathfrak{U}_{2}^{X}>\mathfrak{U}_{1}^{X}*$

A $f_{1}^{-1}\mathfrak{U}_{2}^{Y}\wedge f_{2}^{-1}\mathfrak{U}_{2}^{Y}$ and for some

open cover $\mathfrak{W}_{2}$ of $I\mathfrak{U}_{2}^{X}\times \mathfrak{W}_{2}>*(\xi_{12}^{X})^{-1}\mathfrak{U}_{2}^{Y}$ .

By the compactness of $A_{1}$ we can find $\mathfrak{U}_{2}^{X}$ and $\mathfrak{W}_{2}$ in (5). By repeating this
process we can find inductively sequences of locally open covers $\{\mathfrak{U}_{n}^{X}\}$ and $\{\mathfrak{U}_{n}^{Y}\}$

of $X$ and $Y$ satisfying the following conditions for $n=1,2,$ $\cdots$ ;

(6) order of $\mathfrak{U}_{n}^{X}$ , order of $\mathfrak{U}_{n}^{Y}\leqq\dim X+1$ ,

(7) mesh $\mathfrak{U}_{n}^{X}$, mesh $\mathfrak{U}_{n}^{Y}\rightarrow 0$ $(n\rightarrow\infty)$ ,

$\mathfrak{U}_{n+1}^{Y}>*\bigwedge_{t=1}^{n}f_{i}\mathfrak{U}_{n}^{X}\wedge \mathfrak{U}_{n}^{Y}$ and for some open cover $\mathfrak{W}_{n+1}^{\prime}$ of $I$

(8)

$\mathfrak{U}_{n+1}^{Y}\times \mathfrak{W}^{\prime}n+1^{*}>\bigwedge_{t=1}^{n-1}(\xi_{ii+1}^{Y})^{-1}\mathfrak{U}_{n}^{X}$ ,

$\mathfrak{U}_{n+1}^{X}>\bigwedge_{i=1}^{*n+1}f_{i}^{-1}\mathfrak{U}_{n+1}^{Y}A\mathfrak{U}_{n}^{X}$ and for some open cover $\mathfrak{W}_{n+1}$ of $I$

(9)

$\mathfrak{U}_{n+1}^{X}\times \mathfrak{W}_{n+1^{*}}>\bigwedge_{i=1}^{n}(\xi_{ii+1}^{X})^{-1}\mathfrak{U}_{n+1}^{Y}$ .

Let $K_{n}^{X}$ and $K_{n}^{Y},$ $n=1,2,$ $\cdots$ , be the nerves of $\mathfrak{U}_{n}^{X}$ and $\mathfrak{U}_{n}^{Y}$ , and let $\pi_{nn+1}^{X}$ ;

$K_{n+1}^{X}\rightarrow K_{n}^{X}$ be a piecewise linear map constructed in the proof of Theorem 1.
Similarly, define a piecewise linear map $\pi_{nn+1}^{Y}$ ; $K_{n+1}^{Y}\rightarrow K_{n}^{Y}$ . Then $\{K_{n}^{X}, \pi_{nn+1}^{X}\}$

and $\{K_{n}^{Y}, \pi_{nn+1}^{Y}\}$ are barycentric systems on $\{\mathfrak{U}_{n}^{X}\}$ and $\{\mathfrak{U}_{n}^{Y}\}$ respectively. As

in the proof of Theorem 1, construct AR’s $M(X)$ and $M(Y)$ for $\{K_{n}^{X}\}$ and

$\{K_{n}^{Y}\}$ , namely, $M(X)=X\cup C(K_{1}^{X})\cup\bigcup_{n=1}^{\infty}M(K_{n+1}^{X}, K_{n}^{X}, \pi_{nn+1}^{X})$ and $M(Y)=Y\cup C(K_{1}^{Y})$

