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1. Introduction. Viscoelastic materials are described by constitutive relations giv-

ing the stress when the temporal history of the deformation gradient is known. For

one-dimensional motions, such as those involving simple tension, this relationship

has the form

o(t)=S*(e<), (1.1)

where a and e are scalar1 measures of stress and strain, t is the time, e', with values

s'(t) — e(t - t), 0 < t < oo, (1.2)

is the history up to time t of the strain, and S? is a (real-valued) functional defined

on an appropriate set of strain histories.

For a large class of specific models the functional <¥ has the form

r OO

f{e') =S{e'{0))+ / 5(t, e'(0), e'(t)) dx
Jo
roo

= S(e(t)) + s(T,e(t),e(t-T))cfz
Jo

(1.3)

Underlying this class of models is the assumption that contributions to the stress

superpose additively in the delay time r, an assumption motivated by Boltzmann's

superposition principle for linear viscoelasticity. We shall refer to functionals of the

form (1.3) as single-integral laws-, for convenience, we normalize 5 so that s(r, e, 0) = 0

for all t > 0 and e e R.

An important feature of viscoelasticity—one that is especially relevant to experi-

mental and theoretical studies in wave propagation (cf. [17])—is the interaction be-

tween nonlinearity and dissipation, in particular, between nonlinearity in the instan-

taneous response and dissipation due to memory. Single-integral laws, even though

relatively simple, capture the essence of this interaction. Moreover, because of their

simplicity, such laws are conducive to the characterization of real materials, and, in

addition, lead to initial/boundary-value problems whose analysis is comparatively

clean.

*Received July 22, 1987.

'We use a one-dimensional formulation for purposes of exposition; the extension to tensorial stress-strain

relations is the subject of [20],

3gj ©1988 Brown University
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It is our purpose here to construct energies for stress-strain laws of single-integral

type. Roughly speaking, a functional "V is an energy for S* if the corresponding

constitutive relation,

ys(t) = 'T(e<), (1.4)

is consistent with the Clausius-Planck inequality,2

V{t) <o{t)e(t), (1.5)

in all constitutive processes. We shall limit our attention to energies of single-integral

form:
rOO

^(e') = V(e{t)) + v(t, s{t), — t)) dx\ (1.6)
J o

in order to avoid trivial ambiguities we require that V(0) = 0 and v(t, e, 0) = 0 for

all r > 0 and e e R.

As our main result we show that if <9" is a single-integral law, then a necessary and

sufficient condition for the existence of an energy ^ of single-integral form is that3

fJ p
{5,1 (t, a, a) - 5,i (t, a, p)} da > 0 (1.7)

for all s, p e R, and that, granted (1.7), the energy 'V is unique; in fact, the corre-

sponding response functions V and v are given by the explicit relations

e

a) da,V(e)= f S(
Jo

(t,e,p)= / s(r,a,p)da+ / 5(r, a, a)
J p Jo

;i.8)
da.

An important feature of energies consistent with the Clausius-Planck inequality

is that they lead to (physically meaningful) Liapunov functionals for the underlying

initial/boundary-value problems. To see this consider a one-dimensional viscoelastic

body which is described by the constitutive equation (1.1) and which occupies an

interval B of R in a (fixed) reference configuration. In any motion of this body

the displacement field u(x, t) and the strain s(x, t) must be consistent with the field

equations

s(x, t) = ux{x, t),

(1.9)

u„(x,t) = crx(x, t).

In writing (1.9) we have tacitly assumed that the density is uniform (and scaled to

unity) and that the body force is zero. Suppose that we are given a sufficiently regular

solution of (1.9) for x € B and t in some interval I, and let

y/(x,t) = ^{e'{x,-)). (1.10)

2The Clausius-Duhem inequality—when restricted to behavior which is isothermal or adiabatic—reduces

to the Clausius-Planck inequality; in the former case ^ is the free energy, in the latter case the internal

energy.

