ON ENCRYPTION SYSTEMS REALIZED BY
FINITE TRANSDUCERS

‘ A. Demers
: C. Kelement
| B. Reuschtt

TR 76-291

Department of Computer Science
Cornell University
“Ithaca, New York 14853

tOn leave from Ithaca College, Ithaca, New York 14350
t+t0n leave from Universitat Dortwund, Abteilurg Informatik,
- 46 Dortmund 50, Postfach 500500, West Germany

. ON ENCRYPTION SYSTEMS REALIZED BY
FINITE TRANSDUCERS

A. Derers
C. Xelemen
B. Reusch

In [S & P) Sardinas and Patterson give a necessary and
sufficient ccndition on the set of code words for the unigue
ceconpositicn of coded messages into individual code words. For
example, if 'give', 'given', 'one', and 'none' are all code words
then the ccded message 'givenone' is ambiguous because it could
be decomposed into 'given one' or 'give none'. In [B}, Brickner
gives a condiiion thai guarantees an unambiguous word code can be
deczdad by a finit2 transducer and shows how to construct the

decoding transducer. The types of encodings considered in both

v

[S & P] and [B] can be realized by very simple deterministic finite
transducers. However, there is a wide variety of enciphering
techniques realizable by finite transducers but not covered by the
results of [S & P] and [B]. For example the Hagelin machinre used
ez<ensively for military communication during World War II [X] and
the proposed Data Encryption Standard of the Naticnal Bureau of

tandards [KBS] fall into this categcry. Both these encryption

B

e

systems can be handled by our results.

Encryption is an important technique to be considered in
any data or communication security system {NBS], [Turn], [Licffman].
It is the process of transforming information in%to an unintelligible
form called a cipher. The original information is called the plain-
text, the transformation process is called enciphering and the
transformed plain-text is called the cipher-text. The process of
reversing the enciphering transformation to obtain plain-text
from the cipher-text is called decivhering when total information
about the enciphering transformation is known. Determining plain-
text from cipher-text with less than total information about the
enciphering process is called cryptanalysis. Authorized recipients
of cipher-text decipher it, unauthorized recipients are forced to
employ the methods of cryptanalysis to obtain the plain-text. A
good encryption system makes enciphering and deciphering easy and
inexpensive but cryptanalysis extremely hard and costly. While it
is essential that a cipher be unambiquous (i.e. uniguely decipher-
able) and as a practical matter decipheraffie by a dete‘rministic
device, it is not necessary that the enciphering device be deter-
ministic. In fact, prcbabalistic choices in the enciphering device
might be used to increase the difficulty of cryptanalysis. 1In
section 2 we show that, for encipherers realized by a finite trans-
ducer, ambiguity, single-valuedness, and equivalence are all
decidable properties. Section 3 takes up the problem of deter-

ministically deciphering the output of a finite transducer encip-

herer. It is shown that a deterministic pebble machine is
sufficient to decipher the output of a finite transducer encip-~
herer and that the exzistence of a deterministic finite transducer
decipherer is decidabie (the proof provides an effective construction
vhen ervistenca Is shown). 1In secticn 4, it is shown tha: for

encipherers reaiized by pushdown transducers ambiguity is undecidable.

1. Background angd lictation

In this section we recall some basic ideas from the theorv
of transiation. Our presentation basically follows aAho and Ullman
‘A & U], but our notaticn differs slightly from theirs. We assume
familiarity with the theory of regular languages and finite-state
machines, and we assume some knowledge of the theory of context-~
free languages. Both topics are covered in detail in [A & U}.

Let I and A be finite alphabets. A translation from I* to

A* is a set T < (I* x A*). I and £ are the input and output alphabets,

respectively. The domain of T, denoted dom T, is the set
ix€z*i(Ay € t*) (x,y) € T} Similarly, range T is

{y e A*I(B:ce *) (x,y) € T}. T defines a mapping from I* to sub-
sets of L* in the obvious way: for x € I*, T(x) = {y € 2*|{(x,y) € T}
It is cften useful to apply this mapping to sets of strings: for

sc e,
(s) = \UJ Tx).
X€S

S e ek ik aehe mime e

-4

Given a translation T from I* to A*, we define T_l, the
inverse ¢f T, as :t'—1 = {(y,x) | (x,y) € T}. Viewed as mappings, T
and T-1 are not truly inverses, since, for example, T-l(T(x)) =
{x' € I*|T(x') = T(x)} is a set which contains x, perhaps properly.

A number of other properties of translations are defined in
analogy to mappings. A translation T & L* x A% is

total if for every x € I*, T(x) # ¢,
single-valued if for every x € I*, #(T(x)) <1 and
unarbiguous if T is single-valued.

