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A method which makes use of Fourier transforms of two-body interactions for the calcu

lations of energy matrices in the independent particle model is proposed. The non-central 

interactions as well as central ones can be easily expanded into series of tensor products of 

spherical harmonics by this procedure. ·Furthermore, the radial integrals can be reduced to 

simple integrals which involve the Fourier transforms of the radial dependence of the inter

actions. For the harmonic oscillator wave functions, the procedure can be easily carried out 

and explicit formulas for the integrals are obtained. Useful tables for the calculations of 

the integrals for the central, tensor and spin-orbit interactions are given, 

§ I. Introduction 

The matrix elements of two-body interactions are necessary in the investiga

tion of nuclear properties by means of the independent particle model. The 

calculations of these matrix elements are usually carried out by expanding the 

interactions into series of Legendre polynomials.1
l For the central interaction, it 

is well known that this procedure is quite easy if one applies the methods of 

tensor operator proposed by Racah.2
l For the non-central interactions, the situa

tions are somewhat complicated and the interactions have been discussed by 

Talmi, 3
l Hope and others.4

l 

In the next two· sections of this paper, it is shown that the two-body inter

actions can be easily expanded into series of the products of spherical harmonics 

by considering Fourier transforms of the· interactions, and the matrix elements 

can be obtained by straightforward application of the method of tensor operators. 

This procedure is much simpler and I!lOre systematic than those proposed so far 

for the treatment of the non-central interactions. 

The radial integrals which appear in this expansion involve the variables 

r 1 and r 2, the distances of the two particles from the origin, in separated forms 

in the integrands, because the Fourier transform is considered. Therefore, the 
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476 H. Horie and K. Sasaki 

integrations over r 1 and r 2 are manageable and the integrals can be expressed 

by means of simple ones. However, it is difficult to carry o_ut the integrations 

over r1 and r 2 analytically for the wave functions with arbitrary radial depend

ence. 

In ord~r to avoid this difficulty, we assume three-dimensional isotopic har

monic oscillator wave functions for one-particle wave functions and consider the 

radial integrals in the last few sections of this paper. Then, the radial integrals 

can be obtained as linear combinations of simple integrals. The coefficients are 

expressed in terms of the expansion coefficients of the . product of two associated 

Laguerre polynomials into power series. Simple recurrence formulas between 

the latter coefficients are obtained and they are useful for the evaluation of the 

radial integrals. The simple integrals into which the radial integrals are reduced 

have· linear relations with the Talmi integrals which have been introduced as 

the integrals over relative coordinates after the separation of the center-of-mass 

motion of two particles in the harmonic oscillator potential.5
) By making use of 

the relations, the expansion coefficients of the radial integrals into the Talmi 

integrals, which have been given by several authors in some cases for the central 

interactions, 6) are easily obtained. Although the method which expands the two 

particle wave function into products of the wave functions of the relative and 

the center-of-mass motions and calculates the rna trix elements of the interaction 

directly has been proposed,7) our procedure seems to be simpler than that for the 

calculations of the energy matrices of individual configurations. 

§ 2. The central and tensor interactions 

Two-particle matrix elements of the interactions are exclusively considered 

in this paper, since it is well known that matrix elements of the two-body inter

actions for many-particle configurations can be reduced to the two-particle ones_I),S) 

Let us first decompose the tensor interaction into spin and ordinary space parts, 

as an example. This interaction is defined as s12 v ( r)' where sl2 = ( 0"1. r) ( 0"2. r) I r 2 

-1/3·(0"1"0'"2) -and r=r2-.rl (r=lr\). It is easy to write the sl2 as a scalar 

product of tensor operators of second rank which operate spin and ordinary spaces, 

respectively :3
> 

(1) 

where· !2 denotes the direction of the vector rand C/(!2) =[4n/(2k+l)J 12 Y~cq(!2) 

are the unnormalized spherical harmonics.* It is seen from (1) that the spatial part 

of the tensor interaction is taken to be V(r)C<2>(!J). In this section, we discuss 

the interactions the spatial parts of which has the form of v ( r) c<tc) ( !2)' /C being 

zero or even positive integers. If IC equals zero, the interaction is central, since 

* For the notation, see reference 9). The formulas used in this paper are also contained in 

it, unless otherwise stated. 
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On Energy Matrices for the Independent Particle Model 477 

ceo>= 1, and if 1C equals two, the interaction is tensor. The spin parts are simple 

to be handled and only the spatial parts have to be treated in detail. 

In order to separate the variables r 1 and r 2 in the spatial part of the inter

action, we introduce its Fourier transform vCrcJ(p): 
f' 

v(rc) (p) = (2n) - 3 J v (r) c(rc) (!2) exp (ip ·r) dr. (2) 

By making use of the well-known formula 

exp (ip · r) = ~k ik (2k + 1)jk (pr) ( CCkJ (Q) · CCkJ (Q P)), , (3) 

where jk (pr) are the spherical Bessel functions and !2 P denotes the direction of 

vector p, and the orthonormality relation of the spherical harmonics, vCrcJ (p) 

becomes 

(4) 

where 

00 

2 f' 

Vrc(p) =-----;- J V(r)Jrc(pr)r
2
dr. (5) 

0 

Then, the spatial part of the interaction is expressed by the Fourier inverse trans

form as 

V (r) CCrcJ (Q) = (4n) -l irc J Vrc (p) CCrc) (QP) exp ( -ip · (r2-rl)) dp. 