$\cup\bigcup_{n=1}^{\infty}M(K_{n+1}^{Y}, K_{n}^{Y}, \pi_{nn+1}^{Y})$ . For each $k=1,2,$ $\cdots$ , let $C^{X}(n, k)$ and $D^{X}(n, k)$ be the

subcomplexes of $K_{n}^{X}$ spanned by vertices corresponding to elements of $\mathfrak{U}_{n}^{X}$

intersecting $A_{k}$ and $X\backslash A_{k}$ respectively. Similarly let $C^{Y}(n, k)$ and $D^{Y}(n, k)$ be

the subcomplexes of $K_{n}^{Y}$ for $B_{k}$ and $Y\backslash B_{k}$ . Put $E^{X}(n, k)=C^{X}(n, k)\cap D^{X}(n, k)$

and $E^{Y}(n, k)=C^{Y}(n, k)\cap D^{Y}(n, k)$ . Then for each $i$ and $ k\pi_{it+1}^{X}(C^{X}(i+1, k))\subset$

$C^{X}(i, k)$ and $\pi_{ti+1}^{Y}(C^{Y}(i+1, k))\subset C^{Y}(i, k)$ . For each $n$ and $k$ we put



Embeddings of spaces into ANR and shapes 541

$F^{X}(n, k)=A_{k}\cup\bigcup_{i=n}^{\infty}M(C^{x}(i+1, k),$ $C^{x}(i, k),$ $\pi_{ii+1}^{X}$),

$G^{X}(n, k)=\overline{X\backslash A_{k}}\cup\bigcup_{i=n}^{\infty}M(D^{X}(i+1, k),$ $D^{X}(i, k),$ $\pi_{ii+1}^{X}$),

$F^{Y}(n, k)=B_{k}\cup UM(C^{Y}(i+1i=n\infty k), C^{Y}(i, k), \pi_{ii+1}^{Y})$ ,

$G^{Y}(n, k)=\overline{Y\backslash B_{k}}\cup\bigcup_{i=n}^{\infty}M(D^{Y}(i+1, k),$ $D^{Y}(i, k),$ $\pi_{ii+1}^{Y}$).

Let $X_{1}=M(X)$ , $Y_{1}=M(Y)$ , $X_{n}=X\cup\bigcup_{i=n}^{\infty}M(K_{i+1}^{X}, K_{\iota}^{X}, \pi_{ii+1}^{X})$ and $ Y_{n}=Y\cup$

$i=nUM(K_{i+1}^{Y}\infty, K_{i}^{Y}, \pi_{it+1}^{Y})$ for $n>1$ . Then $F^{X}(n, k)$ and $G^{X}(n, k)$ are closed sets of

$X_{n}$ and $F^{Y}(n, k)$ and $G^{Y}(n, k)$ are closed sets of $Y_{n}$ for each $n$ and $k$ . For
$m\geqq n\geqq 1$ , since $\mathfrak{U}_{m}^{X}>f_{n}^{-1}\mathfrak{U}_{m}^{Y}$ by (9), there is an extension $\varphi_{n}^{X}$ : $X_{n}\rightarrow Y_{n}$ of $f_{n}$ :
$X\rightarrow Y$ which is given in the proof of Lemma 4. Also, for $m\geqq n>1$ , since
$\mathfrak{U}_{m+1}^{Y}>f_{n}\mathfrak{U}_{m}^{X}$ by (8), there is an extension $\varphi_{n}^{Y}$ ; $Y_{n}\rightarrow X_{n-1}$ of $f_{n-1}^{-1}$ : $Y_{n}\rightarrow X$ . From

the definition of $\varphi_{n}^{X}$ and $\varphi_{n}^{Y}$ it follows that

$\varphi_{n}^{X}(K_{m}^{X})\subset K_{m}^{Y}$ , $\varphi_{n}^{Y}(K_{m}^{Y})\subset K_{m-1}^{X}$ ,

$\varphi_{n}^{X}(M(K_{m+1}^{X}, K_{m}^{X}, \pi_{mm+1}^{X}))\subset M(K_{m+1}^{Y}, K_{m}^{Y}, \pi_{mm+1}^{Y})$ for $m\geqq n$ ,

$\varphi_{n}^{Y}(M(K_{m+1}^{Y}, K_{m}^{Y}, \pi_{mm\tau 1}^{Y}))\subset M(K_{m}^{X}, K_{m+1}^{X}, \pi_{m-1m}^{X})$ .