Our interest lies primarily with translations which can be
performed by a processor with a finite memory. Formally, we define

a (nondeterministic) finite-state transducer (ft) as a system

M = (Q,E,A,S,qO,F), where

i) Q is a finite set of states,

ii) I and A are finite input and output alphabets,
respectively,

iii) 9, € Q is the initial state,

iv) F €Q is the set of final states, and’
v) ¢, the transition function of M, maps Q x (I U {e})

to finite subsets of Q x A%,

The interpretation of the transition function is similar to
that for finite-state acceptors: if (q,w) € ¢ {p,2) then from state
P, M can read input a, emit output w, and transfer to state q. We
write

a) p » {a/w)q a €L VUflel, (g,w) € 5(p,a),

to represent a single move of M. A sequence of zero or more moves

can be built wp in the obvious way:
b) p % (e/e)p for all p € Q
c) if o 2 (u/w)q and @ % (v/x)r, then p ¥ (uv/wx)r.
¥ definas a translation T(¥4) € Z* x 4* by (x,y) € ©(M) iff
* . . .
39 (x/y)qf for sore G € F. MNotationally, we identify M and
i), writing

Mz, = (M) (x).,

dom X = dcm T,
T L)l

M is single-valued Z 1{(M) is single-valued,

range M = range

asé 30 forth. T is a regular <ranslation if there exists a ft M

such that T = <(M).

we usually represent a ft by its transition graph, an

unordered edge-labeled directed graph. Nodes of the graph repre-
sent states of the transducer. An edge labeled x/y conrects ncdes
p and g iff p =~ (w/¥)3.

The following facts are well known. Proofs can be found

in Aho & Ullman {A & Ul.

Theorem 1l.1: If T is a regular translation, then T‘l is a regular

translation. Moreover, if T = 7(M), then we can effectively con-
struct ML such that T L = t(d %). o

Theorem 1.2: Let T be a regular translation, R a regular set, and
L a context-free language. Then

{(a) dom T and range T are effectively regqular,
(b} T(R) is effectively regular, and

(c) T(iL) is effectively context-free. O

T

~5a-

ndft, e-moves allowed

{ (wex,wetx) | w,x,ef{a,p}*i>0}

df+, e-roves alleow=d

{(wc,wci) | wE{a,b}*,i>1}

dft, e-moves forbidden

{(w,w) | w€{a,bl*}

ndft, e-moves forbidden

{ (wa,aw), (wb,bw) | w€la,bl}*}

Figure 1.1

-5pb-

re 1.2

Fi

-6~

The deterministic version of finite transducer can be
defined in at least two ways which seem natural. A ft
M= (Q,E,A,d,qo,F) is

(a) deterministic (a dft) if for allg € Q and a € I,
#(d(g,a)) + ¥(d(q,e)) < 1.

(b) a generalized sequential machine (gsm) if M is a

dft with no moves on e input - i.e., for any q € Q, d{q,e) ¢
The reader familiar with the theory of finite automata will

recall that nondeterminism and e-moves do not add o the power of
finite acceptors. That is, %o any finite state acceptor there is
an equivalent deterministic one without e-moves. For transducers
this is not the case. Both nondeterminism and e-moves contribute
to the power of such devices, resulting in the situation depicted
in Figure l.1. The figure gives a traaslation for each region of
the Vern diagram; it is easy to verify that the translations have
the properties claimed.

It is interesting to note that while t(M) is single-valued

for any gsm M, this need not be true of a dft.

Example 1.1: Consider the dft M of Figure 1.2. The domain of M
is {a,b}*c; any input wc from this set causes M to output we and
reach its final state q- The e-move from q, to itself can then
be performed any number of times, outputting an additional c each
time. Thus, T{wc) = {wci]i > 1}, an infinite set. O
Deciding whether a given ft is single-valued is important in deal-
ing with ciphers. This question is treated at lencth in Secticn

2.

-7-

2. Finite Encipherers

In this section we consider enciphering by finite-state
machines. In particular, we show that it is decidable whether a
finite-state translation has a well~defined inverse - i.e., whether
a cipaer Is deciphrerabie.

For encipherinc anzd deciphering we shall find it convenient

to assume the existence of endmarkers. These can be included in

tr

ranslations in a natural way:

Definitior 2.1: Let T & I* » £* be a translatien, ard let

¢ ¢ z UL. Then T$ is the translation {(x3,y3);(x,y) € Tl.

¥We can now include endmarkers explicitly in the definition of a

cipher:

Definition 2.2: A translation T ¢ I* x 4* is a finite transducer

cipher (ft-cipher) if <§% is t(M) for some ft M, where $ € L U 4.

T is a cetermi cinpher if T$ is t(M) for some dft M.

Many important properties of translations are preserved by
addition or removal of end-arkers. In particular, we have the
follcwirng:

Lemma 2.1: For translation T € Z* x A* and § £ T V4,

(@ (9= (ths.

(b) TS is single-valued iff T is.