In this form of V(r)CCrcl(Q), the variables r 1 and r 2 are separated and theinteg

, ration over QP can be carried out by applying (3) for exp (ip·r1) and 

exp ( -ip·r2), respectively. Taking into account the symmetry relation of the 

Clebsch-Gordan coefficients, we have the result: 

v Cr) c<rc) (!2) = :Ek1,k
2 
ik1 -k2 +rc (2kt + 1) C2k2+ 1) 1 (21C+ 1) 

X (kl 0 k2 0 I !CO) v(k1 ,k2 ; rc) (rl' r2) [ cl (kl) X c2 (k2 )J<rc>, 

where C/kJ means cckJ (Qi) and 

co 

v(kl,k~; rc) (rt, r2) = Jjkl (prl)jk,Jpr2) VIC (p) P2dp. 

0 

(6) 

(7) 

In (6), the summations over k1 and k2 are restricted by jk1 -k21 <1C~k1 +k2 and 

k1 + k2 + IC =even from the properties of the Clebsch-Gordan coefficients. The for

mula (6) is useful for the calculation of the reduced matrix elements. They are 

easily obtained by means of the method of tensor operators2J, 9J as 

Cltl2LIIV(r)C<rc)(Q) lil/l2' L') =Lk
11

k
2
i"1 -k2 +rc(2kt+1) (2k2+1)/(21C+1) · (kt0k2011CO) 

X [ (2L+ 1) (2L' + 1) (21C+ 1) ]I12 Cltli C<k1Jiil/) Cl2li C<k2
) lll2') 

(8) 
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478 H. Horie and K. Sasaki 

CXl 00 

R (k1 ,k2 ;")(ll·l'l')-11R ( )R (r) (k1,k2 ;1C)( )R ( )R (-) 2 d 2d 1 2' 1 2 - JJ h r1 t 2 2 v r1,r2 t 1 ' r1 t 2 ' 12 r1 r1r2 r2, 
0 0 

Rz ( r) being the radial functions of the one-particle wave 

functions. (In this section, the principal quantum numbers 

n are omitted for the sake of simplicity.) 

For the central interaction IC=O, (6) gives, by putting 

k1 =k2=k, 

(10) 

(9) 

'Tz 

0 

Fig. 1 

where lu is the angle between the two radii vectors r 1 and r 2 (Fig. 1). Pk(cos (I)) 

·are the Legendre polynomials, and v(kJ(r1, r 2) means v(k,k;OJ(r1, r 2). By inserting 

the v 0 (p) of (5) into (7) and making use of a formula of the Bessel functions :10
> 

00 

! Jjk(pr1)jk(pr2)jo(pr) p
2
dp=Pk(cos(l)) / (2r1r2r), (11) 

0 

it IS given by 

1 

v(kJ (rt, r2) = ~ 1 V (r)Pk (cos lu) d (cos lu). 

-1 

The matrix element is reduced from (8) to 

Cl1l2LMI V(r) ll/ l/ LM) 

(12) 

= ~k (-) ll +l
2
'-L (ll I! c (k) Ill/) (l21! C(kj Ill/) W(l1l2l/ l/; Lk) (2k+ 1) R(k) (lll2; l/ l/)' 

(13) 

which agrees with the well-known formula given by Racah.2J 

- For the tensor interaction given by (1), the matrix elements are easily ob

tained in the LS-coupling as 

(l1l2SLJM[St2 V(r) Jl/ l/ S' L' JM) = (2/3) 112 (SI![o-tXo-2J2liJS') 

X (lll2LI! V(r) C(2) (Q) Ill/ l/ L') (- )S+L'-J W(SLS' L'; "J2)~ (14) 

where (SI![o-1Xo-2J2l[JS')=2·5112a8 ,1a8,,1 and the reduced matrix elements for the 

spatial part are given by putting IC=2 in (8). The summations over k1 and k2 

are restricted by [kt-k2 [:S2<k1+k2 and k1+k2 =even. If the matrix elements of 

the tensor interaction in jj-coupling is to be calculated, the interaction may be 

transformed. from (1) and (6) by changing the coupling shemes of the tensor 

operators as 

sl2 V(r) = (2/3) 112 ~kl,k2,Kik 1 +k.,(2kt+1) (2k2+1) (kt0k20[20) 

X w (k11 k21 ; K2) v(ki,k.,; 2) (rl' r2) ([ O"t X cl (kt)JK)-[ 0"2 X c 2 (k2 )JK>). (15) 
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On Energy Matrices for the Independent Particle Model 479 

For IC=2, the radial dependences v<kt.k2
;
2

) (r1, r 2 ) of the interaction can be written 

in somewhat different forms. Carrying out partial integrations in (7) after put

ting j 2(p) =p2 (p-1djdp))0 (p), and applying the recurrence formulas for the Bessel 

functions, they are given by 

v<k,TG; 2l(r1, r2) =rlr2 {(2k+3)w<k-I>(r1 , r 2) + (2k-1)w<k+l)(ri, r2)}/(2k+1) 

(16a) 

and 

Naturally, v<kdc2;"'>(r1 , r 2 )=v<k"",k1;">(r2 , r 1) from the definition (7). Here, the 

w<kl (r1, r 2) is defined by 

1 
1 (' 

w<k>(rb r 2) =2) V(r)/r 2 ·Pk(cosoJ)d(cos(l)), 

-1 

corresponding to (12) for the central interaction. 

§ 3. The spin-orbit interactions 

Since the two-body spin-orbit interactions explicitly contain the momentum 

operators p1 and p 2 of the interacting particles, the treatment in the preceding 

section must be modified. While there are some types of the spin-orbit interac

tions, we confine ourselves to the Case-Pais type11> in the following consideration 

and the procedure given here can be applied also to the other types with slight 

changes. The interaction is given by 

(17) 

where the square bracket without superfix denotes a vector product. 