For each $k<n$ we have

$\varphi_{n}^{X}(F^{X}(n, k))\subset F^{Y}(n, k)$ ,

$\varphi_{n}^{X}(G^{X}(n, k))\subset G^{Y}(n, k)$ ,
(10)

$\varphi_{n}^{Y}(F^{Y}(n, k))\subset F^{X}(n-1, k)$ ,

$\varphi_{n}^{Y}(G^{Y}(n, k))\subset G^{X}(n-1, k)$ .

From (8), (9) and Lemma 4 it follows that there is a homotopy $\mu_{nn+1}^{X}$ : $X_{n+1}\times I$

$\rightarrow Y_{n+1}$ connecting $\varphi_{n}^{X}|X_{n+1}$ and $\varphi_{n+1}^{X}$ which extends $\xi_{nn+1}^{X}$ : $X\times I\rightarrow Y$ . Similarly

we know that there is a homotopy $\mu_{nn+1}^{Y}$ : $Y_{n+1}\times I\rightarrow X_{n}$ connecting $\varphi_{n}^{Y}|Y_{n+1}$ and
$\varphi_{n+1}^{Y}$ which extends $\xi_{nn+1}^{Y}$ : $X\times I\rightarrow Y$ and from their definitions (cf. the proof of

Lemma 4) the following relations hold:

$\mu_{nn+1}^{X}(F^{X}(n+1, k)\times I)\subset F^{Y}(n+1, k)$ , $k\leqq n$ ,

$\mu_{nn+1}^{X}(G^{X}(n+1, k)\times I)\subset G^{Y}(n+1, k)$ , $k\leqq n$ ,
(11)

$\mu_{nn+1}^{Y}(F^{Y}(n+1, k)\times I)\subset F^{X}(n, k)$ , $k<n$ ,

$\mu_{nn+1}^{Y}(G^{Y}(n+1, k)\times I)\subset G^{X}(n, k)$ , $k<n$ .
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Consider the maps $\varphi_{n+1}^{X}$ and $\varphi_{n}^{X}|X_{n+1}$ of $X_{n+1}$ into $Y_{n+1}$ , and $\varphi_{n+1}^{Y}$ and $\varphi_{n}^{Y}|Y_{n+1}$

of $Y_{n+1}$ into $X_{n}$ . From (4), if necessary, by replacing $\{\mathfrak{U}_{n}^{X}\}$ and $\{\mathfrak{U}_{n}^{Y}\}$ by refine-
ments, we can assume that

$\varphi_{n+1}^{X}(x)=\varphi_{n}^{X}(x)=ae_{n+1}(x, t)$ , $x\in D^{X}(n+1, n)$ and $t\in I$ ,
(12)

$\varphi_{n+1}^{Y}(y)=\varphi_{n}^{Y}(y)=\mu_{nn+1}^{Y}(y, t)$ , $y\in D^{Y}(n+1, n-1)$ and $t\in I$ .

Let $A=\bigcap_{k=1}^{\infty}A_{k}$ and $B=\bigcap_{k=1}^{\infty}B_{k}$ . Now, to prove Pos (X, $A$ ) $=Pos(Y, B)$ , we

have to find sequences of maps $\underline{a}=\{a_{k}, X, Y\}_{M(X)M(Y)}$ and $\underline{b}=\{b_{k}, Y, X\}_{M(Y)M(X)}$

such that
$\underline{a}^{\prime}=$ $\{ak, A, B\}_{M(X)M(Y)}$ , $\underline{a}^{ff}=$ $\{ak, X\backslash A, Y\backslash B\}_{M(X)M(Y)}$ ,