{c) TS is unambiguous iff T is.
Proof: Obvious. O

When nondeterministic £t's are used as enciphering machines, the

L AT

Cam e

e

i o I T S !

ot ——z v

addition of endmarkers gives us no additional power. Formally,

Theorem 2.1: T$ is a regular translation iff T is a regular

translation.

Proof: Follows easily from the fact that T is regular iff T is
characterized by some regular language (see [AU]). The details

are omitted. []

If we restrict our attention to deterministic devices,

however, the above theorem fails.

Example 2.1: Let T be the translation {(w,w2)|w € {0,1i*}. It
is easily seen that if M is a deterministic ft, then M(w) must
be a prefix of M(wx) for any w and wx in dom M. Choosing x # e,
we obtain T(w) = w2, which is not a prefix of wx2 = T(wx); thus
T cannot be 1(M) for any dft M.
Nevertheless, T is a dft cipher. The addition of endmarkers
makes the domain of the translation prefix-free, thereby enabling
it to be performed by a dft. The reader can verify that the

machine M' of Figure 2.1 does in fact compute TS$.

Another effect that endmarkers have on deterrministic translations

can be seen in the following
Lemma 2.2: If T is a dft cipher then T is single-valued.

Proof: If TC I* x A* is a dft cipher, by definition there
exists a dft M = (Q,Z U {$}, AV {$},d,q0.1’) suchk that TS = (M)
(where $ £ LU A). let x € dom T (where x $ € dom M), and con-

sider the shortest accepting computation of M on inpu: xS$:

0/0

— ()

o
/1

G T U

$/25

SLCEEN G

Figure 2.1

e i

«10~

9, 3 (x$/v%) q for some q. € F.

Since M is deterministic, the above computation is a prefix of
every accepting computation of M on input x$; thus y$ is a prefix
of every word in M(x$). Since range M < A*$ is prefix-free, this

implies M is a single-valued. a

If a cipher is to be of any practical use, it must be
possible at least in principle to decipher it; that is, a useful
cipher must be unambiguous. The main result of this section is
an efficient algorithm which decides whether an arbitrary It is
ambiguous.

We have chosen nondeterministic ft's as our enciphering
machine model. This was done partly for generality - most of our
results apply to nondeterministic as well as deterministic ft's.
But it is also important to note that a nondeterministic machine
can often be simulated by a machine which makes probabilistic
choices. Such a simulation can result in a cipher which is
unambiguous but multi-valued, and is therefore more difficult to
"break" by cryptanalysis than a single-valued cipher would be.

Probabilistic simulation of a ndft is fairly straightforward
if the encipherer is allowed to rmake mure than one pass over the
entire plain text input. Even such a simple machine as
probabilistic 1 - pebble transducer (see Section 3) can simulate
an arbitrary ndft, and a probabilistic 2-way pushdown transducer,
can perform the simulation in linear time. The constructions are

like the analogous constructions for deciphering machines, and we

cnit them.
There is 2 natural probablisitic simulation method which
reguires only 2 single left-to-right scan of the input. Let us

call this technique direct probakbilistic sirmulation:

Given an ndft M and input x, the simulator
belraves li¥e M(x) excert that, whenever a
£ s

rndeterministic choice of !t is

no
the sinulator picks one oI the

moves at random, ignoring &ll cther
mnves of M.
A ccrputation of ths simulator on input x corresponds to a corput-
ation of M chosen at randem from ameong the many possible computations
of M on input %. Since not all computaticns of a ndft lead to
acceptance, it follows that this naive simulation technique is
e

unsafe - the sim:lator may fail to preluce a translation for some

We construct a2 rdft for which direct probablistic

simuiation is unsafe. Let I = {a,b,c}, &% = {a,b,c,d,e,f}. For

w € z*, let W denote the result of replacing a by d, b by e, ané

c by £finw. Let T = {(wa,wa),(wb,wb){w € I*; U {(wb,%b), (wc,wc)|w € =%},

-+ : . . N . c e
Clearly, dom T = Z . T$ is performed by the rdft M given in Figure

2.2. The only nondeterministic chcice in Y occurs from state Qe

¥

‘nere without reading an irput a prebabilistic simulator checoses t

go either to state q; or g,. If it chooses g, ané the input string

1
<

encés with ¢, then the final state G5 cannot be reached and the

-12-

Figure 2.2

s A e a8 aa il i e e e et

-13-

simulation fails. Similarly, if q, is chosen and the input ends

with a, again the sirmlation fails.

A .simple characterization of the nédft’s for which direct

probablistic simulation is safe comes from the follcwing.

"Definiticon 2.3: 1et M = (Q,Z,L,d,qo,F) be a ft. Two states p

and q are input-equivalert if, for all x € 1*,

{3y e 4 (Fs, ¢ F) p 3 x/yiz.

(dz € a*)(qu €r g2 (x/zj3..

That is, two states are input equivalent i =xe languages recog-

3

ized, starting from those states, are ecual. Now the desired
safety criterion is simrly that nondeterministic choices are nade

cnly between input-equivalent states.