Let us separate the variables r 1 and r 2 in the spatial part of (17) as in the 

preceding section. Since r 2-r1 =r=rC<1>(Q), by making use of (6) for 

rV(r)C<1>(Q), and changing the coupling shemes of the tensor operators, we have 

V (r) [ (r2-ri) X Cp2-p1)] = ~k 1 ,k 2 ,Kik
1 -k 2 (2kl + 1) (2k2 + 1) [2 (2K + 1) /3]!12 

X (k1 0 k2 0 110) W Ck11 k2 1 ; K1) u<k1 ,k2
; I) (r1, r 2) 

x {c-) l+kl-K[[ cl (kl) x PtJ<K> x c2 (k2>]<1> + [ cl <kl) x [ c2 <k2) x P2J<K>J<I>}, (18) 

where 

oo ro 

u<kt.k2 ;,t>(r1 , r 2) =! fJkJpri)}k
2
(pr2)p2dpf rV-(r)}t(pr)r2dr. (19) 

0 . 0 

The summations over k1, k2 and K in (18) are restricted by the conditions: 

k1 +k2=odd, lk1-k2l < 1.:S::k1+k2, lk~-11 :SK<k1+ 1 and lk2-11 S:K<k2+1. 

Therefore, K equals either k1 or k2, and (18) can be rewritten as 
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480 H. Horie and K. Sasaki 

V(r)[(r2-rt) X (p2-p1)]=~7c,Tc'ilc+k'(2k+1) (2k'+1)2112 (k'010Ik0) W(k1k1; k'1) 

X ( { u<k,kl; 1)·(r1' r2) [[ c1 (lc) X p1]<7c) X c2 (kl)]<1) + u(kl,k; 1) (r1' r2) [ c1 (k') X [ c2 (k) X P2J<k)J<l>} 

+ {u(kf,Tc; 1> (r~, r2) ([ C1 <Tc'> X P1J<k> X C2 <TG>]<1> - u<k,k'; 1> (rt, r2) [ C1 <TG> X [ C2 W> X p2J<k>]<1>}), 
I 

(18)' 

where k' =k± 1. The radial parts of the interaction u<k,k';1> (rb r 2) can be expres

sed in terms of those of the central interaction v<Tc> (rb r 2). They are obtained 

from (19) by making use of j1(p) = -dj0 (p)ldp in a similar way to the deriva

tion of (16). 

u<Tc',k; 1>(r1, r 2)=ik-Tc'+ 1 {r1v<Tc>(r1, r2)-r2vW>(r1, r2)}, (k'=k±1) (20) 

and u<Tc,kl;t> (rh r 2) =u<k',Tc;1> (r2, r1), where v<TG> (rb r 2) is defined by (12). 

Since the operator [C/Tc> Xpi]<K> cannot be easily handled for the calculations 

of matrix elements, we rewrite it so as to separate (ri ·pi) =i-1r,dl dr,. On ob

serving that pi=ri-2{r,(ri·pi) -[riXli]} (li are the orbital angular momenta), it 

can be expressed as 

iri[Ci(k) Xpi]<K) = (k010 IKO) ci(K) ri a;ari-D/k,K>, 

where Di<Tc,K> do not involve differential operator and it is defined as 

Di (lc, K) = 21/2 [ C/lc) X [ C/1) X li]<l>J<K). 

(21) 

Simpler forms. of Di <TG,K> can be . obtained by changing the coupling shemes oft he 

tensor opera tors : 

D/k,k> =[ (2k-1) I (k+ 1) J 12 [C/k-1> X li]<Tc> =[ (2k+ 3) /kJ12 [C/k+I> X li]<k>, (22a) 

and 

[ (2k-1) I (k+ 1) J 12 Di(k-1,7c) =[ (2k+3) lkJ12 Di(lc+1,k) =[C/k) X li]<k). (22b) 

The spatial part of the interaction is thus given by introducing (20), (21) and 

(22) into (18)' and by manipulation with respect to the Clebsch-Gordan and the 

Racah coefficients involved as 

V (r) [ Cr2-r1) X Cp2-P1)] 

= :L;k(-) k(2k+ 1) I:;k'=H1[ (2k' + 1) I3J12 { (v<k> -v<k'>r21rt) [[C1(lc> X l1]<lc'J X C2<k>]<
1
> 

+ (v<k> -v<Tc'>r11 r 2) [ C1 <TG> X [ C2<Tc> X l2]<k'>]<1>} 

+ :L;k (-) Tc[(2k + 1) I3J12 ( {- (k + 1) v<Tc-1> r21 r1 + (2k + 1) v<Tc>- kv<Tc+l) r2l r1} 

X [[ C1 <TG> X l1J<k) X C2<Tc>Jl) (23) 

- {- (k+ 1) v<Tc-l) rt/r2+ (2k+ 1) v<Tc> -kv<Tc+1> r1lr2}[C1 <Tc> X [C2<Tc> X l2]<k>]<1>) 

+ ~k(-) k[k (k+ 1) (2k+ 1) 13)112 {v<Tc-1> -v<k+1>} (r2 818r1-r1 8l8r2)[Cl <k> X C2<Tc>]<1>, 

where v<k> means v<k> (r1, r 2). This expression is rather complicated at first sight, 
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On Energy Matrices for the Independent Particle Model 481 

but the reduced matrix elements (lii[C<k'>xl]<k>l!l') is very simple and the angular 

parts of the matrix elements are easily calculated. Corresponding to (lll c<k> Ill') = 
(2l'+1) 112 (l'OkOilO), the reduced matrix elements of [C<k'>xl]<''> is obtained as 

(lll [ cw> X l]<k) Ill') =[2l' (l' + 1) (2l' + 1) J12 (k' 011lk 1) (l' 1 k-lllO). 

