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Abstract. We give a careful discussion of end rotation in elastic rods, focusing on
ambiguities that arise if arbitrarily large deformations are allowed. By introducing a
closure and restricting to a class of deformations we show that a rigorous treatment of
end rotation can be obtained. The results underpin various non-rigorous discussions in
the literature and serve to promote the variational analysis of boundary-value problems
for rods undergoing large deformations. As an example we discuss the application to the
model of a rod lying on the surface of a cylinder.

1. Introduction.
1.1. Problem setting. The use of variational methods in the study of elastic bodies

in equilibrium—thin elastic rods, in the context of this paper—is only possible if the
external (prescribed) loads are conservative, i.e., such that the work done by that load
along a path in state (conformation) space is independent of the path, and depends only
on the initial and final states. Implicitly such a load defines a work functional on the
state space, of which the load itself can be interpreted as a derivative.

In this context the case of elastic rods, loaded by their ends, is a particularly interesting
one. Alexander & Antman showed in a seminal paper both (1) that a moment, applied
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(a)

(b)

(c)

(d)

Fig. 1. The sequence (a)-(b)-(c)-(d)-(a) is a closed path in conforma-
tion space with non-zero end rotation. As a result, even a constant
end moment is non-conservative. (After [2].)

to the end of a rod, is in general not conservative, and (2) that this can be remedied by
suitably restricting the class of admissible deformations of the rod [2].

The fact that a moment applied at the end of a rod (or, to be more precise, a pair
of equal and opposite moments applied to both ends) is not conservative is easily shown
by an example. If we rotate the right end of the rod in Figure 1(a) through an angle
of −4π we obtain the conformation shown in (b). If we now move the right end of the
rod to the left, the rod pops into a looped conformation as shown in (c). If we move the
right end further and make the loop pass around the right clamp, as in (d), and then pull
the ends out again, we return to conformation (a) without having further rotated the
ends. (Note that the process illustrated in Figure 1(d) requires that whatever supports
the right clamp must be released to allow the passage of the rod behind it.) During this
sequence, which starts and ends with conformation (a), one end remains fixed, and the
other rotates about a fixed centerline tangent; an applied moment will therefore have
done non-zero work along such a path. This shows that an applied moment may not
be conservative. Note that the example only shows a lack of conservation in the case of
a large closed path in conformation space. Indeed, Alexander & Antman showed (and
arguments below will reconfirm) that for moderate perturbations of the conformation an
end moment is conservative. We thus have local conservation, but lack of conservation
for large perturbations.
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This example also illustrates that the lack of conservation is intimately related to a
different question concerning end rotation. End rotation is defined for a deformation
process, a path in conformation space, along which the centerline tangents at the ends
remain fixed. The end rotation R associated with this path is then the relative rotation
of the ends about their respective tangents (see Definition 2.11). The work done by a
constant, non-zero pair of end moments of magnitude M along this path equals MR.
For this pair of moments to be conservative it is clearly necessary and sufficient that
the end rotation R is determined completely by the initial and final conformations and
is independent of the connecting path. Therefore we now shift our focus, moving away
from the issue of conservative end moments, towards the question whether end rotation
is conservative. This will be the issue that we focus on in the rest of the paper.

1.2. The closure. Alexander & Antman proposed a way to deal with the lack of global
conservation. Their solution is to assume the elastic rod to be part of a longer rod that
itself is closed (i.e., the centerline is a closed curve). For a closed rod the relative end
rotation—the total rotational shear between the two ends, which are now adjacent—is
known as the link (see (4)). For integer values the link is the topological linking number
of two closed curves, one being the rod’s centerline and the other a line drawn parallel
to it on the surface of the unstressed rod; a straightforward extension exists to fractional
values [7]. The link is a topological invariant: once the ends are glued together the link
is preserved no matter how the rod is deformed, provided no self-intersections of the rod
are allowed.

The assumption that the rod under consideration is part of a larger, closed rod al-
lowed Alexander & Antman to define a class of deformations for which end moments
are conservative. If we keep the virtual part of the closed rod (which we shall call the
closure) fixed during deformation, variations in link can be interpreted as variations in
end rotation of the rod. Provided the physical part of the rod (which we shall refer to
as the ‘open rod’) does not intersect itself or the closure during deformation, the relative
end rotation thus defined depends only on the initial and final states; with respect to
this class of deformation an applied moment thus becomes conservative.

The class of allowable deformations now contains an element of arbitrariness: the open
rod should not intersect the closure, but the closure itself is not part of the original setup;
it was invented to make the variational formulation possible. However, as Alexander &
Antman remark, one may view the closure as the mathematical counterpart of the exper-
imental apparatus that is used to control the rod ends; indeed, in a typical experimental
setup the sequence of Figure 1 would be impossible without releasing the rod from the
clamp that holds it.