Lemma 2.3: Direct probabilistic simulation of a nase

Moo= (Q,E,:,é,qo,?) is safe if ard only if
(a) For any p € Q, a € I, if d{p,a) contains
(g,u) a=d (x,v) then q and r are input-
equivalent, and
(b) for any p € Q. if d(p,e) contains (g,u)
then p and q are input~equivaient.
Prcof: Straightforward. a

We now present the main result of this section, that
arbiguity of a ndft is decidable. This result is relatec to,

and implies, decidability of ambiguity of a reguliar crarmar;

el

R TP

-14-

quite different.

A few preliminary remarks are needed.

First, recall from Theorem 1.1 that for any ft M we can
effectively construct a {nd) ft M.l such that T(M-l) = ('r(M))_l

Since by Definition M is unambiguous if and only if M.1 is

single~valued, it suffices for us to show that single-valuedness
is decidable, and this is what we shall do.

For this discussion we choose fixed input and output
alphabets I ang 4, respectively. ILex Pal denote the se: of

palindromes over 4 with centermarker & g 2; *hat is,
r R *3
Pal = {w # wi|w € A*},

Hopcroft [H1] has shown that it is decidable whether an arbitrary
context-free grammar generates a subset of Pal, and our proof is
based on this fact.

Let Ml and M2 be (nd)ft's, where

M., = (Qil:IAféi

5 ,Fi) i=1,2.

Iqoi
Note the machines have the same input and output alphabets.

Definition 2.4: The Qutput pair language for Ml and H2 is the

set
OPL(Ml,Mz) = {x § yR](aw) (w,x) € t(Ml) A (w,y) € T(Mz) }.

Definition 2.5: The Ooutput pair grammar for Ml and ¥, is the cfg

OPG(M,,M,) = (N,8 U {#1,p,s),

where

B e T T N T e e S akie e mve e

-]15~

“
]

Q, 0, = {Ip,qllp € Q;, q €0,}
§ = [d457:94,]

P contains

{p,q] > ulp'.,q] if (p',u) € &,(pse)
pra) + [o,g'1¥° if (g',v) € ¢,(qe)
ie,q] » ulp’,q'Ivh if (Jae @

(p',u) € él(p.a) A

(g°,v) € £ {g,a)

<

(Y]

[p.g] ~ ¢ if p € F., g €

I 2°
Naturally, we have the following
lemma 2.4: L(GPG(MI,MZ)) = OPL(Ml,Mz).
Preof: Routine. _ W]

Wow the guestion of single-valuedness of a ndft can be reduced to

ezuivalence to Pal.
Theorem 2.2: It is decidable whether a ndft is single-valued.

Progf: By definition, a ndft M is single-valved iff

(V0 (lx,y) € T A (x,2) € <(M] => [y=z]]. But (x,y) and
‘x,z) are in t(4) for some x if and only if yl-fzp‘ € OPL(M,HM)

Thus, M is single-valued iff [y2zR € OPL(¥,M}] => {y=z]; i.e.,
OFPL(M,M} < Pal. To decide single-valuvedness of M, it suffices to
constzuct G = OPG{M,M) and then use the algorithm of Hopcroft [K1]

to decide whether L(G) = Pal. O

[T A

——

Ca akbond wm

Dk e it B e a i . —r

~16~

Corollary: It is decidable whether a ndft is unambiguous.

Remark: Hopcroft's aigorithm decides for an arbitrary cfg G
whether L(G) < Pal, and may require exponential time. However,
output pair grammars are not arbitrary, but are linear crarmars.

For trese grammars, the algorithm can be modified to run in time
which is linear in the size (i.e., the sum of the lengths of the
‘production right sides) of the grammar. Using a similar definition
for the size of a ndft, the sizes of M and M-l are linearly related,
and the size of OPG(M,M) is at most guadratic in the size of H.

Thus, our entire algcrithm can be made to run in time O(nz).

To close this section, it is worth pointing out that the
equivalence problem for single-valued ft's is solvable by a fairly
obvious algorithm. ‘For ft's M, and My, let ¥, I i, be the non-
deterministic machine which chooses initially to behave like either

[- =
My or M,, so that (M, I M) T(Ml)L) T(M,). Then we have the

following

Lemma 2.5: Single-valued ft's Ml and H2 are ezuivalent if ané only

if
(a) dom(Ml) = dom(Mz), and
by My B M, is single-valued.
Proof: Straightforward. 0O

If our size measure for trarsducers is such that we can enumerate
the ft's in order of increasing size, then we could in principle

use the above result to censtruct a minimal transducer equivalent

Pt e AL IR 2 R e

to a given one.
Lemma 2.5 is in contrast to the situation with arbitrary

{multi-valued, arbiguous) ft's, for which the ecuivalence rroblem

is unsolvabie {Gi. Hopcroft [H2] has observad that *he eguival-
ence.problem for deterministic ft's can be rzcuced *o the egui-
valence problem f£or cne-way, two-tape finite zutomata, which is
inown to be solvable[2irdj. However, the Cecigabiiity results for