(k' =k, k± 1) 

Especially for f2 configurations, the contributions from the second and third sums 

over k in (23) vanish as can readily be seen, and the calculations of the matrix 

elements become very simple. 

§ 4. Radial integrals in terms of the harmonic 

oscillator wave functions 

The radial integrals which are necessary in the evaluation of th~ interaction 

matrix elements can be obtained from (7) and (9). Inserting (7) into (9), they 

are 

co 

R<k1
,k

2
; "> (n1l1, n2l2 ; n/ l/, n/ l2') = J viC (p) P2 dp 

0 

co co 

X J Rn1 z1 (ri) Rn1 r z1 t ( r1)j7c1 (pri) r1
2 
dr1 J Rn2 z2 ( r2) Rn

2
' z2 t ( r2)j1c2 (pr2) r2

2 
dr2, 

0 0 

where principal quantum numbers n are explicitly introduced and the expression 

for vi< (p) is given by (5). If the integrations over r 1 and r 2 can be carried 

out, the radial integrals will be obtained as simple integrals over p. However, 

it seems difficult to carry out the integrations analytically over r 1 and r 2 for 

single particle wave functions with arbitrary radial dependence, and we confine 

ourselves to the harmonic oscillator wave functions which are used quite often 

for the analysis of the nuclear spectroscopy. 

The wave functions of three-dimensional isotropic harmonic oscillator are 

given as5
> 

Rnz(r) =Nnz exp( -vr2/2)rlvn,z(vr2), (24) 

where v=mlv/fl, fllv IS energy quantum, and m is mass. Nnz is the normaliza

tion constant : 

N 2_ (2l+2n+I) !! (2v)z+ 312 (: )
1
'
2
. 

nl 2nn! [(2l+l) !!]2 
.. 

(25) 

And Vn,z (p) IS the associated Laguerre polynomial: 

v (o) = " (n) (2l+ 1) !! ( _ 2 )"' 
n,l 1 ~ p. (2l+ 2p.+ 1) !! p . 

(26) 

co 

In order to carry out the integration J Rnz (r) Rn,u (r)j~c (pr) r 2dr Jwith the har
o 
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482 H. Horie and K. Sasaki 

monic oscillator wave functions (24), we expand the product of the two associated 

Laguerre polynomials into power series and ·define the expansion coefficients 

am (nl, n'l') by 

(2l+1)!!(2l'+1)!! n+n' 
Vn,i(p)vn,,u(P)- ~ al+l'+2s(nl, n1 l') (2p) 8

• (27) 
(2l+ 2n+ 1) !! (2l' + 2n1 + 1) !! s=o 

Then, the product of two harmonic oscillator wave function is written down as 

(28) 

·where m=l+l'+2s (s=O, 1, ... , n+n') and 

M(nl, n1 l') =2n+n' n! n1 ! (2l+ 2n+ 1) !! (2l' + 2n1 + 1) !! (29) 

Thus, by making use of a formula of the· integral involving the Bessel function12) 

00 

(' 

J exp( -))r2)jk(pr) rm+ 2dr 

0 

- (m+k+1)!! (_!!____)1/2(2v)-Cm+3)/2ex (-P2)(P2)k/2v- (·P2-) (30) 
(2k+ 1) !! 2 p 4)) 2)) (m k)/

2
,k 4)) ' 

where m-k=even>O and vn,l (p) is' defined by (26), the integration can be easily 

carried out . 

. co 

(' 

J Rnl(r)Rn'l'(r)jk(pr)r
2
dr=M(nl, n

1 l')- 112 ~mam(nl, n
1 
l') 

0 

(31)* 

Actually, (m-k) /2= (l+l' -k) /2+s are non-negative integers, since there are 

factors of the type (l[[CCkl[[l') in (8) which give the conditions [l-l'[ S.k~_l+l' 

and l + l'- k . is even. Then, the radial integral is obtained by the application of 

(31) for the integrations over r 1 and r 2: 

(32) 

where the abbreviations Mi=M(ndi, n/l/) (i=1, 2) are used, and by taking (27) 

into account again, fck11k2
;t<) Cm1, m 2) are given as 

* In (31), if one takes the limit p~O. the following expression is obtained. 

00 

~ ~l (r) rk R
7
ht(r) r2 dr= (211)-k/2 M(nl, n1 l1 )-1/2 2im (m+k+l) !tam(nl, n1 l1

). 

0 

This expression is useful for the calculations of the matrix elements for the nuclear moments, ~ 

and r transitions when the harmonic oscillator wave functions are used as one particle wave functions. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

5
/3

/4
7
5
/1

8
4
5
9
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



On Energy Matrices for the Independent Particle Model 483 

X exp { -J.I(r12 + r22)} r1m1 +2 r 2m2 +2 dr1dr2= ~ma2m( m 1

2 --~ k1, m2-; k2 k2) J;:>. (33) 

The summation over 1n is restricted by m=k, k+1, ···iii, where k= (k1+k1)/2 

and i1i = (m1 + m 2 ) /2. J m C~<> are simple integrals which involve the Fourier trans

form vK (p) of the radial dependence V (r) of the interaction 

00 

(' 

J!;;> = (2).1) -m J exp(-p2/2J.I) VIC (p) p2m+2 dp. 

0 

(34) 

By (32) and (33), the radial integrals which involve any quartets of quan

tum numbers nl (naturally l 1 + l2 + l/ + l/ =even from the conservation of parity), 

can be expressed as linear combinations of simple integrals J m (~<) given by (34). 

The coefficients which appear in both (32) and (33) are defined by (27). The 

fck1 ,k2 ;tc) (mb m2) has a close connection with RCkl>k 2 ;~<> (Olb Ol2; Ol/, Ol/) which is 

given by (32) when 

R(kl,k?.;tc>(Oll, Ol2; Ol/, Ol/) 

=[ (2!1 + 1) !! (2!2+ 1) !! (2l/ + 1) !! (2!/ + 1) !!]-112
f(kl,k

2
; t<) (ll + l/, l2+l/). (35) 

The above expressions for the radial integrals hold for the central and tensor 

interactions which were discussed in § 2. For the spin-orbit interactions, one 

needs further considerations, since there appear two types of integrals, one of 

which contains the derivatives with respect to r 1 or r 2 and the other r 2/ r1 or 

ri/ r2 in the integrand. The calculation of these integrals is given in the Ap

pendix. 

§ 5. The coefficients am (nl, n'l') 

The coefficients am (nl, n'l') defined by (27) proved very useful in the calcu

lation of the radial integrals in terms of the harmonic oscillator wave functions. 

In this section, the convenient formulas for the evaluation of the coefficients are 

derived and those for f(k 1 ,k 2 ;~<> (mb m 2) are obtained. 

It is evident from the definitions (26) and (27) that 

, (n) (n') (2!+ 2n+ 1) !! al+l'+2s(nl, n l') = (- )8 
~ 

1 
(p.+pJ=s) p p (2l+2p+1)!! 

(2l' + 2n1 + 1) !! 

(2l
1 + 2p' + 1) !! 

(36)* 

In the case of l=l', it may be written in another form which is useful in the 

application to the central interaction in the next section, 

* The coefficients am(nl, n1l1
) have the following relation to B(nl, n'l',p) defined by Brody, 

Jacob and Moshinski. (Nuc!ear Phys. 17 (1960), 16) 

B(nl, n1 l', p) =M(nl, n1 l')-112 (2P+1)!! a2p(nl, n1 l 1 ). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

5
/3

/4
7
5
/1

8
4
5
9
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



484 H. Horie and K. Sasaki 

(2l+2n+1)!! (2l+2n'+1)!! a2Z+ 2s (nl, n' l) = (-) 8 -----'--------'----------'----~ 
(2l+ 2s+ 1) !! 

X ~ p! (n-p)! (n~~~)~
1

~2l+2p+1)!! (n~n
1

2p
2

p) · (
37

) 

The coefficients are naturally symmetric with respect to the exchange of 

their arguments: 

am(nl, n' l') =am(n' l', nl). 

For some special values of n and n', the simple expressions are obtained: 

and 

nl n1 l1 
[ m=O 

00 00 1 

01 01 

02 00 
02 

10 00 3 
02 
10 9 

03 01 
03 

11 01 
03 
11 

04.00 
02 
10 
04 

12 00 
02 
10 
04 
12 

20 00 15 
02 
10 45 
04 
12 
20 225 

05 01 
03 
11 
05 

(n') (2l' + 2n' + 1) !! az+Z'+2s(Ol, n' l') = (- )s 
5 (2l' +2s+1)!! 

Tabler.. am(nl, n1 l1
) l+l'=even 

2 4 6 8 

1 

1 
1 

-1 
3 -:-1 

-6 1 

1 
1 

5 -1 
5 -1 

25 -10 1 

1 
1 

3 -1 
1 

7 -1 
7 -1 

21 -10 1 
7 -1 

49 -14 1 

-10 1 
15 -10 1 

-45 13 -1 
15 -10 1 

105 -85 17 -1 
-300 130 -20 1 

1 
1 

5 -1 

10 

1 

(38) 

(39) 

(40) 

12 
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Table I. (Continued) am(nl, n1l1) l+l'=even 

nl n1 l1 
[ m=O 2 4 6 8 10 12 

13 01 9 -1 
03 9 -1 
11 45 -14 1 
05 9 -1 
13 81 -18 1 

21 01 35 -14 1 
03 35 -14 1 
11 175 -105 19 -1 
05 35 -14 1 
13 315 -161 23 -1 
21 1225 -980 266 -28 1 

06 00 1 
02 1 
10 3 -1 
04 1 
12 7 -1 
20 15 -10 1 
06 1 

14 00 11 -1 
02 11 -1 
10 33 -14 1 
04 11 -1 
12 77 -18 1 
20 165 -125 21 -1 
06 11 -1 
14 121 -22 1 

22 00 63 -18 1 
02 63 -18 1 
10 189 -117 21 -1 
04 63 -18 1 
12 441 -189 25 -1 
20 945 -900 258 -28 1 
06 63 -18 1 
14 693 -261 29 -1 
22 3969 -2268 450 -36 1 

30 00 105 -105 21 -1 
02 105 -105 21 -1 
10 315 -420 168 -24 1 
04 105 -105 21 -1 
12 735 -840 252 -28 1 
20 1575 -2625 1470 -330 31 -1 
06 105 -105 21 -1 
14 1155 -1260 336 -32 1 
22 6615 -8505 3318 -546 39 -1 
30 11025 -22050 15435 -4620 651 -42 1 

Actually, we used (39) in obtaining _(35). Furthermore, the following recurrence 

formulas hold between the coefficients* 

* The recurrence formulas between the coefficients am(nl, n1l1 ) are easily derived from those 

between the associ a ted Laguerre polynomials : 

(2n+2l +1)vn, z (p) = (2l +1)vn, z-1 (p) +2nvn-l, z (p), 

2pvn.z (p) = (2l +1){vn, 1-1 (p) -vn+l.Z-1 (p)}, 

and the definition of the coefficients (27). 
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486 

nl n1 l1 
I m=1 

01 00 

02 01 

10 01 

03 00 
02 
10 

11 00 
02 
10 

04 01 
03 
11 

12 01 
03 
11 

20 01 
03 
11 

05 00 
02 
10 
04 
12 
20 

13 00 
02 
10 
04 
12 
20 

21 00 
02 
10 
·04 
12 
20 

06 01 
03 
11 
05 
13 
21 

14 01 
03 
11 
05 
13 
21 

22 01 
03 
11 
05 
13 
21 

1 

3 

5 

15 

15 

76 

35 

105 

525 

H. Horie and K. Sasaki 

Table II. am (nl, n1 l1
) l +l1 =odd 

3 I 

1 

-1 

1 

3 

-1 
5 

-8 

7 

35 

-10 
15 

-65 

9 

~r 

27 ' 

135 

-14 
35 

-77 

245 
-560 

63 

315 

2205 

5 

1 
-1 

-,--1 

1 

1 

5 

-1 
7 

-12 

1 
-10 

15 

1 

3 

15 

-1 
9 

-12 

63 
-105 

1 
-14 

17 
35 

-133 
190 

11 

55 

385 

-18 
63 

-153 

567 
-1512 

7 

1 
-1 

-1 
1 

1 
-1 

1 
-1 

7 
-10 

-1 
1 
9 

-16 

19 

1 
-1 

-14 
21 

-24 

1 

5 

35 

-1 
11 

-16 

99 
-189 

1 
-18 

23 
63 

-225 
.350 

j_~ __ :~- ~~-+ 11. 

1 
-1 

1 

-1 
1 

-1 

1 
-1 

1 

1 
-1 

9 
-14 

-1 

1 
11 

-20 
25 

1 
-1 

-18 
27 

-32 

1 
-1 

1 

-1 
1 

-1 

l 
-1 

1 
---- '---- --~-------~------
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. On Energy Matrices for the Independent Particle Model 487 

Table II. (Continued) am (nl, n1l1
) l +l' =odd 

nl n1 l1 I m=1 3 5 7 9 ·l- 11 

30 01 105 -105 21 -1 
03 105 -105 21 -1 
11 525 -630 210 -26 1 
05 .. 105 -105 21 -1 
13 945 -1050 294 -30 1 
21 3675 -5145 2310 -434 35 -1 

a-m (nl, n' l') =2nam (n-Il, n' l') + am-l (nl-I, n' l'), (4Ia) 

and 

am(nl, n' l') = (2l+ 3)am+l (n-Il+ I, n' l') -am(n-Il+ 2, n' l'). ( 4Ib) 

These recurrence formulas are quite useful in obtaining the values of the 

am(nl, n'l') starting from (39) or (40), although it is not difficult to calculate 

them by the direct application of (36) or (37) . 

In Tables I and II, the values of the coefficients am (nl, n'l'), which are 

necessary for the evaluation in (32), are listed for l + l' even and odd, respec

tively. 

The properties of the fCk1ok
2 ;"> (mh m 2) can also be obtained from those of the 

am (nl, n'l') by (33). First of all, from (38), the symmetry property of the 

fCk1ok
2 ;"> (ml> m 2) with respect to the exchange of their arguments is 

(38)' 

For the special cases of m1 =k1 and m 2 =k2, we have, corresponding to (39), 

(39)' 

Four recurrence formulas for the fck1 ,k2
;"

1 (ml> .m2) are obtained from those between 

the coefficients am (nl, n'l') with common suffices m, which are derived from ( 4Ia) 

and (4Ib). Those formulas are, for example, 

fC~,k 2 ;" 1 (ml, m2)=(ml+kl+I)fck1 ,k'2;"1 (ml-2, m2) -f<k1 +l,k'2+ 1 ;")(ml-I, m2+l) 

+ (m2-k2)fCk1 +l,k2 +1
; "> (m1-I, m2-I), 

fck1 ,k2
; "> (mi, m2) = (ml + k1 +I) fck1 ,k2; "> (m~- 2, m2) (43) 

+ (ml-k1-2)fCkl+2,k2; "> (m~-2, m2)-fCkl+2,k2; !C) (ml, m2)' 

which hold irrespective of the values of ~. 

§ 6. The integrals J m (!C) 

As was shown in § 4, any radial integral can be expanded into a linear 

combination of the simple integrals J m (!C), if we assume the harmonic oscillator 
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488 H. florie and K. Sasaki 

wave fun.ction for the radial wave function. J m (It) was defined by (34) and it 

is an integral containing the Fourier transform viC (p) of the interaction. 

Without the knowledge of the radial dependence of interaction V (r), we 

can obtain the relation between the J m (It) and the Talmi integral Iz, where 

Iz is defined as5
l 

00 

Iz= J V(v2r)R 0 ~(r)r 2 dr. (44) 
0 

Iz may be written more explicitly by employing (24) and changing the integra

tion variable 

. I,= ( ! r ( 2 ~:'~') !! J V(r) exp (- ";') r"" dr. ( 44)
1 

0 

On the other hand, the Jm<"l may be expressed in terms of V(r), by the intro

duction of the Fourier mverse transform (5). and carrying out the integration 

over p by (30) 

(2m+K+1)!! ( 2 )112[. ( vr
2) ( vr

2) /&+ 2 
(
2

1C+
1

)!! --:;- J V(r) exp --
2

- Vm-1&/ 2,1& -
2

- r dr. 
0 

Then; expanding Vm-~t/ 2 ,1& (vr2/2) into a series of r 2 by (26), it is easy to obtain 
the relation between J m (!C) and I, : 

(2m+K+1)!! "'z (-)z(m-lK/2) (2l+K+1)!! 1 
2m .L...J (2l+ 2JC+ 1) !! . l+~t/

2
. 

(45) 

For the central interaction (K=O), the above relation is simplified: 

(2m+ 1)!! ~ ( _ )l (m) Iz. 
2m l l 

(46) 

In this case, Iz may also be expressed in terms of J m <Ol from ( 46) 

fz= ~m (- )m (ml) 2m J~>. 
(2m+1)!! 

For the tensor interaction (K=2), the relation is given by 

(2m+3)!! ~ ( _ )t (m-1) 1 Iz+I· 
2m l l 2l+5 

(47) 

It is apparent that the radial integral of the tensor interaction does not involve 

! 0• From ( 46) and ( 4 7) , the relation between the J m <
2
l and J m <OJ may be ob

tained: 

Ji:>=~ ~
1 

(m-1)! J~)-J~>. 
2 mi=O m'! 

(48) 
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On Energy Matrices for the Independent Particle Model · 489 

The radial integral j<TcvTc2 ;/C> (mb m 2) may be expanded in terms of lz instead 

of Jm<~e> in (33). By the relation (45) between Jm<~e> and Iz it becomes 

j<Tc 1 ,Tc.,;~e>(m 1 , m
2
)= ~ (-)£ (2l+JC+l)!! ~ (2m+JC+l)!! (m-lJC/2) 

I (2l+ 2JC+ 1) !! m 2m 

(49) 

For the central interaction, by putting k1 =k2=k and inserting (37) into (49), 

we have 

j<Tc>(ml, m2) f<Tc,Tc;O>(ml, m2) = Cm1+k+I)!! Cm2+k+I)!! ~ (- )L :E (- )m...:Tc 
l m 

x· 1 (m) :E 2"[(ml-k)/2]! [(m2-k)/2]! (iii-k-2p.\ lz. 
2m l P p.![(m1-'---k)/2-p.]! [(m2-k)/2-p.]! (2k+2p.+l)!! m-k-2p./ 

(50) 

This form of the expansion has been obtained by Ford and Konopinski6
> from 

the consideration of Gaussian type interaction. If I, is proportional to z
1 

(z is 

a variable), the summations overland m in (50) can be carried out by putting 

Iz ,__, zz : 

f <Tc>( I) (ml+k+l)!!(m2+k+l)!! (I+z)iii(I-z)" m1, m2 z .-.- -- --
(2k+l) !! 2 I+z 

X2F1((k-m1)j2, (k-m2)/2; k+~; ( l-z)
2
), 

2 I+z (51) 

where 2F 1 (a, p; r; x) is a hypergeometric function. Some other forms of 

j<Tc> (mi. m 2 iz) can be obtained by the transformation of the hypergeometric func

tion and those of j<Tc> (mi. m 2) can also be derived by expanding them into power 

series of z. 

Now we calculate the explicit formulas for the integral Jm<O> and lz from 

(5), (34) and ( 45) for some radial dependences which are used for the phenome

nological analysis in the nuclear spectroscopy. The simplest cases are the short

and long-range limits of the radial dependences. In these cases, the values of 

Jm<0>, Jm<2>, Iz and J<")(mi, m 2) are listed in Table III. 

Table III. The short- and long-range limits 

short-range limit long-range limit 

V(r) o(r)fr2 1 

J (0) m (2m+1)!!j2m· (2y3jrc)l/2 Om,O 
J (2) m 0 3/2· (m-1)! 

lz o z, 0 (2113 /rc) 1/2 1 

f<Tc>(ml, ~) (2m+1)!!/2;;,· (2113/rc)l/2 (ml +1)!! (m2+1)!! Olc,O 
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490 H. Horie and K. Sasaki 

The values of f<Tcl (m1, m 2) may also be obtainable from (51) by putting z=O 

and 1 for the short- and long-range limits, respectively. For the interactions 

with finite range, we consider Gaussian and Yukawa potentials. 

i) Gaussian potential: V(r) =exp( -r2lr0
2

) (r0 =force range) 

. J ~~) = (2m+ 1) !!j2m · A3 (1 + A2) -(m+ 3
/

2
), (52) 

and 

(53) 

where A=r0 (vl2) 112 is the non-dimensional range parameter. Hence, by assuming 

z=A
2
1(1+A

2
), (51) can be used for the radial integrals.6l 

ii) Yukawa potential : V(r) = exp (- r I ro) / (r I ro) 

We introduce the parameters p=1/(2A) and p=p(2v)-112. Then, from.(5) 

and (34), we obtain 

co 
2 r• (32m+2 

J~>= -:rp Jexp(-p2) P2+P2 dp. 
0 

For these integrals, we get a recurrence formula 

J~)= (2m-1)!!/2m·p- 1 n- 112 -p 2 J~~I, (m>O) 

and for m= -1, 

J ~l = p-2 {1- (/J (p)} exp (p2
), 

where (/J(p)=2/n112 ·J;exp(-t2)dt is an error function. From these relations, 

the expression for J m col may be obtained : 

J~)- f-L~7r ~ (2m~:~n-1)!! (-p2)n-(---:-P2)m{1 -{/J(p)}exp(p2), (54) 

although the direct application of the above recurrence formula and the initial 

value seems more practical in the numerical calculation of J m co). The expression 

for lz can be written down by making use of ( 46) and J m C2) are obtainable from 

(48). 

§ 7. An example: The (Od) (Is) configuration 

In order to illustrate the systematic procedure to be followed when we want 

to calculate the matrix elements, we take the simple configuration (Od) (Is). 

The radial integrals, which are necessary for both the central and the tensor 

interactions, are reduced to the fCM1ok2 ;1C) (m1, m 2) by (32) . 

R<k1 ,k2 ;1C)(Odls; Odls)= {9fCk1 ,k2 ;/Cl(4, 0)-6f<k1 ,k2;1C)(4, 2) +fCk12 k2 ;1CJ(4, 4)}/90, 

and 

R<k1 ,k2 ; !C) (Odls; lsOd) 

= {9fCkl,k2; !C) (2, 2)- 3fCkl,k<;!; !C) ( 4, 2)- 3f(k1,k2; !C) (2, 4) + fCkt,k2; !C) ( 4, 4)} /90. 
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On Energy Matrices for the Independent Particle Model 491 

Therefore, for the central interaction, the direct integral F 0 (Od, 1s) and the 

exchange integral G2 (0d, 1s) are given by (33) and Table I as follows: 

F 0 (0d, 1s) =R<o,o; 0>(0d1s; Od1s) = {9(15J0 -10Jt+J2) 

-6(45J0-45J1 +13J2-J3) + (225J0 -300Jt +130J2-20J3+J4)} /90, 

and 

where we write Jm instea9. of Jrr/0>. 

For the tensor interaction, the direct integral R<2'0
;
2> {Od1s ; Od1s) and the 

exchange integral R<2'2;2> (Od1s, 1s0d) are given in the same way as follows : 

R<2' o; 2l(Od1s; Od1s) = {9 (7 J1 <
2> -J2<

2>)- 6(21 J1 <2> -10 J2<2> + J3<2>) 

+ (105 J1(2)- 85 J2(2) + 17 J3<2)- J4<2
))} /90, 

and 

R<2
'

2
;
2>(0d1s; 1s0d) = {9J2<2>-6(7 J 2<2>-J3<2>) + (49J2<2>-14J3<2>+J4<2>)} /90. 

The relations between J m <2> and J m <O> (which are denoted as J m in this section) 

are given by ( 48) : 

J1<2> =3/2 ·Jo-Jt, 

J 2<2>=3/2(Jo+Jt) -J2, 

J 3<2> =3/2 (2Jo+ 2Jt + J2)- J3, 

J 4<
2
>=3/2(6Jo+6 J1 +3J2+J3) -J4 · 

In the above expression, Jm may be rewritten in terms of the Talmi integral Iz 

by the use of (46). 

Appendix 

The radial integrals for the spin-orbit interaction 

For the calculation of the matrix elements of the spin-orbit interaction, It IS 

seen from (23) that the radial integrals which . involve v<Tc> (r~> r 2), v<Tc'> (r1, r 2) r 2/ r 1 

and { v<Tc-lJ (r~> r2) - v<Tc+l> (r~> r2)} (rl] for~- r1o jor2) are necessary. The first inte

gral is given in (32) as 

cOCO 

J J Rn1 l 1 ( r1) Rn2 l 2 ( r2) v<Tc> ( r1, r2) Rn1 t,l1 ' ( r1) Rnq' l 2 ' (r2) r1
2 
dr1 r2

2 
dr2 

0 0 . 

= (M1M2) -l/
2 :L:m

1
,m

2 
am

1 
(n1l1, n/ l/)am

2 
(n2l2, n/ l/)f<TcJ (ml, m2), 

where Mi, ami (nili, n/l/) (i=1, 2) and f<Tc> (mt. m2) are defined by (29), (27) and 

(33), respectively. The second integral is also simple and it can be easily calcu

lated in quite a similar way to the first one. 
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00 00 

J J R'nt h ( r1) Rn2 l2 ( r2) v<Tc') Cr1, r2) r2/ r1 Rn1' z1i ( r1) Rn
2

' l
2

' ( r 2) Ti
2 dr1 r 2

2 dr2 
0 0 

= (M1M2) -
112 

lJm1,m2 am1 (n1l1, n/ l/)am ... Cn2l2, n/ l2')f<Tc') (m1-1, m 2+ 1). 

The calculation of the third integral which involve differentiations with respect 

to r 1 and r 2 is a littel more tedious. By taking into account 

(d/ dr-l/r)Rnl (r) =- (!)/2) 112 { (2l+ 2n+ 3) 112 
Rn,l+1 (r) + (2n) 112 Rn-1,l+1 (r)}, 

and calculating by the similar procedure as above, we have 

0000 

J J Rn1lJr1)Rn
2
l

2
(r2)v<Tc')(r1, r2) { Cr2a/ar1-r1a;ar2) 

0 0 

X Rn1 ' l 1 ' ( r1) Rn2 ' l 2 ' ( r2)} r1
2 
dr1 r 2

2 
dr2 

= (M1M2) - 112 
lJm

1
,mJ {l/ am

1 
(nd1, n/ l/)- am

1
-1 (n1l1, n/ l/ + 1)} 

X am
2 
(n2l2, n/ l2')f<Tc') Cm1-1, m 2+ 1) 

-am
1 
(n1l1, n/ l/) {l/ am

2
Cn2l2, n/ l/) 

-am
2
-1Cn2l2, n/l/+1)}f<Tc')(m1+1, m2-1)]. 

Note added in proof: Tables I and II are sufficient in the evaluation of (32) up to the N=6 

sh~ll, but, in th~ e;ralu:J.tion of (33), th~J ar~ n::>t enough for the shells higher than N=3. Tables 

which 'can be applied up to the N = 6 shell for the evaluation of (33) will be published in the 

Bulletin of the Tokyo Institute of Technology. 
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