1.3. Moving supports. For fixed closures—implying fixed end positions—this approach
provides a satisfactory framework for a variational analysis. For moving supports, how-
ever, the closure will have to change during deformation, and then the situation is less
clear. If no constraints are placed on the deformation of the closure, then the example
of Figure 1 is again allowed, for the closure can simply change such as to accommodate
the movement of the open rod. In addition, the degrees of freedom of a rod contain not
only a measure of centerline position but also a measure of rotation about the centerline.
It is a priori unclear how this rotation should be chosen when the closure changes.
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The main purpose of this paper, therefore, is to investigate the conditions that we
should place on the closure and the admissible deformations in order to obtain a globally
conservative end rotation. In Section 2 we introduce such conditions, in the form of a
class of conformations that can be linked to a reference conformation by a deformation
process satisfying certain requirements (the class A2

r0
, Definition 2.7). For deformations

in this class the end rotation is indeed conservative: its value can be inferred from the
reference and final conformations. If the reference conformation is straight, then in terms
of an appropriate choice of Euler angles the end rotation is given by the simple formula
(see Section 2.3)

R =
∫ [

φ̇ + ψ̇
]
ds. (1)

In Section 3 we illustrate the application of these results with the example of a rod
constrained to lie on the surface of a cylinder.

The formula (1) is by no means new, and has been used extensively in the literature
on elastic rods (often in applications to DNA supercoiling). Our contribution consists
in making the assumptions explicit that are required for (1) to be meaningful, and in
highlighting the pitfalls that surround this expression. Indeed, the class of admissible
deformations A2

r0
is an ugly beast, and in Section 4 we critically review the defining

conditions of this class, using counterexamples to show that they are necessary.
Finally, in Section 5 we discuss our approach in light of other existing work.

2. Results: Open twist, open writhe and end rotation.
2.1. Setup. For our purposes a rod is a member of the set

A0 =
{

(r, d1) ∈ C2([0, L]; R3 × S2) such that |ṙ| �= 0, ṙ · d1 = 0,

and r is non-self-intersecting
}
.

Here and in the following an overdot denotes differentiation with respect to the spatial
variable s. The curve r is thought of as the centerline of a physical rod, and d1(s) as
a material vector in the section at s. As alternatives to ‘rod’ the terms ‘ribbon’ [7, 1]
and ‘strip’ [2] are also used. A closed rod is an element of A0 for which begin and end
connect smoothly.

To each point on the centerline of the rod we can attach an orthonormal right-handed
frame (d1(s), d2(s), d3(s)) of directors by setting

d3(s) = ṙ(s)/|ṙ(s)| and d2(s) = d3(s) × d1(s). (2)

These directors track the varying orientation of the cross-section of the rod along the
length of the rod. The twist of a closed rod (r, d1) is now defined by

Tw(r, d1) :=
1
2π

∫ L

0

ḋ1(s) · d2(s) ds. (3)

It measures the number of times d1 revolves around d3 in the direction of d2 as we go
around the rod.
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Let r1 and r2 be two non-intersecting closed curves. Then the link of r1 and r2 is
defined by

Lk(r1, r2) :=
1
4π

∫ L

0

∫ L

0

[ṙ1(s) × ṙ2(t)] · [r1(s) − r2(t)]
|r1(s) − r2(t)|3

dsdt. (4)

The writhe of a closed curve r is

Wr(r) :=
1
4π

∫ L

0

∫ L

0

[ṙ(s) × ṙ(t)] · [r(s) − r(t)]
|r(s) − r(t)|3 dsdt. (5)

The argument of this integral is the pullback of the area form on S2 under the Gauss
map R

2 −→ S2,

G : (r(s), r(t)) �−→ r(s) − r(t)
|r(s) − r(t)| ,

so that the writhe may be interpreted as the signed area on S2 that is covered by this
map. For each direction p ∈ S2 the signed multiplicity of the Gauss map (i.e., the number
of points (s, t) for which G(s, t) = p, weighted by the sign of p · [Gs × Gt]) equals the
directional writhing number, the number of signed crossings of the projection of r onto
a plane orthogonal to the vector p [6, 1]. In other words, the writhe of a closed curve is
equal to the directional writhing number averaged over all directions of S2.

The link, twist and writhe of a closed rod are related by the well-known Călugărea-
nu-White-Fuller Theorem [4, 20, 6]:

Theorem 2.1. Let (r, d1) ∈ A0 be a closed rod as defined above. Then

Lk(r, d1) = Tw(r, d1) + Wr(r). (6)

We review two classical theorems by Fuller [7] which are of interest to us. Note that
at each point r(s), the unit tangent t(s) = ṙ(s)/|ṙ(s)| traces out a closed curve on S2,
called the tantrix. Fuller’s first theorem relates the writhe of the curve to the area A

enclosed by the tantrix on S2:

Wr(r) =
A

2π
− 1 (mod 2). (7)

Note that the equality modulo two is necessary since the area enclosed by a curve on S2

is only defined modulo 4π.
The second theorem, stated in detail as Theorem 2.5 below, gives under certain con-

ditions a formula for the difference in writhe between two closed curves r1 and r2 that
can be continuously deformed into each other (see Figure 2):

Wr(r1) − Wr(r2) =
1
2π

∫
t2 × t1

1 + t1 · t2
· (ṫ1 + ṫ2). (8)

2.2. The set of admissible homotopies. We now proceed with the introduction of the
set for which the end rotation (and twist and writhe functionals) will be defined. Let us
first briefly sketch the underlying ideas:

(1) We close the rod with a closure as in [2] in order to prevent the situation of
Figure 1.
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t1

t1

t2

t2

.