éeterministic and single-valued £t's are inZcrendent - neither

result implies the other.

o Sovpet of £t Encipherers

It is not difficult to construct unamciquous ciphers
realized by deterministic finite transducers that cannot be de-
ciphered by a deterministic finite transducer. 17Tvo cuestions
naturally arise. iwhat sort of finite state device is sufficient

e detavministically decipier the cutput cf an unambiguous ft

transducer decipherer exists for a given fi encipherer? In this
section we show that the output of any unarmbiguous ft encipherer
can be deciphered by & deterministic pebble transducer. We also
sheow that it is decidable whether a deterrmirnistic £t cdecirherer

exists for a civen it encipherer. The prosf provides an effective

o]

constructicn for a dft decipherer whenever crne exis:s.

tic finite transducer enhanced with the ability tc read the input

A deterministic pebble transducer is a deterrinis-

N

TERPEII PRI b Lt - PR

-18-

tape in both directions and to nondestructively place, remove,

and sense a single pebble on any input square.

Theorem 3.1: Let M = (E,Q,A,G,qo,F) be an unambiquous ft encip-
herex. Then a decipherer for M can be realized by a deterministic

Pebsle transducer.

Proof: Label each transition of M (i.e., each edge in the tran-

sition diagram of M) by a unique integer, so the edges are labeled
1,2,...,n. Let the ith transition be p » (a/zlq. We could con-

struct the néft M, = (Q U {p;},2,4,8,,p;,F) such that 8, (o..e) = {{q,e)}
anc o = S onQ x Z*, For all l < i < n, Range Mi_is a regular

set (Theorem 1.2). 1In fact

Range M, = {aB | (3w) §(q,w) contains (r,B) for some r € F}

is the set of outputs of accepting computations of M starting with
sorme cccurence of the ith transition.

By dropping its pebble, scanning to the end of its input
tape and then moving back to the pebble, a deterministic pebble
transducer in configuratien (w,p,x) can compute {i}x € Range Mi} by

R

(*) (w,p,x) (wo,p,x) Hwox,q,e) !—*- (w,r,Ox) P (w,s,x)

where the state s encodes the desired information.

The pebble machine can now simulate some computation of M,
using a "subroutine” of the form (*) as an oracle. That is, in
the pebble machine,

e

Wo,p,x) = lwxy Ooa,x,)

with cutput a, where x = Xy X, and p =+ (a/xl)q is the transition

D JICTINF " Soupr i D DVON I U

-19-

£ least index i which starts from state p and such that x € Range Mi.

This transition can be determined by using the

Xote that we did not need the full power of a

in the akove argument. W2 dc not use the ah
ercept to be able to backspace the input tap
Furthermore, since a pebble machinz i

it £follows that ceterministic l-coun:

of a pushdewn transducer the deci

to Gecipher z2ny message encipher=4

e to the

S weaxer

G

pebble machine

read backwards

pebble sguare.

than a l-counter

ter machines are power-

chering

by an ft. With the

can be done i

n

In practice, however, one wants a decipherer to be a finite,

deterministic machine. Thus, it is of some

an {(unambiguous) cipher; we can decide wheth

interest

that, given

er a deterministic £t

decinpherer exists. OQur proof is a constructive one;

b
O
L]
F
£
0
p
i)
o
N
L]
H
e
Hh
Q
»3
[
D
i
n
t
mn

e continue working with decipherers
herers) assuning single-valuedness of the de
equivalently, unambiguity of the correspondi
give two properties which together character
mninistic finite state translations which can
ministically. Wwe then show that these pro

civing the cdesired result.
Properties 3.1: Let M be a single-~valued (n

following properties are necessary and suffi

-{M) to be ceterministic.

we exhibit

(rather than encip-

cipherers
ng encip
ize those

rties are

g)ft. we

cient co

, (ox

herers). Ve

nondeter~

be periormed deter-

d2cidable

claim the

nditions for

-20~

(2) there exists k > 0 such that, for any w € I*; x,y € A%;

and p,q9 € Q,

Sy ;1% W/x)P, 4 ;9 (w/y)q implies |!xi-iy|| < k.

(b} there exis%ts 2 > 0 such that, for any w € I*, x,y,z € &%,

2#b €4, and p,g € Q
* . .
a, -—-;7—7 (w/xay)p, q, —> (w/xbz)q inmplies laybz! < t {

To prove these claims we need the following technical lemma, which savs
partial outputs of a single-valued ndft can't be "much longer"” than

inputs.