(13)

le’ $=\{b_{k}, B, A\}_{M(Y)M(X)}$ , $\underline{b}^{r}=\{b_{k}, Y\backslash B, X\backslash A\}_{M(Y)M(X)}$

are W-sequences and

$\underline{b}^{\prime}\underline{a}^{\prime}\cong i_{A,M(X)}$ , $\underline{b}^{r}\underline{a}^{\prime}\cong\dot{L}_{(X,A)M(X)}$ ,
(14)

$a^{\prime}b^{f}\cong i_{B,M(Y)}$ , $\underline{a}^{\prime\prime}\underline{b}^{r}\cong\underline{i}_{(Y,B)M(Y)}$ .

(See for notations [4, pp. 146, 147].) For $k=1$ , let $a_{1}=\varphi_{1}^{X}$ and let $b_{1}$ be an
arbitrary map of $M(Y)$ into $M(X)$ . For $k=2$ , we define $a_{2}$ and $b_{2}$ as follows.
Consider $\varphi_{2}^{Y}$ ; $Y_{2}\rightarrow X_{1}$ . Since $X_{1}=M(X)$ is an AR, there is an extension $b_{2}$ :
$M(Y)\rightarrow M(X)$ of $\varphi_{2}^{Y}$ . To construct $a_{2}$ : $M(X)\rightarrow M(Y)$ , put $a_{2}=\varphi_{2}^{X}$ on the set
$X_{2}$ . Consider the sets $D^{X}(2,1)\subset K_{2}^{X},$ $D^{X}(1,1)\subset K_{1}^{X}$ and the mapping cylinder

$M(D^{X}(2,1),$ $D^{X}(1,1),$ $\pi_{12}^{X}$) $\subset G^{X}(1,1)$ . Since $\varphi_{2}^{X}(x)=\varphi_{1}^{X}(x)=a_{1}(x)$ for $x\in D^{X}(2,1)$

by (12), we can put $a_{2}=a_{1}$ on $M(D^{X}(2,1),$ $D^{X}(1,1),$ $\pi_{12}^{X}$). Consider the sets
$T=C^{X}(2,1)\cup M(E^{X}(2,1),$ $E^{X}(1,1),$ $\pi_{12}^{X}$ ) $\subset M(C^{X}(2,1),$ $C^{X}(1,1),$ $\pi_{12}^{X}$) and $S=$

$M(C^{Y}(2,1),$ $C^{Y}(1,1),$ $\pi_{12}^{Y}$ ). By (12) we know $a_{2}|T\cong a_{1}|T$ rel. $M(E^{X}(2,1),$ $E^{X}(1,1)$ ,
$\pi_{12}^{X})$ in $S$. Since $a_{1}|T$ has an extension $a_{1}$ over $M(C^{X}(2,1),$ $C^{X}(1,1),$ $\pi_{12}^{X}$ ) and $S$

is an ANR, by homotopy extension theorem $a_{2}|T$ has an extension over
$M(C^{X}(2,1),$ $C^{X}(1,1),$ $\pi_{12}^{X}$). Finally, since $M(Y)$ is an AR, we can extend $a_{2}$ to

a map from $M(X)$ into $M(Y)$ which we denote by $a_{2}$ again. This completes

the definition of $a_{2}$ . Note that $a_{2}|M(C^{X}(2,1),$ $C^{X}(1,1),$ $\pi_{12}^{X}$) $\cong a_{1}|M(C^{X}(2,1)$ ,

$C^{X}(1,1),$ $\pi_{12}^{X}$) rel. $M(E^{X}(2,1),$ $E^{X}(1,1),$ $\pi_{12}^{X}$ ) in $M(C^{Y}(2,1),$ $C^{Y}(1,1),$ $\pi_{12}^{Y}$ ) and as a
consequence

$a_{2}|F^{X}(n, 1)\cong a_{1}|F^{X}(n, 1)$ in $F^{Y}(n, 1)$ for each $n$ ,
(15)

$a_{2}|G^{X}(1,1)=a_{1}|G^{X}(1,1)$ .

By repeating this process we can construct maps $a_{k}$ : $M(X)\rightarrow M(Y)$ and $b_{k}$ :
$M(Y)\rightarrow M(X),$ $k=3,4,$ $\cdots$ , satisfying the following conditions for $n<k$ ;

(16) $a_{k}|X_{k}=\varphi_{k}^{X}$ and $b_{k}|Y_{k}=\varphi_{k}^{Y}$ ,
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(17) $a_{k}|G^{X}(n, n)=a_{n}|G^{X}(n, n)$ ,

(18) $b_{k}|G^{Y}(n, n)=b_{n}|G^{Y}(n, n)$ ,

(19) $a_{k}|F^{X}(n, n)\cong a_{n}|F^{X}(n, n)$ in $F^{Y}(n, n)$ ,

(20) $b_{k}|F^{Y}(n, n)\cong b_{n}|F^{Y}(n, n)$ in $F^{X}(n-1, n-1)$ .

( $a_{k}$ is defined as follows; on the set $X\cup U^{k}G^{X}(nn=1n)a_{k}$ is defined by (16) and

(17), and on the set $\bigcup_{n=1}^{h-1}M(C^{X}(n+1, n),$ $C^{X}(n, n),$ $\pi_{nn+1}^{X}$ ) $a_{k}$ is obtained from $a_{k-1}$

by homotopy extension theorem; the dePnition of $b_{k}$ is similar.)

Now it is immediate that $\underline{a}=\{a_{k}\}$ and $\underline{b}=\{b_{k}\}$ satisfy (13) and (14). To

show that $\underline{a}^{\prime}$ is a W-sequence, note that $\{F^{X}(n, n):n=1, 2, \}$ and { $F^{Y}(n, n)$ :
$n=1,$ 2, } form neighborhood bases of $A$ and $B$ in $M(X)$ and in $M(Y)$

respectively. Then (19) shows that $\underline{a}^{\prime}$ is a W-sequence. Also, that $\underline{a}^{\prime\prime}$ is a
W-sequence follows from (17). Next, let us show that $\underline{a}^{\prime}\underline{b}^{\prime}\cong\underline{i}_{B,M(Y)}$ . Consider
the map $a_{n-1}b_{n}|F^{Y}(n, n):F^{Y}(n, n)\rightarrow F^{Y}(n-1, n-1)$ . For $k>n$ , note two maps
$a_{n-1}b_{n}|K_{k}^{Y}$ and $\pi_{k-1k}^{Y}$ of $K_{k}^{Y}$ into $K_{k-1}^{Y}$ are contiguous. Let us define $\eta$ : $Y_{n}\rightarrow Y_{n-1}$

by $\eta|B_{n}=the$ identity and $\eta(y, t)=(\pi_{kk+1}^{Y}(y), t)$ for $(y, t)\in M(K_{k+1}^{Y}, K_{k}^{Y}, \pi_{kk+1}^{Y})$ ,

$k=n,$ $n+1,$ $\cdots$ Obviously $\eta|F^{Y}(n, n)\cong i$ in $F^{Y}(n-1, n-1)$ , where $i$ is the inclu-

sion map of $F^{Y}(n, n)$ into $F^{Y}(n-1, n-1)$ . Since $\eta|F^{Y}(n, n)\cong a_{n-1}b_{n}|F^{Y}(n, n)$ in
$F^{Y}(n-1, n-1)$ by the contiguity of $\pi_{kk+1}^{Y}$ and $a_{n-1}b_{n}|K_{k}^{Y}$ for $n\leqq k$ , we know
that $a_{n-1}b_{n}|F^{Y}(n, n)\cong i$ in $F^{Y}(n-1, n-1)$ . By this relation, (19) and (20), we
can conclude $\underline{a}^{\prime}\underline{b}‘\cong\underline{i}_{B,M(Y)}$ . The other assertions in (13) and (14) are proved

similarly. This completes the proof.
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