.

Fig. 2. The integral in (8) represents the area swept out by the
geodesic connecting the curves t1 and t2 on S2.

(2) In contrast to [2], the closure is forced to follow changes in the end points of the
rod. We therefore have to consider homotopies of the rod with its closure, i.e.,
homotopies of closed rods.

(3) To fix the set of admissible homotopies we choose a fixed starting point, a closed
planar curve r0 ∈ C2([0, M ]; R3) for some M > L, representing the initial rod
with its closure.

Recall that the dot always denotes differentiation with respect to the parameter s.
Definition 2.2.

A1
r0

=
{

(r, d1) ∈ A0 such that ∃(r̄, d̄1) ∈ C2([0, M ] × [0, 1]; R3 × S2) :

1. for each λ, r̄(·, λ) is an unknotted, non-self-intersecting closed curve,

2. | ˙̄r(s, λ)| �= 0 and ˙̄r(s, λ) · d̄1(s, λ) = 0 for s ∈ [0, M ], λ ∈ {0, 1},
3. (r̄, d̄1)(s, 1) = (r, d1)(s) for s ∈ [0, L],

4. r̄(s, 0) = r0(s) for s ∈ [0, M ],

5.
˙̄r(s, 0)
| ˙̄r(s, 0)| ·

˙̄r(s, λ)
| ˙̄r(s, λ)| > −1 for s ∈ [0, M ], λ ∈ [0, 1],

6. {r̄(s, λ) : s ∈ [L, M ]} is a planar curve for λ = 0 and for λ = 1,

and the two planes are parallel
}

.

A1
r0

can be thought of as a class of open rods (r, d1) that can be first closed and then
connected by a homotopy to the reference curve r0. Both the closure and the homotopy
are to satisfy certain requirements. The closure is the part of the closed rod corresponding
to s ∈ [L, M ].

Some of the conditions above are more natural than others. Parts 1 and 2 state that
(r̄, d̄1) is a homotopy of well-behaved closed rods, and by parts 3 and 4 the homotopy
contains the original open rod (r, d1) at λ = 1, and the reference curve at λ = 0. Parts 5
and 6 contain the essential elements of this definition. Part 5 is the same non-opposition
condition that appears in the statement of Fuller’s theorem (Theorem 2.5) and is required
for the conversion of the writhe to a single-integral expression. Part 5 may appear to be
a technical restriction, but as we discuss in Section 4 the conservation of end rotation will
not hold if we simply remove this condition. Part 6, which states that the closure should
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be planar at the beginning and the end of the homotopy, is central to the construction.
This condition is inspired by the fact that a planar closed curve has zero writhe, a fact
verified immediately in (5); the effect of this condition is to eliminate any contribution of
the closure to the writhe of the closed curve, as is exploited in the proof of Theorem 2.4
below.

Note that curves r0 exist for which A1
r0

is empty: if the three vectors ṙ0(0), ṙ0(L),
and r0(L)− r0(0) are independent, then the open curve r0 cannot be closed by a planar
closure, so that the set of homotopies with planar closures that connect to r0 is empty.

We are now in a position to define the new functionals ‘open twist’ and ‘open writhe’
for open rods.

Definition 2.3. Let (r, d1) be a rod in A1
r0

. Then the open twist of (r, d1) is

Two(r, d1) :=
1
2π

L∫
0

ḋ1 · (ṙ × d1) ds,

and the open writhe of r is

Wro(r) := Wr(r̄(·, 1)) =
1
4π

M∫
0

M∫
0

[r̄(s, 1) − r̄(t, 1)] · [ ˙̄r(s, 1) × ˙̄r(t, 1)]
|r̄(s, 1) − r̄(t, 1)|3 dsdt. (9)

Theorem 2.4. For any open rod (r, d1) ∈ A1
r0

, the open twist and writhe are well-defined.

The definitions of open twist and twist for closed curves are identical, and the well-
posedness of open twist is obvious. For writhe, however, different homotopy closures
(r̄, d̄1) might give rise to different values of Wro(r), and a proof of well-posedness is
required.

Proof. We first state Fuller’s second theorem in a more precise form.

Theorem 2.5 ([7]). Let rλ (0 ≤ λ ≤ 1) be a homotopy of closed non-self-intersecting
curves, regularly parametrised with a common parameter s ∈ [0, L]. Let tλ = ṙλ/ |ṙλ| be
the tantrix of rλ. If t0(s) · tλ(s) > −1 for all s ∈ [0, L], λ ∈ [0, 1], then

Wr(r1) − Wr(r0) =
1
2π

L∫
0

t0 × t1
1 + t0 · t1

·
(
ṫ0 + ṫ1

)
ds. (10)

A detailed proof of Theorem 2.5 can be found in [1].
To prove Theorem 2.4, let (r̄, d̄1) be a homotopy associated to (r, d1). By definition,

r̄(·, 0) and r̄(·, 1) are planar for s ∈ [L, M ]. Let us denote the planes by V0 and V1; these
are parallel by Definition 2.2.6. Let V be the plane through the origin parallel to both.

We have defined the class of open rods A1
r0

such that Theorem 2.5 can be applied.
Denote the tantrices of r̄(·, 0) and r̄(·, 1) by t0 and t1 respectively. Then

Wr(r̄(·, 1)) − Wr(r̄(·, 0)) =
1
2π

M∫
0

t0(s) × t1(s)
1 + t0(s) · t1(s)

· (ṫ0(s) + ṫ1(s)) ds. (11)
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The argument of the integral vanishes for s ∈ [L, M ]: since t0(s), t1(s) ∈ V for s ∈ [L, M ]
we have t0(s) × t1(s) ⊥ V and ṫ0(s) + ṫ1(s) ∈ V for s ∈ [L, M ]. Hence

[t0(s) × t1(s)] · [ṫ0(s) + ṫ1(s)] = 0.

Moreover, since r̄(·, 0) is planar, Wr(r̄(·, 0)) = 0. We conclude that

Wr(r̄(·, 1)) =
1
2π

L∫
0

t0(s) × t1(s)
1 + t0(s) · t1(s)

· (ṫ0(s) + ṫ1(s)) ds. (12)

Since this integral only depends on the reference curve and the open rod itself, and is
otherwise independent of the choice of closure and homotopy, this proves the claim. �

Remark 2.6. A natural question to ask is whether the open twist and writhe thus
defined reduce to their classical counterparts when an open rod is converted into a closed
rod by lining up and connecting the ends. For writhe this is not the case, as we demon-
strate in Section 4.

2.3. Aligned end tangents. It is common in applications that the end tangents of
the buckled rod are kept constant and equal during the deformation process, and for
comparison with an end rotation we introduce this additional condition. Throughout
this section we also assume that r0|[0,L] is straight, and without loss of generality we
choose the director d1 constant on the reference curve r0|[0,L]:

Definition 2.7.

A2
r0

=
{

(r, d1) ∈ A1
r0

:
ṙ0(s)
|ṙ0(s)|

= v ∈ S2 for all s ∈ [0, L],

˙̄r(0, λ)
| ˙̄r(0, λ)| =

˙̄r(L, λ)
| ˙̄r(L, λ)| =

˙̄r(M, λ)
| ˙̄r(M, λ)| = v for all λ ∈ [0, 1],

d̄1(s, 0) = d̄1(0, 0) for all s ∈ [0, L]
}
.

The following formula is a direct consequence of Theorem 2.5:

Corollary 2.8. Let (r, d1) ∈ A2
r0

and let t be the tantrix of r. Then

Wro(r) =
1
2π

L∫
0

v × t(s)
1 + v · t(s) · ṫ(s) ds. (13)

In the present case of a straight r0|[0,L] the dependence on r0 of the open writhe of a
given open rod takes a particularly simple form:

Theorem 2.9. Under the conditions of Corollary 2.8, let Ω = S2 \ {−t(s) : s ∈ [0, L]}.
Then the function

v ∈ S2 �−→ 1
2π

∫ L

0

v × t(s)
1 + v · t(s) · ṫ(s) ds

is constant on connected components of Ω.

The proof is given in the appendix. The interpretation of this theorem is as follows: if
the end tangents are aligned, then the tantrix given by the rod (without closure) forms
a closed curve on S2. The integral above represents the spherical area enclosed by the
curve, either to the left or to the right of the curve (cf. (7)). When the vector v crosses
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the set {−t(s) : s ∈ [0, L]} the geodesic connections between v and t(s) change direction,
causing the integral to represent the area on the other side of the curve, and therefore
causing the integral to jump by 4π.

To study the relationship between end rotation and open twist and writhe we introduce
a particular choice of Euler angles for an open rod (r, d1). Recall that for every s ∈ [0, L]
there is an orthonormal director frame (d1(s), d2(s), d3(s)). We express this frame in
terms of angles θ, ψ, φ with respect to a fixed basis (e1, e2, e3) as follows:

d1 = (− sin ψ sin φ + cosψ cos φ cos θ) e1

+ (cosψ sin φ + sin ψ cosφ cos θ) e2 − cos φ sin θ e3,

d2 = (− sin ψ cos φ − cos ψ sin φ cos θ) e1 (14)

+ (cosψ cos φ − sin ψ sin φ cos θ) e2 + sin φ sin θ e3,

d3 = cos ψ sin θ e1 + sin ψ sin θ e2 + cos θ e3.

This choice of Euler angles follows Love [9, art. 253]. For rods in the class A2
r0

we
choose e3 parallel to v; note that by this choice the non-opposition condition 5 in Defini-
tion 2.2 coincides with avoidance of the Euler-angle singularity at θ = π. Therefore the
smoothness assumptions on (r̄, d̄1) in A2

r0
imply C1-regularity for φ, ψ, and θ.

In terms of these Euler angles the following formulae for open twist, open writhe and
end rotation are obtained.