Lemma 3.1: IZet M be (nd)ft. Let n = § states of M, ¢d =rmax #

syrbols output in any single move of M. If there exist P9 € Q,

-*
we€I* x€a*s.t. x| > (Jw| + 1) (n-1)d + !wjd and P— /x)q

then M has a cvcle of e-moves with nonempty output (hence can't be

single~vauled.)
Proof: Simple counting argument. G

Lemma 3.2: If (M) is deterministic then M has property 3.1 (a)

Proof: let M = (Q:Z,8,8,q,/F);: Let W' = (Q",Z U {$}, A U {s}.é',q'o.r'}
be a deterministic ft such that T(M') = {(x$,y$) | (x,y) € T(M}}.

M' must exist by definition of a deterministic translation. Let
n =0 = § states of M
n' = $Q' = # states of M'
d = max ¥ symbols emitted by any single move of M
d' = max # syrbols enitted by any single more of M'.

Assume conditicn (a) doesn't hold; then k >0, wW,X,¥,p,q S.t. i

™ G =7 W/xp, g > (w/y)g, and I¥'- %! > k.

We will show by Lemma 3.1 +hat M’ cannot e zinclie-valued. By

lerma 2.2 ani our

that M' must be sincie-valued, giving us the desired contradiction.

¥e show M' is nmot single-valued as follo

by
™
5]
n
ct
o

Q
o
[0}

can go frcm any cstzte to a final state

s, from (*) alove

J . B

Gp T /EP > (u/xy)p

th

%) G FT W/YIa 5> (vyye,

T

where p., ¢. € F, !xzf £ (r~1)d and v} < n-1.

f i
Ccnsider the action of M' on input wvs
rrk ' > fe/zojal * (vS./p V=t
() g) T 2474 T v 20t s
whore ', € 77, z. is 2 prefix of xx., aand z.2, = yv,$. We compute
£ i 2 172 2

250 = lzyzyl = dgyl > vl - i >k - (aeDa
and similarly

ivs|

ivi +1 < (n-1) + 1 = n.

Since the values of n and d are fixed (independent of f), the

saguence

Q' g—> (v$/z,)q" ¢

B B S,

-22-

from (***) satisfies the hypotheses of Lemma 3.1 for sufficiently
large choice of k. Taus, M' cannot be deterministic, and we have

the contradicticn we sought. []

Lemma 3.3: If <{M) is deterministic then M has property 3.1 (b}.

Proof: Similar. O

To show that properties 3,1 (a) and (b) imply that t(M) is deterministic,
we construct a transducer M', with a pessibly infinite nurber of

states, which is eguivalent tc M. We then show that (a) ané (b) imply
that M' is deterministic, and tha+t only finitely many of the states

of M' are accessible. Let

u = (Gruisiav (83,81,€,,1C.H)
where

(R=L RS VI

Co = {{a,x) gy $—> (e/x)q)

§' is defined by

- ifC < Q x dA* for some 4 € 4, then

1) ¢'(c,e)

#

{)i
£(Cy,A);

where C1 = {{g.x)!{g,dx) € C}.

~ otherwise,
2) 8'(C,a) = {(Cc,.e) }
where C, = (g,xyz)| I(p,x) € C, r € Q s.t.
P> @/)r 55 (e/2)g

3) 8'¢(C,$) = {{Ceex$) ! (aex) € C, g, € F}.

-23-

We assume all inaccessible states are removed f£rom ?ﬁ
Iorma 3.4: Whether or not M is single-valueé 2né has Preperties
3.1(2a) and {(»),
*
(1) if C0 s> (w/%)C and (a,¥y} €¢C

then ~ X PR
o oau - -

. *
(ii) if 9% & > (w/2)g

»
then 3Ix,y,C s.t. Co > W/X)C, .y} €C 2z = xy.

?rzof: Eeth (i) and (ii) are proved by inducticn on ‘wi. The
>reofs are routine, and we omis then. []

emma 3.5: t(M') = {{w3,x$) {w,x) € (M)},

Proof: Straightforward from Lemma 3.4 above and the definition of

tyza 3 moves of M', which “ake M’ to its final state. []

vz -

3.6: If Mmis single-valued then M' is Caterministic.

=2 9.8
Proof: M' is trivially deterministic for rales of type(l) and (2)

e

the definition of ¥'. For rules of type (2), suppose there exis+«

Cs.t.{3'(C,$)|> 1: i.e.,
(Cery$), (Cer28) € 8'(C,$8), y # =z
Choose w such that
c, —,——/ (w/x)C ‘-}—;’ ($/y$)c; and Cy %.——> (w/%)C :—> ($,28)c,

whence both (w$,xy$) and (w$,x2$) are in t(M'}). Bu= oy Lemma 3.5

this implies M is not single-valued, a contradiction. []

in

PO

~24~-

Lerma 3.6: If M is single-valued and has Properties 3.1(a) and

(b), then ¥' is a finite transducer.