3For functions f(a\,a2,a3) we employ the notation /, =
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Then we may use the field equations (1.9) 1,3 and the Clausius-Planck inequality (1.5)

to show that, for all times t e I,

^ J |^M/(x t)2 + ?)| dx - J a(x,t)ut{x,t)dx < 0, (1-11)

where the integral over dB means evaluation at the endpoints of B. Thus if the

product au, vanishes on dB, then

g?(u') = J |^M/(x, t)2 + ^{u'^x, -))j dx (1-12)

decreases along solutions and hence is a Liapunov functional for (1.9).4

An energy consistent with 5? can also be used to construct a Liapunov functional

for the equation

z(t)+S"(z') = 0, (1.13)

which models the motion of a mass suspended by a massless viscoelastic filament.

(See Section 6 of [4].) If 'V is an energy for S?, then

&{z') = {-z(t)2 + T{z') (1.14)

is a Liapunov functional for (1.13). If S* and "V are single-integral laws, then, under

reasonable assumptions, the Liapunov functional J? in (1.14) can be used to establish

global existence and asymptotic stability for (1.13).5

This paper is motivated by ideas of Coleman, Day, and Owen. For a very general

class of materials with memory, Coleman [3] gives necessary and sufficient conditions

for the associated constitutive relations to be compatible with the second law of

thermodynamics in the form of the Clausius-Duhem inequality. Coleman's theory

presupposes the existence of entropy; subsequent works of Day [7, 9] and of Coleman

and Owen [5] establish the existence of entropy as a consequence of a more primitive

form of the second law.

We consider here a purely mechanical theory and for that reason adopt the second

law in the form of the Clausius-Planck inequality (1.5). Our constitutive relations

are much more specific than those studied in [3, 5, 7, 9]; as a consequence we are able

to give an explicit formula for the energy. For special cases of the function s in (1.3),

energies and associated Liapunov functional have been constructed by others.6 Our

results completely characterize the energy when both stress and energy are given by

single integral laws.

2. Existence of an energy. We consider constitutive relations,

o(t)=S"(el). (2.1)

4The type of bounds that can be obtained from a Liapunov functional of the form (1.11) generally are

not sufficient to continue a smooth solution of (1.9) globally in time; estimates for spatial derivatives of

higher order are needed (cf., e.g., [18]).

5There is a large literature concerning the use of Liapunov functionals to study the global existence and

asymptotic behavior of solutions of functional differential equations such as (1.13) (cf., e.g., [2, 4, 11,

12]).
6There is a large literature (cf., e.g., [2, 4, 6, 14, 15, 16, 19]).
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giving the current stress a(t) in terms of the strain history

e'(r) = e(t - r), 0 < z < oo, (2.2)

for functionals S? of the form
r oo

f{e') = S{e'{ 0))+ / s{t, e'(0), e'(t)) dr. (2.3)
Jo

The strain histories we consider are smooth and bounded. Specifically, we reserve

the term history for functions in C'([0, oo)) that are bounded and have a bounded

derivative.

Functionals of the form (2.3) will be called single-integral laws. More precisely,

let S" be defined by
r OO

S?(h) = S{h{ 0))+/ s(z,h{0),h{x))dT (2.4)
Jo

for every history h. We say that S? is a single-integral law, or that S? is of single-

integral form, if its response pair (S,s) satisfies the following two assumptions:

(H,) 5eC' (R), 5 e C'((0, oo) x R x R) with

s(t, e, 0) = 0 for all e e R, r > 0; (2.5)

(H2) given any compact set C c R2, there are functions / and / on (0,00), with

/ e L'(0,00), / E L{(5,00) for all S > 0, and

r OO

6 /(t) (/r-> 0 as 5 ^ 0, (2.6)
J 5

such that
|i,2(T,eIp)|, |s,3 (t, e, p)\ < /(t),

|j,i (T.e.p) -5,1 (t, £, q)\ < /{t)\p - q\

for all (e, p), (e, q) e C and r > 0.