Lemma 2.10. Let (r, d1) be an open rod in A2
r0

. Then

Two(r, d1) =
1
2π

L∫
0

[φ̇(s) + ψ̇(s) cos θ(s)] ds (15)

and

Wro(r) =
1
2π

L∫
0

ψ̇(s)(1 − cos θ(s)) ds. (16)

Proof. The formula for twist is easily found by using (14) in the definition of open twist
(Definition 2.3). For the writhe we apply Corollary 2.8 and use the fact that v = e3. �

With fixed end tangents we can introduce the end rotation. We denote ∂(·)/∂λ

by ∂λ(·).
Definition 2.11. Let (r, d1) ∈ A2

r0
be an open rod with an associated homotopy

(r̄, d̄1), and let d̄2 and d̄3 be constructed from r̄ and d̄1 according to (2). We define the
end rotation by

R(r, d1) :=

1∫
0

∂λd̄1(L, λ) · d̄2(L, λ) dλ −
1∫

0

∂λd̄1(0, λ) · d̄2(0, λ) dλ.

We can now prove the following.
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Lemma 2.12. With a slight abuse of notation, let φ, ψ, θ : [0, M ] × [0, 1] → R be the
Euler-angle representation of (d̄1, d̄2, d̄3). Then

R(r, d1) =

L∫
0

[φ̇(s, 1) + ψ̇(s, 1)] ds. (17)

From this lemma we conclude

Corollary 2.13. For open rods (r, d1) ∈ A2
r0

,

1
2π

R(r, d1) = Wro(r) + Two(r, d1).

In particular, R(r, d1) is independent of the choice of extension (r̄, d̄1).

Proof of Lemma 2.12. Using the definitions of the Euler angles, we find

∂λd̄1(s, λ) · d̄2(s, λ) = ∂λφ(s, λ) + ∂λψ(s, λ) cos θ(s, λ).

For s = 0, L and λ ∈ [0, 1] we have set d̄3(s, λ) = e3, and hence θ(s, λ) = 0 for s = 0, L;
therefore ∂λd̄1(s, λ) · d̄2(s, λ) = ∂λφ(s, λ) + ∂λψ(s, λ) for s = 0, L.

Since φ+ψ is a continuously differentiable function on V := [0, L]× [0, 1], the integral
of the tangential derivative of φ + ψ along ∂V vanishes:∮

∂V

∂

∂τ
(φ + ψ) = 0,

where τ is the clockwise-pointing unit vector tangential to ∂V .
Hence∫ L

0

[∂sφ(s, 1) + ∂sψ(s, 1)] ds −
∫ L

0

[∂sφ(s, 0) + ∂sψ(s, 0)] ds

=
∫ 1

0

[∂λφ(L, λ) + ∂λψ(L, λ)] dλ −
∫ 1

0

[∂λφ(0, λ) + ∂λψ(0, λ)] dλ

=
∫ 1

0

[∂λφ(s, λ) + ∂λψ(s, λ)] dλ
∣∣∣s=L

s=0

=
∫ 1

0

∂λd̄1(s, λ) · d̄2(s, λ) dλ
∣∣∣s=L

s=0
= R(r, d1). �

3. Example: Rod on a cylinder. In [17, 18] the present authors studied the defor-
mation of an inextensible and unshearable rod constrained to lie on a cylinder. The rod
is assumed to be loaded by an axial end force (tension) T and an end twisting moment
M both of which are applied along the axis of the cylinder, which we take parallel to
e3. The loading device is assumed to leave the end of the rod free to rotate around the
circumference of the cylinder. Thus we have d3(0) = d3(L) = e3, but the ends of the
rod need not be coaxial. We shall now write down the total potential energy. This will
involve the end rotation through which M does work. We use the Euler angles θ, ψ, φ

defined in (14). The inextensibility/unshearability constraint ṙ = d3, combined with the
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cylindrical constraint (r · e1)2 +(r · e2)2 = a2, where a is the radius of the cylinder, yields
the kinematic condition

ψ̇ =
1
a

sin θ. (18)

The generalised strain vector u = κ1 d1 +κ2 d2 + τ d3 is defined by ḋi = u×di. κ1 and
κ2 are the curvatures about d1 and d2, respectively, while τ is the twist. Taking account
of (18), we obtain

κ1 = θ̇ sin φ − 1
a

sin2 θ cos φ, κ2 = θ̇ cos φ +
1
a

sin2 θ sin φ, τ = φ̇ +
1
a

sin θ cos θ. (19)

Note that because of inextensibility all derivatives are now with respect to arclength s.
The strain energy in the rod is taken to be the usual expression of linear elasticity

E(θ, τ ) =
B

2

∫ L

0

(κ2
1 + κ2

2) +
C

2

∫ L

0

τ2 =
B

2

∫ L

0

(
θ̇2 +

1
a2

sin4 θ

)
+

C

2

∫ L

0

τ2. (20)

Here B and C are the bending and torsional stiffnesses of the (transversely isotropic)
rod.

The displacement corresponding to the applied force T is the end shortening S, for
which we can write

S =
∫ L

0

(1 − cos θ), (21)

while the generalised displacement corresponding to the applied moment M is the end
rotation R given by Definition 2.11. Provided an appropriate class of admissible defor-
mations can be found, we can apply the preceding discussion to obtain

R =
∫ L

0

(φ̇ + ψ̇) = [φ + ψ]L0 . (22)

To construct our class of admissible deformations we choose as our reference confor-
mation the straight rod (θ ≡ 0). This open rod can be made into a smooth planar closed
structure (with centerline r0) by means of an approximately semi-circular closure that
can be chosen in any plane through the reference rod. Because the final rod conformation
has aligned (although in general displaced) ends, there is always a plane in which the rod
can be closed by means of a smooth closure (assuming one end tangent is kept fixed in
the deformation), namely the plane through the two lines of the end tangents. This final
plane is parallel to one of the infinity of planes of the initial closed conformation and
therefore condition 6 of Definition 2.2 is satisfied. If we assume that θ remains bounded
away from ±π — and note that we are forced to assume this, since we have no argument
to support this claim — we also satisfy the non-opposition condition 5 of Definition 2.2.
We have thus verified that we have a class of deformations for which (22) gives the correct
end rotation.
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The total potential energy is the sum of E(θ, τ ) and the work contributions of the
external loads:

V (θ, τ ) = E(θ, τ ) + TS − MR

=
∫ L

0

[
B

2
θ̇2 +

B

2a2
sin4 θ +

C

2
τ2 + T (1 − cos θ) − M

(
τ +

1
a

sin θ(1 − cos θ)
)]

. (23)

We can obtain a reduced minimisation problem by performing the minimisation with
respect to τ , which gives τ ≡ M/C. Re-insertion then yields the final functional to be
minimised:

F (θ) =
∫ L

0

[
B

2
θ̇2 +

B

2a2
sin4 θ − T cos θ − M

a
sin θ(1 − cos θ)

]
. (24)

In [18] this functional, under slightly different loading conditions, is studied subject to
the constraint that the rod cannot pass through itself on the cylinder.

4. Critique. The class A1
r0

is arguably neither elegant nor practical. In addition,
the explicit dependence on the deformation history is at odds with our intuition that
stationary elastic problems should be formulated in terms of the current conformation
only. Nonetheless, we claim two reasons for studying this approach to end rotation: first,
it is a formalization of current literature practice, and second, there currently exists (to
the best of our knowledge) no better way to treat moving supports. The first claim is
elaborated in Section 5; in the current section we will show to which extent the definition
of A1

r0
is optimal. We review the elements of this definition one by one.

The closure and the homotopies. The necessity of the closure is nicely demonstrated
by Figure 1, and needs no further motivation. The homotopy is the natural context for a
discussion of end rotation, but the aim of such a discussion is to arrive at an expression
which, in accordance with our intuition, depends only on the initial and final states. We
achieve this aim only partially: it is true that expression (12) is a function of the initial
and final conformations of the open rod alone, but this expression is only valid under
certain conditions on the homotopy. The question therefore remains to what extent the
restrictions on the homotopy are necessary.

The planarity of the closure. For a well-defined open-rod writhe Wro, some condition
on the closure is clearly necessary, since Wro is defined in terms of the writhe of the
closure. For the current definition of A1

r0
, planarity of the closure in only the initial and

final conformations is sufficient—but see Conjecture 4.1 below for an alternative.
The non-opposition condition. The non-opposition condition listed in the definition of

A1
r0

(condition 5) is imposed by the application of Theorem 2.5. This might seem to be
merely a technical restriction: after all, the open writhe is defined in terms of the writhe
of the closed curve (Definition 2.3), and the latter is well-defined even if, somewhere along
the homotopy, the non-opposition condition is violated. Therefore it might be expected
that the statement of well-posedness holds true without condition 5 (even though our
proof evidently does not), and that only non-self-intersection of the closed structure is
required.
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In fact the situation is not that simple. Figure 3 shows homotopy paths connecting
the reference conformation (a) with the deformed rod-closure combinations (b), (c) and
(d), where the rod itself (represented by the thick line) is the same in each of the three
deformed states. We can imagine the deformed rod to be nearly planar, with the two
strands crossing at a short distance from each other. Then the rod and its closure in
case (b) have writhe close to −1.1 In case (c) one adds or subtracts 1 to the writhe of
the rod-closure combination for each full turn of the end. The writhe of the combination
can therefore be made arbitrarily large. In case (d), finally, the writhe is close to −2.

(a) (b)

(c) (d)

Fig. 3. An example showing that the non-opposition condition 5 in
Definition 2.2 cannot be disposed of. In the three final states (b),
(c) and (d), with identical shapes for the open rod, the closed curve
has different values of writhe. In going from (b) to either (c) or (d)

the non-opposition condition is violated.

It is not difficult to see that one may construct a homotopy from (a) to (b) without
violating the non-opposition condition, provided the loop has been twisted through an
angle strictly less than π. Since the concatenation homotopies (a) → (b) → (c) and
(a) → (b) → (d) satisfy all conditions of Definition 2.2 other than the non-opposition
condition, it follows from Theorem 2.4 that these homotopies cannot be constructed
without violating the non-opposition condition. This may also be verified by inspection.

This example shows that simply removing condition 5 from Definition 2.2 leads to
ambiguities in the definition of writhe, implying that different homotopies within this
larger class lead to different end rotations. The example also suggests that if a well-
defined writhe is to be constructed without imposing the non-opposition condition, then
additional restrictions must be imposed on the closure. In homotopy (b) → (c) the
closure remains planar throughout the homotopy, but the end tangents vary; in homotopy
(b) → (d) the end tangents are constant, but the closure is only planar at the beginning

1This may be verified by using the characterisation of writhe as the average of the directional writhing
number, as explained in Section 2. This number can be determined by counting signed crossings in a

projection of the curve onto a plane.
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and the end of the homotopy. We conjecture that ruling out these two cases will result
in a well-defined writhe:

Conjecture 4.1. On the set

Ã1
r0

=
{

(r, d1) ∈ A0 such that ∃(r̄, d̄1) ∈ C2([0, M ] × [0, 1]; R3 × S2) :

1. for each λ, r̄(·, λ) is an unknotted, non-self-intersecting closed curve,

2. | ˙̄r(s, λ)| �= 0 and ˙̄r(s, λ) · d̄1(s, λ) = 0 for s ∈ [0, M ], λ ∈ {0, 1},
3. (r̄, d̄1)(s, 1) = (r, d1)(s) for s ∈ [0, L],

4. r̄(s, 0) = r0(s) for s ∈ [0, M ],

6′. {r̄(s, λ) : s ∈ [L, M ]} is a planar curve for all λ ∈ [0, 1],

7. ∂λ ˙̄r(0, λ) = ∂λ ˙̄r(L, λ) = 0 for all λ ∈ [0, 1]
}

,

the open writhe given by (9) is a function of (r, d1) alone.
The reference curve. Deformation histories require a reference conformation to start

from (or to end in). The class A1
r0

is defined for a fixed closed reference curve r0 (which
may or may not include the unstressed centerline of the rod). The open writhe Wro

will, in general, depend on the choice of this curve; on the one hand, by the fact that the
reference curve restricts the class of admissible homotopies via the non-opposition condi-
tion, and on the other hand, by the explicit dependence on t0 in (12). Similarly, the end
rotation R will depend on r0, as is to be expected since R is defined (in Definition 2.11)
as the end rotation incurred in deforming (r0, d̄1(·, 0))|[0,L] into (r, d1).

For certain cases, however, the dependence can be described more precisely, as in
Theorem 2.9 for straight reference curves (in [13] a similar result is proved under rota-
tion of more general reference curves). For instance, one could extend Definition 2.11,
Lemma 2.12 and Corollary 2.13 to a larger class than A2

r0
by requiring of r0|[0,L] only

that its end tangents be equal. A complication would arise, however, in that violation of
the non-opposition condition no longer coincides with the Euler-angle singularity. Con-
sequently, the non-opposition condition would no longer assure us of C1-regularity of φ,
ψ, and θ.

We now briefly discuss two other interesting aspects of the approach outlined above.
Euler-angle singularity vs. the non-opposition condition. When the reference confor-

mation is straight and end tangents remain constant during the homotopy, the non-
opposition condition is equivalent to avoidance of the Euler-angle singularity at θ = π.
It should not be concluded from this, however, that the two are one and the same thing,
although both have their origin in the topology of S2.

The Euler-angle singularity results from the fact that S2 is not homeomorphic to
(any part of) R

2. Any parametrisation of S2 by a single cartesian coordinate system
will therefore have at least one singular point. On the other hand, the non-opposition
condition is necessary—in this paper—for the single-integral representation of writhe in
Theorem 2.5. In this representation the ambiguity of area ‘enclosed’ by a curve on S2 is
resolved by taking a perturbation approach. The non-opposition condition reflects the
unavoidable limits of this approach.
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Open writhe is not rotation invariant. The definition of A1
r0

depends on the choice of
the reference conformation. For a given reference conformation, an open rod in A1

r0
may

not be freely rotated without leaving A1
r0

. This is readily demonstrated by rotating the
reference conformation itself: after a rotation through π about an axis perpendicular to
the plane of the reference curve, the non-opposition condition is violated at every point
on the curve.

This may lead to surprising results. In Figure 4 two homotopies are shown. The first
is a variation on homotopy (a) → (b) of Figure 3, while in the second we lengthen the
open-rod part and shorten the closure part. In addition, we construct the homotopies
such that the final conformations are close, up to a rotation (emphasized by the mark
at one end of the open rod). In (a) the open writhe is close to 1, while in (b) it is close
to 0.

(a)

(b)

Fig. 4. Two elements of A1
r0

that differ only by a rotation, but for which
the writhe is different. The dot emphasizes the difference in orientation.

This remark also resolves an issue raised in Remark 2.6: does the open writhe change
continuously into the classical writhe for closed rods, when an open rod is transformed
into a closed rod by lining up and connecting the ends? The answer is no, as is illustrated
by the two homotopies of Figure 4, which lead to the same closed curve with different
open-writhe limits; this shows that in the open-to-closed limit the open writhe is not
well-defined.

5. Other work. Our aim in this paper is to formulate conditions under which we
may infer the value of the end rotation from knowledge of the current (and reference)
position of the rod; in the previous sections an example of such a set of conditions is
presented and studied. In this section we will briefly discuss how other authors have
dealt with the issue of a non-conservative end rotation, and compare their approaches to
ours.

The first category of authors consists of those who simply use formulae such as (17),
often while noting the difficulties and assumptions. Our treatment of Section 3 is of this
type. With the counterexamples of Section 4 in mind this approach needs no further
discussion.
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Closures of one type or other appear in various works. Marko [11] defines a clo-
sure for open rods with clamped ends by extending two straight lines out to infinity
from the rod ends, a type of closure that is essentially indistinguishable from that of
Alexander & Antman [2]. Rossetto & Maggs [14] extend this concept to open rods
with free ends but with equal end tangents, and comment on the relation with a
closure that becomes arbitrarily large. Closures of this type, straight lines to infinity,
are an interesting alternative to our approach, and we feel they should be investigated
further.

Rossetto & Maggs [14] also take a different position when it comes to determining
end rotation practically. They discuss the possibility in today’s routine single-DNA-
molecule experiments [16] of closure crossings (the molecules may loop around their
magnetically supported ends in the manner illustrated in Figure 1), but, adopting a
statistical point of view, then simply choose to disregard such closure crossings, arguing
that these violations of link conservation are scarce on the time scale that they consider.
Note that such an assumption is only possible under non-stationary conditions, i.e., when
considering finite-time ensembles; any positive probability of closure crossing, regardless
of how small, eliminates the distinction between link classes, and therefore alters all
(infinite-time) equilibrium distributions.

In order to avoid the awkward non-opposition condition in Fuller’s second theorem
there have been direct approaches, based on a closure and calculation of the double
integral (5) instead. In [15, 12] simple shapes are considered with planar closures for
which the integral can be evaluated explicitly. It is then shown that the closure gives
a relative contribution to the writhe which tends to zero as the length of the rod tends
to infinity. The double integral is also used in the numerical study in [19], where it is
shown that the contribution to Wr from the interaction of the closure with the basic
chain is of the order of 1%. Various numerical schemes for the computation of the writhe
double integral for a discretised curve are discussed and compared in [8]. Useful rigorous
error bounds on numerically computed values of Wr based on polygonal (i.e., piece-wise
linear) approximation are given in [5].

Various generalisations exist of writhe to open curves, without introducing a closure.
Some authors have used the identification of writhe with area on S2 to generalise the
writhe to curves that are open but for which the tantrix traces a closed curve on S2 [10].
While this generalisation provides a well-defined generalised writhe, the lack of a closure
implies that there is no equivalent of Theorem 2.1, and therefore the connection between
the writhe and the rotation of the ends is lost. Therefore such a generalisation of the
writhe, although interesting, does not provide a solution to the problem of this paper.2

The same difficulty holds for the suggestion by Fuller himself [6] of using the property
that writhe equals the averaged crossing number as a basis for extension to non-closed
curves.

2Actually, the generalisation suggested in [10] even extends to arbitrary curves by an appeal to the
concept of geometric phase [3]; in the context of tantrix curves on S2, this amounts to closing the
tantrix by part of a great circle [10]. This further generalisation is, however, just as useless for our

present purposes, for the same reason.
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Appendix A. Proof of Theorem 2.9. Let f : S2 → R be the function mentioned
in the assertion. Pick v0 ∈ Ω and let Ω0 be the connected component of Ω containing
v0. Define the set

A = {v ∈ Ω0 : f(v) = f(v0)}.
The function f is continuous on Ω0, implying that the set A is relatively closed in Ω0.
We will show below that f is constant on all open balls B ⊂ Ω0, implying that A is also
open. Since A is non-empty it follows that A = Ω0 and the lemma is proved.

For a given vector ω ∈ S2, let Rφ denote the rotation about ω through an angle φ.
We fix the direction of rotation in the following way: with respect to an orthonormal
basis (ω, w, ω × w) for a suitable w ∈ S2, write Rφ as

Rφ =

⎛
⎝ 1 0 0

0 cos φ − sin φ

0 sin φ cos φ

⎞
⎠ .

With this choice,
d

dφ
Rφv|φ=0 = ω × v for any v ∈ S2. (25)

Set vφ = Rφv. Using equation (25), we have

d

dφ

vφ × t

1 + vφ · t · ṫ =
[(1 + vφ · t)((ω × vφ) × t) − (vφ × t)((ω × vφ) · t)]

(1 + vφ · t)2 · ṫ. (26)

Setting γ = |ω × vφ| we introduce an orthonormal coordinate system

e1 = vφ, e2 = γ−1 ω × vφ, e3 = γ−1 vφ × (ω × vφ),

and we write t1, t2, t3 for the coordinates of t with respect to this basis; these are
functions of the curve parameter s. The right-hand side of (26) becomes

γ
(1 + t1)(t3ṫ1 − t1ṫ3) − t2(t2ṫ3 − t3ṫ2)

(1 + t1)2
.

Using the equalities t21 + t22 + t23 = 1 and t1ṫ1 + t2ṫ2 + t3ṫ3 = 0 this is seen to be equal to

−γ
d

ds

t3
1 + t1

.

Therefore
d

dφ

∫
vφ × t

1 + vφ · t · ṫ ds = −γ

∫
d

ds

t3
1 + t1

ds = 0.

The last equality results from the assumption of aligned end tangents. This proves the
theorem.
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