Procf: Let k and 2 be the bounds defined for properties 3.1(2) and

(b). Let n = 2 states of M = §Q, and d = rax £ ouiput syrbols

emitted in anv sircle rove of M. Finally, let m = max (k,2) + =a.

We show by induction on i that if C, i:.-—b C, then C €0 x a*™) U {Ccels

thus the set of reachable states of M' is finite.

*
is: For i= -c. = lgs o> (&/x)q}
Basis: For i=0, C 9 {{g,x) b9y T (6/x}qg:.

C
Consider any {(g,x) € CO' Since M is single-valued, M has nc cvcies
on e-input with non-empity cutput. Thus, x is the ouiput of at most
n-1 steps - M, and {x] < (n-1)d.

*
inductive Step. Let CO Mﬁ—\/ c' H—> C. There are 3 cases,
depencing on whether the final move comes from rule{l), (2), or (3)

in the definition of M'.

rule i: C°' m—? (e/a)C. 1In this case (g,x) € C iff (q,ax) € C'.
By the inductive hypothesis, C' < Q «x A*m, thus |ax| <m, x| <n-1 <m,
and C c @ x a*™,

rule 2: C' E‘_> (a/e)C. We claim that if rule (2) is applicable

to state C', then C' C€Q x armax (K f)

If rule(2) is applicable
C' €Q x aa* for any a. Thus, one of the fclicwing three cases
applies:

(i) €' <0 x {e} eq x aFx(ket)

(ii) Ji{g,e) € C'. Consider any (p,y) € C', and let

*
Cy -}—:——'? (w/x)C'. Then by Lerma 3.4, g T (w/xiq

* .
and qo M :> (W/Xy)p, 50 by PrOPELty

iyl

for any (p,av) € ¢', J(q,bz) € C°,

*
90 B
3.1(b), layi < %.

tow, lettinc C'

(é,yl) 2¢C, p E——E? (a/y H—J;? (e/yS): an=

2y the a2bove argunment !Vl' < max (x,2); EYZ: <
f?z! < (1-1)4d since M has no nontrivial cycles.

~ax (k,&) + nd = as desired.

rule 3: If

c' Er—%? C by rule 3 , then C =¢C_,

=

sazisfied trivially.

This completes the induction, proving that

states. To complete the proof we need only shx

nita -

and any a € L U {e,3},

]

+
nce M is sirgle-valued ,

which says ¥' is single-valued.

*
——> (w/vay)p aad 9, ﬁ——%> (w/xzziq.

TY = Y,Y

[#1

Sy cef

Thus

== (a/2)C by rule (2), we have (g,y) € C iff

1¥2¥s3e

finition;

Iy vvsi <

and the lemma is

w that

st~
TG,

M' has only finitely many

' is

) is finite.

this follews trivially from Lemma 3.5,

O

-

(1) and (2]
Since we have shown that each state is a

£o rules are trivially finite, and
fcl.

to there bteing only finitely many states), the

¢' is finite even if M is not single-valued:

tr

rule (2

finite se

result

ansitions due
obeys [§'(C,$)]
t {(in addition
follows.

-26-

Theorem 3.2: Let M be a (nd)ft. Then v(M) is deterministic iff

M is sincle-valved and properties 3.1(a) and (b) hold.
Proof: Immedizte from Lemmas 3.2 thru 3.6. Ej

Now, having characterized the deterministic translations by these
properties (single-valued, and 3.1(a) and (b))we show how to decide
these properties. A decision algorithm for single-valuedness was

given in Theoren 2.2; algorithms %fo decide Froperties 3.1 appear below.
Lemma 3.7: A rdft M = (Q,I,4,6,9,.f) violates property 3.1fa) iff

Fuv € 1+, |uvi < lo]?, q, :1 = (u/w)p ; > (v/x)p,

9y 7 W¥)a 75 (v/2)q and x| > Izl

only if: We show by induction on # moves of M in a
shortest violation of Property 3.1(a).

Basis: Fewer than [Qiz moves, trivial.

. * * o
Induction: Suppose 9, E——§> {u/w)p, Sy ® ﬁ?’(u/Y)q and w! - jy| > k.

In the first iQ|2 moves, some pair of states must repeat - i.e.,

r,s € Q s.t.
* * *
T T (9 /w0 T =5 (9,/w)) T 5> (uy/w,)p
* * *
G m (93/¥))8 5 (9/¥y)s g7 (uy/y,)e
® ©

2 s
where u = u Uy, W = w,WW., ¥ = Y,¥,¥5, and !uluzl < {Ql®. Either

the computation® (@) - or else ?wzl =

le2 has outputs whose lengths differ

ek an L e A b e

-2~

w,| # ly,i = in which case the lemma follows immediately from

whether a néft s~:izfyinc Property

2.1(a) also satisfies Propertr 3.1(k).