Remarks.

1. It follows from (2.5) and (2.7) that for any compact set C c R2,

\s{t,e,p)\< f{r)\p\, |s,i (T,e,p)\ </{x)\p\ (2.8)

for all (e, p) e C and t > 0, where / and / are the functions in (H2). As a conse-

quence of (2.8),

s(t,e,/?)—►() as t —>00 (2.9)

uniformly for (e, p) in compact sets.

2. The normalization (2.5) ensures that for a given single-integral law 5* the re-

sponse pair (S, s) is unique. In the literature, other normalizations (e.g., s(t, e, e) = 0)

are often used (see the note added in proof). For a functional of the form (2.4) (under

suitable assumptions on s) the normalization (2.5) can be achieved by introducing

the modified response functions

~ f°°

S(e) = S(e)+ / 5(1, e,0)dz, s(z, e, p) = 5(1, e, p) - s(t, e, 0).
Jo

(2.10)
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3. It is important to note that the response function s(x, e, p) is not required to be

continuous at t = 0: our theory allows for singular kernels such as those studied by

Hrusa and Renardy [13].

By a strain path we mean a function e on R with e1 a history at each t.

Let 5? and 'V be functionals defined on the space of histories. We say that "V is

an energy for 5? if, given any strain path e, the functions

a(l)=^(s'), v{t) = V{e') (2.11)

are such that y/ is differentiate and

\jj <ai (2.12)

on R. To avoid a trivial ambiguity, we add the additional requirement:

2^(0) = 0. (2.13)

Our main result is the following theorem.

Theorem on the existence of an energy. Let S? be a single-integral law with

(S, s) the corresponding response pair. Then a necessary and sufficient condition that

5? have an energy f of single-integral form is that 5 satisfy

/'<J p
{5,1 (t, a, a) - 5,1 (t, a, p)} da > 0 (2.14)

for all p, e e R. Granted (2.14), the energy is unique; in fact, the response pair (Vv)

for 'V is given by

V(e)= f S(a) da,

\ (2-15)
,e,p)= / s(T,a,a)da+ / s(r,a,p)da.

Jo J V
VI,

Remarks.

1. The first of (2.15) has an obvious interpretation: V is the energy of an elastic

material with response function S. To interpret (2.15)2 note that v(t,e,p) gives the

contribution at time t when the strain history at time t - r has value p and the

current strain is e. By (2.15)2, v(t, e, p) is the sum of two terms: the first represents

an equilibrium energy for a strain path which at all times has value p\ the second

represents an instantaneous energy for a strain path which at all past times had value

p, but which suddenly jumps to e at the current time.

2. The necessity of (2.14) and the uniqueness of the corresponding energy apply

only within the class of energies of single-integral form. Indeed, for a linear single-

integral law with response function 5 obeying (2.14), Breuer and Onat [1] exhibit

several energies of the form

y/(t)=[ f K(t-T,t-£)e{T)e{£)dTd£ (2.16)
J -co J — 00
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There are also examples of linear single-integral laws which do not satisfy (2.14),

but which do have energies; such energies, of course, cannot be expressed in single-

integral form.7

An interesting consequence of this theorem concerns the relaxation function which

governs the stress-strain relation (1.1) when the strain history is small. With this

in mind, let y be a single-integral law and equip the space of histories with the

supremum norm || ■ H^. Then, because of (Hj) and (H2), S? has a Frechet derivative

at the zero history given by

r OO

S'(0)h(0) + / s, 3(7,0,0)/z(r) dx (2.17)
Jo

for all histories h. We define the relaxation function G for S? to be the function G

on [0,00) satisfying

G'{x) — 5,3 (t, 0,0), G(0) = S'(0). (2.18)

The stress-strain law (2.1) then has the asymptotic form

rOO

a(t) = G(0)e(t) + G'(T)e(?-T)^T + o(||e'||00). (2.19)
Jo

Assume that S? has an energy of single-integral form. If we consider the left side

of (2.14) as a function f(e, p), then f(e, p) has a minimum at £ = p = 0, so that if s

is sufficiently smooth, then f22 (0,0) > 0; thus

5,31 (t, 0,0) > 0 (2.20)

and, by (2.16)1, the theorem has the following corollary.

Corollary. If a single-integral law S" has an energy of single-integral form, then

the relaxation function for S? is convex.

This result depends crucially on the assumption that the energy be of single-integral

form; convexity does not necessarily follow for energies of other types.

3. Proof of the theorem. We begin our proof by establishing necessary and sufficient

conditions for the existence of an energy of single-integral form.

Lemma. Let 5? and 'V be single-integral laws. Then a necessary and sufficient con-

dition that 'V be an energy for 5? is that the response pairs (S,s) for S? and (Ifv)

for satisfy F(0) = 0 and

S{e) = V'{e), 5(r, e, p) = v>2 (r, e, p),

v,! (t, e, p) < v,] (t, e, e)

for all r > 0 and e, p € R.

Remark. One of the principal conclusions of Coleman's theory [3] is that if 'V

is an energy, h\ is a constant history, and h2 is a history with h2{0) = h\, then

^{h\) < ^(^2); other words, of all histories having the same current value, the

constant history has the least energy. Within the present context this result can be

7An example can be obtained by combining Theorem 6.2 of Gurtin and Herrera [10] with Theorem 2 of

Day [8],
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obtained by integrating (3.1)3 from t to oo and using the counterpart of (2.9) for v

to conclude that

v(t, e, e) < v(t, e, p) (3.2)

for all r > 0 and e, p e R.

Proof of the lemma. Note first that, since both S? and are single-integral laws,

(Hi) implies that

s(t, e, 0) = v(t, s, 0) = 0 for all e e R, r > 0, (3.3)

and this with (2.13) yields V(0) = 0 when 'V is an energy for S?.

Let us agree to use the term process for a triplet (e, a, y) with e a strain path and

a, y/ defined on R by (2.11). For any process,

y(t) - a(t)e(t) = P(t)e(t) + Q(t) (3.4)

with
P(t) = V'(e(t))-S(e(t))

r OO

+ J {v,2 (t, e{t), e(t - t)) - s{r, e{t), e{t - x))}dx,

r OO

<2(0 = / v,3 (t, e(/), e(t - t))e(t - r) rfr.

Using the counterpart of (2.9) for v, we write

Q(t) = Ms(t) + Ns(t), (3.6)

for each S > 0, where

Ms(t)= [ v,3 (t, e(t), e(t - r))e(t - r) dr, (3.7)
J o

and
roc

Ns{t)= / {v.i {r,e(t),e{t - t)) - {d/dr)v(T:,e{t),e{t - t)}^t
J 5

r OO

= / {v,i (t, e(/), e(? - t)) — v,i (t, e(t), e(t — (5))} Jr.
Js

Assume that is an energy for <5^; then, by (2.12) and (3.4),

P(0<K0 + <2(0 < 0. (3.9)

Given any strain path e and any ft e R we can construct a sequence e„ of strain

paths such that (with obvious notation) e„(t) —> p, Pn(t) —♦ P(0, and 2«(0 G(0

as « —► oo. Thus,

P{t) = 0, G(0<0. (3.10)

Let a, p e R be given and take t = 0. Then, by a limiting argument, it is clear that

P(0) = 0 with e given by

0 for - oo < r < r,

e(T) = { P for r < r < 0, (3-11)

a at t = 0

(3.8)
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(r < 0 arbitrary). If we take p = 0 and appeal to (3.3), we arrive at (3.1)i. On the

other hand, substituting (3.11) (with p arbitrary) into the expression f(0) = 0, using

(3.1)i, and then differentiating the resulting relation with respect to r leads to (3.1)2.

To derive the remaining relation (3.1)3, note that Ms{t) + Ns{t) < 0, and that

Mg(t) = 0 for a process with t — 0 on [/ - S, /]; hence a limiting argument applied to

(3.8) yields the conclusion that the expression A^(0) < 0 must hold with

f a for - oo < t < r and c < x < 0,
e(T) = \ c ~ ~ (3-12)

{ p for r < x < c

whenever r < c < -S < 0. Modulo this constraint, r, c, and <5 are arbitrary, and this

yields (3.1)3. This establishes the necessity of (3.1).

To establish sufficiency assume that (3.1) holds and choose a process. Then, in

view of (3.1), (3.4), and (3.5),

By (3.8),

with

- a(t)e(t) = Q(t). (3.13)

Nd{t) = Zd{t) + Ws(t), (3.14)

r OO

s(0= / {v, 1 (x, e(t), e(t — t)) — v, 1 (x, £(t), £(t))j dx,
J 6

Ws,

rOO

(0 = / {v,i (t,£(0,£(0) - V.1 (x,e(t),e{t -6))}dx.
h

(3.15)

Fix t. Then there is a function /, as specified in (H2), such that, for all sufficiently

small d > 0,
r OO

Ws(t) < \e(t) - e(t - S)\ /(x)dx. (3.16)
Js

But e is C1; thus there is a constant K such that |e(?) - e{t - 5)| < KS for all

sufficiently small 5 > 0, and, in view of (2.6), Ws(t) —> 0 as S —> 0. Further, (3.1)3

yields Zs{t) < 0, while (3.7) implies that Ms(t) —> 0 as S —► 0. It therefore follows

from (3.6) that Q(t) < 0, which, by virtue of (3.13), is the desired conclusion. □

Proof of the theorem. Assume first that S? has an energy of single-integral form.

Then, by the lemma, the corresponding response pair must be consistent with (3.1).

By (3.1)2 and (3.3), v has the form

v(x,e,p)=f s(x,a, p) da + f(x, p), /(t, 0) = 0. (3.17)
Jo

Further, in view of (3.2), v,3 (t, p, p) = 0, which, when applied to (3.17), yields

f{x,p) = -[ f s,T,(x,a,X)dadk
Jo Jo

= - [ [ s,i(x,a,2.)dXda (3.18)
J 0 J n

7

{5(1, a, p) - s(x, a, a)} da;

hence (3.17) reduces to (2.15), and, because of (3.1)3, (2.15) implies (2.14).

fJo
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Thus (2.14) is necessary for the existence of an energy of single-integral form.

Moreover, we have shown that if such an energy exists, then v must necessarily have

the form (2.15)i. Also, by the lemma, V must necessarily be given by (2.15)2- Thus

the energy is uniquely determined.

Conversely, assume that (2.14) is satisfied and define V and v through (2.15).

Then the fact that S? is a single-integral law implies that (Kv) is the response pair of

a single-integral law "V. Moreover, (2.15) trivially implies (3.1) 12, while (2.14) and

(2.15)2 imply (3.1)3; hence we may infer from the lemma that TP" is an energy for

S?. □

4. Special models. For materials defined by the stress-strain law

roc

a{t) = S(e(t)) + a'(r)s0(e(t),e(t - r))dr (4.1)
Jo

our results take a particularly concise form. We consider (4.1) with S e C'(R),

s0 € C'(R2), a e C2(0,00), a' e L'(0,00), a" e L'(l,oo), a" consistent with (2.6) with

/ = \a"\, so(e, 0) = 0 for all e € R, and a(z)s0(e, p) not identically zero. Further, to

avoid a trivial ambiguity in sign, we assume that a"(t) > 0 for at least one t e (0,00).

Then (4.1) generates a single-integral law, and, by the theorem, necessary and

sufficient for the existence of an energy of single-integral form is that

a be convex (4.2)

and

{so(Q.a) - s<)(a, />)} da > 0 (4.3)fJ p

for all £, p e R. When this is satisfied the corresponding energy will have response

pair (Kv) defined by

V(e)= ( S(X)dX, v(t, e, p) = a'(T)v0(e, p),
0 (4 4)

re rP '

v0(e, p) = / 5o(a, p)da+ / s0(a,a)da.
J p Jo

We now give the particular form our results take for several special models.8

In the case when (4.1) is linear, viz.

roo

cr(t) = fie(t) + / a'(r)e(t - z) dr, (4.5)
Jo

we have So(e, p) = P and it is easy to see that (4.3) is satisfied. Thus there is an energy

of single-integral form if and only if (4.2) holds; granted (4.2), the corresponding

energy is given by

y/{t) = ^0e(t)2 + tf'(r) j^£(/-T)2 + e(/-T)[e(0-e(/-T)]J dr

1 1 f°°
= ~[fi + a(00) - a(0)]e(t)2 ~ 2 JQ a'(T)te(?) ~ £(? ~ T)]2 dx-

(4.6)

8These models have a large literature (cf., e.g., [18] and the references therein).
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An analog of this energy is used by Dafermos [6] to establish asymptotic stability in

three-dimensional linear viscoelasticity.

A popular nonlinear stress-strain law is
rOO

ff(0 = S(e(t)) + / a'(x)f(e(t - r)) dx (4.7)
J o

with / e C'(R) and /(0) = 0. Under (4.7), the condition (4.3) is equivalent to the

requirement that

/ be monotone increasing; (4.8)

granted (4.2) and (4.8), the corresponding energy is given by
roc

y/(t)=V{e{t))+ a\x){F{e{t-x)) + f{e{t-x))[e{t)-e{t-x)]}dx, (4.9)
Jo

where

F(p)=fmdL (4.10)
J o

Another important case of (4.1) is
rOO

ff(t) = S(e(t))+ a'{x){f{e(t))-f{e(t)-e(t-x))}dx, (4.11)
J o

where / e C'(R) with f(0) = 0. For the constitutive assumption (4.11), the condition

(4.3) holds if and only if

F(p)>0 (4.12)

for all p e R, where F is defined by (4.10); granted (4.2) and (4.12), the corresponding

energy is given by

w(t)
roc

= V{e(t))+ / a'(T){F(e(t))-F(e(t)-e(t-r))}dT. (4.13)
Jo

We close with a simple example of a stress-strain law of the form (4.1) that has an

energy of single-integral form as well as an energy of a different type. The constitutive

relation
r CO

a{t) = Pe{t) - y e~^e{t-x)dx (4.14)
Jo

with /?, y, n > 0 describes a linear Maxwell material with one relaxation mode. It

follows from the discussion of (4.5) that there is a unique energy of single-integral

form:

Vi (t) = -V [ - x)2 + e{t - x)[e{t) - e(t - r)]l dx

oo (4.15)

= 1 {f ~ \+ \ f0 e~MTleW " " T)J2 dx-

One can check by direction calculation that

roc

e~fxre(t - x) dx
Jo

(4.16)

also provides an energy for (4.14). The energies y/\ and ^2 are not identical; it is easy

to produce a strain path e for which ^i(0) 7^ ^(0). For linear Maxwell materials,
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energies of the form (4.16) have been studied by many authors. The case of several

relaxation modes is discussed in detail by Breuer and Onat [1]; see Coleman and

Mizel [4] for the case of a continuous relaxation-spectrum.

Note added in proof. For many purposes it is more convenient to normalize the

response functions 5 and v so that

s(t, e, e) - v(r, e, e) = 0 (*)

for all r > 0 and e e R. If (*) is adopted in place of s(t,e, 0) = v(t, e, 0) = 0, then

there is an energy of single-integral form if and only if

fj p.s i (t, a, p)da < 0 (**)

for all p, e e R; granted (**) the energy is unique and its response pair (Kv) is given

by

V(s) = f S(a) da,
J o

v T,

re {***)

■, E, p) = / 5(t, a, p) da.
J p
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