3)

compute the cellection of all triplzs (p,q,u)

*
s.t. for scme w € Z*, ¢© {w/%)z arnd
.0 &

M

v

* . i van o s
qO ¥ > (w/xu)g. Property 2.172) gunrantees that

this set is finite; computing it is straightforward.

for each g € @ and a € 4, construct the sets

B *
19,2 = iwicg R—> (w/x)p for sor= 2 €Q, X € £* s.t. l:x = a}
*

T => (w/e)p for sor p € Q}

h

Ig,e = {wlg

i

w= U
a€s (e}

These sets are effectively regular.

for each g € Q anéd a € &4, we define
*
Mg,a(w) = {xlg ;‘—5 (w/x)p for scne ¢ € Q, X € 4* s.t. l:x = a}

and for any L & :tt,

Mg,a(l) = U Mag,a{w)
wEL

For any regular L, Mg,a(L) is eff=ctively regular.

~28~

4) Now, M satisfies Property 3.1 (b) iff
(i) for each triple (p,q,u) constructed in (1), with
u#e, for eacha € 4, a # 1:u,
Mp,allp,a Nig} VU ¥g,allp,an Lg] is finite.
(ii) fer each triple (p,g,e) and each a,b € 4, a ¥ b,

Mp,2{Lp,a”N Lg,b] U Kq,bllp,a N Lg,b] is finite. (Note

1

£ (r,q,e) is reachable, then so are (r,p.e), (g,g.e),

and (g.p,e).) [j

Theoxem 3.2: It is decidable whether a ndft encipherer X has
a deterministic finite decipherer; moreover, if such a decipherer

exists we can effectively find it.

Proof: Immediate from 2bove lemmas. D

4. Pushdeown Transducer Encipherers

While erciphering cevices that cannot be realized by finite
transducers are probably not of practical importance, it is of
some theoretical interest to note that for slightly more powerful
devices -even the basic questicn of ambicuity is undecidable. Proof
of an equivalent result appears in a very different context in
{Br, Theorem 5.2.5]. We use the followinc standard definitions

A & U].

Definition 4.1: A pushdown transducer (PDT), P, is an 8-tuple
(Q,z,r,A,é,qo,zo.F), where Q is a finite set of states, I is a

finite input alphabet, T is a finite alphabet of pushdown 1ist

et b ene e an e TN S U - G MDA U] S e e e i St e it e B e i s Al

-29-

symools, A is a finite output alphabet, 3 it a mapping from

Q x (£ U e} x T to finite subsets of Q x It x 2%, g, € Q is

55n=3 the curreni state, X represents the vnuzzd portion cof the

iist, and y is the
cutout string emitted to this point. If fi{g.z.7} contains (r,=,zZ),
shan we write (g,ax,zv,y) = (r,x,xy,yz) Scr 2ll 2 € I*, v € °*,

2nd y € &4*. The translation defined by P, cenoted <(F), is

*
{(z,y)!(qo,x,zo,e) ~{(g,e,x,y) for some ¢ £ F 2nd a € T*}.

We say that P is deterministic (a DPTT) whea (1) for all

mcst one

for all a € .

Theorem ¢.1: For ciphers generated by DP2T encipherers arbiguity

Precof: Let A = x be cees X 3 B =y v . be an instance
f: Iet A =Xy, Xy ¢ i Yyr ¥pr r ¥, .

of Post's Correspondence Problem. (See [E & Uj).

Consider the translaticn

M

{1,2,...m}}
v (eigi e iy, vy ¥y ooy # 4 .03 L€ 1,2,...n}%.
l 2 . A J

It is not Gifficult to see that there is a D=°T, F, such that

-

Avmmne e cealiah et il ay L

-30-

1(P) = T. Furthermore, the cipher generated when P is viewed as

an enciphering device is ambiguous if and only if there exist

R ; P AN bl 2 :
iysdg0.000i, € 711,2,...,m) such that xilxiz"‘xik‘lklk-l"‘ll =

SFURRED SRR SRR SR
2 1

1
only if this instance of Fost's Correspondence Problem has a

Y, Thus the cipher is ambigquous if and

solution. Hence, ambicuity is undecidable for DPDT encipherers.

. i - N . . .
- . St e dmmenim el s e e s e e et e
-3]1-
Palerence '
1. [As&U)] A.V. Aho and J.D. Ullman, The Thecry of Parsing,

and Com ce-Hall, 1973.

iling, Vols. I ani I,

Deterministic

3. {B} Ingrié Bruckner, "Fur eravitomatem”.

¥offman, Medar vacv and

Prentice-Hail,
5. Cantairment Problenms
Theorv, 3:2.
7. J.D. Uliman, Lancuaces and
Addiscrn-iia: 19693.
g. zXers, Macmillan Cc., 1957.
7. implamenting and ~zinc the XNBS data
ational Bureau oi Sta2ndards, 1975.
.

oA

o g

g v
e

AR

i
§

BER LT O S ERAR N VESE 174 37 oty

oem e

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif

