
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005 2579

On Energy Provisioning and Relay Node Placement
for Wireless Sensor Networks

Y. Thomas Hou, Senior Member, IEEE, Yi Shi, Student Member, IEEE,
Hanif D. Sherali, and Scott F. Midkiff, Senior Member, IEEE

Abstract—Wireless sensor networks that operate on batteries
have limited network lifetime. There have been extensive recent
research efforts on how to design protocols and algorithms to
prolong network lifetime. However, due to energy constraint, even
under the most efficient protocols and algorithms, the network
lifetime may still be unable to meet the mission’s requirements. In
this paper, we consider the energy provisioning (EP) problem for
a two-tiered wireless sensor network. In addition to provisioning
additional energy on the existing nodes, we also consider deploy-
ing relay nodes (RNs) into the network to mitigate network geo-
metric deficiencies and prolong network lifetime. We formulate
the joint problem of EP and RN placement (EP–RNP) into a
mixed-integer nonlinear programming (MINLP) problem. Since
an MINLP problem is NP-hard in general, and even state-of-the-
art software and techniques are unable to offer satisfactory so-
lutions, we develop a heuristic algorithm, called Smart Pairing
and INtelligent Disc Search (SPINDS), to address this problem.
We show a number of novel algorithmic design techniques in the
design of SPINDS that effectively transform a complex MINLP
problem into a linear programming (LP) problem without losing
critical points in its search space. Through numerical results, we
show that SPINDS offers a very attractive solution and some
important insights to the EP–RNP problem.

Index Terms—Energy provisioning, flow routing, network
lifetime, power control, relay node placement, wireless sensor
networks.

I. INTRODUCTION

W IRELESS sensor networks have attracted unprece-
dented attention in recent years. In this paper, we con-

sider a two-tiered wireless sensor network that can be used for
a wide range of applications. Under the two-tiered architecture,
a wireless sensor network consists of a number of sensor
clusters and a base station (BS). Each cluster is deployed around
a strategic location and consists of a number of microsen-
sor nodes (MSNs) and one aggregation and forwarding node
(AFN). Each MSN is used to capture and transmit collected in-
formation to the local AFN, and the AFN performs in-network
processing by aggregating all collected local information. The
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Fig. 1. Reference architecture for a two-tiered wireless sensor network.
(a) Physical topology. (b) Hierarchical view.

AFN then relays the composite information to the BS via a
single or multihop transmission (see Fig. 1).

An important performance measure for wireless sensor net-
works is the network lifetime. Recent researches on maximiz-
ing network lifetime focus on devising optimal flow routing
algorithms (see, e.g., [4]) based on power control of each
node’s transmitter. However, the network lifetime, even under
optimal flow routing, may still not be able to meet the mission’s
requirements, and consequently, other strategies are needed.

For the two-tiered wireless sensor network, although MSNs
are not expected to be reprovisioned with additional energy due
to their small size, low cost, and large number,1 it is plausible
to consider provisioning energy to the upper tier AFNs if we
wish to extend the network’s lifetime (see Section II for more

1It is expected that new MSNs can be redeployed in the same area to replace
those MSNs that have either failed or run out of energy.
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details). Further, limiting energy provisioning (EP) only to the
existing AFNs may not yield the most efficient solution. This
is because node energy consumption behavior and network
lifetime performance in a wireless sensor network are highly
dependent on the network geometry. As we shall see later in
this paper, it is more efficient to deploy additional relay nodes
(RNs) in the network to mitigate certain network geometric
deficiencies.

In this paper, instead of studying EP (on existing AFNs only)
and RN placement (RNP) problems separately, we investigate
the joint problem of EP and RNP for sensor networks. We also
generalize the notion of EP in the sense that energy can be
provisioned on either AFNs or RNs. As a result, our work can
be applied to address a wide range of problems associated with
EP or RNP.

Specifically, we investigate the following problem for
EP–RNP: for a given network and some initial energy at each
AFN, how should we allocate a total amount of additional
energy E at M locations (which can be either at an existing
AFN or at a new position for RN) such that the network lifetime
can be maximized? We show that this EP–RNP problem can
be cast into a mixed-integer nonlinear programming (MINLP)
problem. Since an MINLP problem is known to be NP-hard,
and even state-of-the-art techniques (e.g., branch-and-bound
[9]) and their software implementations (e.g., BARON [2])
cannot provide a good solution, we resort to develop an efficient
heuristic algorithm.

Our heuristic algorithm is called SPINDS, which stands
for Smart Pairing and INtelligent Disc Search. SPINDS is an
iterative algorithm that attempts to increase the network life-
time by iteratively moving an RN to a better location. Our
main idea in achieving this objective is to transform the orig-
inal MINLP problem into a linear programming (LP) approx-
imation. This is achieved by two ingenious steps. In the first
step, we use the so-called smart pairing (SP) and intelligent
disc search (INDS) techniques to determine possible RN place-
ments during each iteration such that network lifetime can be
increased. This step transforms the original MINLP problem
into a mixed-integer linear programming (MILP) problem.
Although the MILP problem appears simpler than the MINLP
problem, it is still NP-complete in general. In the second
step, we introduce an equivalence lemma, which shows that if
the RNs are placed wisely, then the MILP problem could be
sub-breakstituted by a much simpler LP problem without any
compromise in network lifetime performance. Consequently, it
is possible to transform the original MINLP problem into an
iterative LP problem, which is polynomial.

In the numerical results, we show that the proposed SPINDS
can indeed place the RNs wisely and the LP substitution
indeed matches the MILP formulation. We also show that
SPINDS offers highly competitive performance in solving the
EP–RNP problem when compared with some other approaches.
Furthermore, we offer some important insights on network
geometric properties, RN placement, and EP. We show that
deficiencies due to network geometry (or topology) have a
significant impact on network lifetime. When such deficiencies
exist, RN placements can be a much more efficient technique
than merely provisioning additional energy on existing AFNs.

The remainder of this paper is organized as follows.
Section II describes the two-tiered wireless sensor network
architecture and gives some background on power consumption
and power control. We also formulate EP–RNP as an MINLP
problem. Section III presents SPINDS, a polynomial-time al-
gorithm to solve the joint EP–RNP problem. Section IV uses
numerical results to demonstrate the efficacy of SPINDS and
offers insights on network geometry, EP, and RNP. Section V
discusses related work and Section VI concludes this paper.

II. SYSTEM MODELING AND PROBLEM FORMULATION

A. Reference Network Architecture

We focus on a two-tiered architecture for wireless sensor
networks. The two-tiered network architecture is motivated by
recent advances in distributed source coding (DSC) [5], [17],
[21], which can exploit redundancy in information collected
among neighboring sensors without intersensor communica-
tions (Slepian–Wolf [23] and Wyner–Ziv [26] theorems).

Fig. 1(a) and (b), respectively, shows the physical and hi-
erarchical network topology for such a network. As shown
in the figures, we have three types of nodes in the network:
MSNs, AFNs, and a BS. MSNs can be application-specific
sensor nodes and constitute the lower tier of the network. They
are deployed in groups (or clusters) at a strategic location for
surveillance or monitoring applications. Each MSN is small
and low cost; they are densely deployed within a small geo-
graphic area. The objective of an MSN is very simple: once
triggered by an event, it starts to capture live information, which
it sends directly to the local AFN in one hop. It is worth pointing
out that multihop routing among MSNs is not necessary due
to the small distance between an MSN and its AFN. More-
over, an MSN will cease to function once its battery runs out
of energy. By deploying these inexpensive MSNs in clusters
and within proximity of a strategic location, it is possible to
obtain a comprehensive view of the area situation by exploring
the correlation among the scenes collected at each MSN [5].
Furthermore, the reliability of area surveillance capability can
also be improved through redundancy among the MSNs in the
same cluster.

For each cluster of MSNs, there is one AFN that is different
from an MSN in terms of physical properties and functions.
The primary functions of an AFN are 1) data aggregation
(or “fusion”) for data flows coming from the local cluster of
MSNs and 2) forwarding (or relaying) the aggregated infor-
mation to the next hop AFN toward the BS. For data fusion,
an AFN analyzes the content of each data stream it receives,
from which it composes a complete scene by exploiting the
correlation among each individual data stream from the MSNs.
An AFN can also serve as an RN for other AFNs to carry
traffic toward the BS. Although an AFN is expected to be
provisioned with much more energy than an MSN, it also
consumes energy at a substantially higher rate (due to wire-
less communication over large distances). Consequently, an
AFN has limited lifetime. Upon the depletion of energy at
an AFN, we expect that the coverage for the particular area
under surveillance will be lost despite the fact that some of
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TABLE I
NOTATION

the MSNs within the cluster may still have some remaining
energy.2 Therefore, the most stringent definition for network
lifetime would be the time instance when any one of the
AFNs fails. We will use this definition throughout this paper.

The last component in the two-tiered architecture is the BS.
The BS is, essentially, the sink node for data streams from
all the AFNs in the network. A BS may be assumed to have
a sufficient battery resource provision, or its battery may be
reprovisioned during its course of operation. Therefore, its
power dissipation is not a concern in our investigation.

In summary, the main function of the lower tier MSNs is
data acquisition and compression while the upper tier AFNs are
used for data fusion and relaying the information to the BS.
The routing topology can be controlled by the power level of
the transmitter ([18], [20], [25]) because it directly controls the
distance coverage of an AFN. That is, by adjusting the power
level of the transmitter, the authors can form different network
routing topologies with different network lifetime performance.

B. Power Dissipation

Table I lists the notation used in this paper. For ease of
exposition, we assume that the rate of data stream gi generated
at AFN i (after data aggregation) is of constant bit rate.3 For
an AFN, the power consumption by data communication (i.e.,
receiving and transmitting) is the dominant factor [1]. The
power dissipation at the transmitter can be modeled as

pt(i, k) = cik · fik (1)

2We assume that each MSN can only forward information to its local AFN
for processing.

3The approach presented in this paper can be extended for the case when gi

is time varying, as long as the average of gi is known a priori [11].

where pt(i, k) is the power dissipated at node i when it is
transmitting to node k, fik is the bit rate transmitted from node
i to k, and cik is the power consumption cost of radio link
(i, k) and is given by

cik = α + β · dm
ik (2)

where α is a distance-independent constant term, β is a
coefficient term associated with the distance-dependent term,
dik is the distance between these two nodes, and m is the path
loss index, with 2 ≤ m ≤ 4 [19]. Typical values for these
parameters are α = 50 nJ/bit and β = 0.0013 pJ/bit/m4 (for
m = 4) [10].4 The power dissipation at a receiver can be
modeled as [19]

pr(i) = ρ ·
∑

k �=i

fki (3)

where
∑

k �=i fki [in bit per second (b/s)] is the rate of the
received data stream (from other AFNs) at node i. A typical
value for the parameter ρ is 50 nJ/bit [10].

C. The Joint EP and RNP Problem

For a network with N AFNs, where each AFN i generates
data with rate gi, suppose that the initial energy at each node
is ei (1 ≤ i ≤ N). Then, it is straightforward to use an LP
approach to find an optimal flow routing schedule such that
the network lifetime is maximized [4].

Now, we take one step further. Suppose that for a number
of reasons this network lifetime is not adequate to meet the
required lifetime. Then, it is necessary to take some measures
to prolong the network lifetime. One straightforward measure
is to provision additional energy on existing AFNs in the net-
work. As we shall see later in this paper, there may exist
intrinsic geometric deficiencies within the underlying network
topology that cannot be efficiently addressed by just adding
more energy on existing AFNs. Instead, a powerful technique
to mitigate such geometric deficiencies would be to deploy
additional RNs at certain locations into the network (see Fig. 2).
Physically, these RNs are very much similar to AFNs, except
that they do not generate any information locally as AFNs;
RNs are used solely to relay network traffic toward the BS.
We will show that deploying these RNs at certain critical
positions in the network is much more efficient than just
adding the same amount of energy on existing AFNs.

For a given pool of energy E and M RNs, the question to
ask becomes: where should we deploy RNs into the network
and how should we allocate the total amount of energy E into
M portions such that the network lifetime can be maximized?5

There is one subtle problem that needs to be clarified.
Should we find that an RN happens to coincide with an AFN,

4In this paper, we use m = 4 in all of our numerical results.
5In this paper, we assume that energy provisioning can be done with arbitrary

precision (i.e., a real number). This corresponds to the case where battery
could be recharged instead of replaced. In the case when battery can only be
replaced, we can quantize the real value result from this paper to obtain an
integer solution.



2582 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 5, SEPTEMBER 2005

Fig. 2. Traffic routing with RNs.

what should we do with this RN? In this case, there is really
no need to deploy this additional RN since we can provi-
sion the same amount of additional energy directly onto an
existing AFN while achieving the same effect. Under this
setting, a general interpretation for the number M might be
that it represents the maximum number of possible locations
that we can provision energy into the network.

For the joint EP–RNP problem, assume that the data rates
from node i to node k and to the BS B are fik and fiB ; (xi, yi),
N < i ≤ N + M , are variable coordinates for the placements
of the M RNs; dik and diB are the distances from node i to
node k and to the BS B; and cik and ciB are the link costs
from node i to node k and to the BS B, respectively. For
each AFN i, 1 ≤ i ≤ N , the following flow balance equation
and energy constraint must be met:

fiB +
k �=i∑

1≤k≤N+M

fik =
m �=i∑

1≤m≤N+M

fmi + gi,

k �=i∑

1≤k≤N

cikfikT +
∑

N+1≤k≤N+M

(
α + βd4

ik

)
fikT

+
m �=i∑

1≤m≤N+M

ρfmiT + ciBfiBT − Eµi ≤ ei.

For each RN i, N < i ≤ N + M , it must also meet the flow
balance equation and energy constraint

fiB +
k �=i∑

1≤k≤N+M

fik =
m �=i∑

1≤m≤N+M

fmi,

m �=i∑

1≤m≤N+M

ρfmiT +
k �=i∑

1≤k≤N+M

(
α + βd4

ik

)
fikT

+
(
α + βd4

iB

)
fiBT − Eµi ≤ 0

where
∑N+M

i=1 µi = 1 and at most M of them are positive.

Denote Vik = fikT , ViB = fiBT , Dik = d4
ik, and DiB =

d4
iB , we formulate the EP–RNP problem as follows.
(EP–RNP) Maximize T subject to

ViB +
k �=i∑

1≤k≤N+M

Vik −
m �=i∑

1≤m≤N+M

Vmi − giT = 0

(1 ≤ i ≤ N) (4)

ViB +
k �=i∑

1≤k≤N+M

Vik −
m �=i∑

1≤m≤N+M

Vmi = 0

(N < i ≤ N + M) (5)

k �=i∑

1≤k≤N

cikVik +
∑

N+1≤k≤N+M

(αVik + βDikVik)

+
m �=i∑

1≤m≤N+M

ρVmi + ciBViB − Eµi ≤ ei (1 ≤ i ≤ N)

(6)

m �=i∑

1≤m≤N+M

ρVmi +
k �=i∑

1≤k≤N+M

(αVik + βDikVik)

+ αViB + βDiBViB − Eµi ≤ 0 (N < i ≤ N + M)

(7)

N+M∑

i=1

λi = M (8)

N+M∑

i=1

µi = 1 (9)

µi−λi≤0 (1≤ i≤N+M) (10)

(xi−xk)2+(yi−yk)2−D0.5
ik ≤0 (1≤ i, k≤N+M

i or k > N, i �= k) (11)

(xi−xB)2+(yi−yB)2−D0.5
iB ≤0 (N < i≤N+M) (12)

cik = α+βDik (1≤ i, k≤N+M

i or k > N, i �= k) (13)

ciB = α+βDiB (N < i≤N+M) (14)

Vik, ViB ,Dik,DiB , cik, ciB ≥ 0 (1≤ i, k≤N+M, i �= k)

T, µi ≥ 0, λi = 0 or 1 (1≤ i≤N+M). (15)

The physical interpretation of the above formulation is as
follows. The constraints in (4) are bit volume balance equa-
tions for those AFNs that can generate their own traffic. The
constraints in (5) are bit volume balance equations for those
potential RNs (that do not generate their own traffic). The
inequalities in (6) are the energy constraints for the N AFNs.
The inequalities in (7) are the energy constraints for the M
potential RNs. The first term in these inequalities represents
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the energy spent on receiving data streams from other nodes,
and the second term represents the energy spent on transmit-
ting data streams to other nodes. The constraints in (8)–(10),
and (15) ensure that we can provision energy to at most
M locations (including stand-alone RNs and those RNs that
coincide with AFNs). In particular, the constraints in (10) and
(15) assert that 0 ≤ µi ≤ 1, λi can be only 0 or 1, and µi > 0
only if λi = 1. The constraints in (11) and (12) represent the
internodal distances, whereas the constraints in (13) and (14)
represent the link costs among the nodes.6

III. SPINDS: A COMPETITIVE HEURISTIC SOLUTION

The problem formulation for an EP–RNP is in the form
of a mixed-integer nonlinear programming (MINLP) problem,
which is NP-hard in general [7]. The state-of-the-art techniques
for solving the MINLP problem include generalized benders
decomposition [8], outer approximation [6], and branch-and-
bound [9] methods. Since our problem is nonconvex, the
generalized benders decomposition and outer approximation
methods would not work well. The current state-of-the-art
software for solving this type of problem is BARON [2], which
was developed by Prof. N. Sahinidis’ group at the University of
Illinois and is based on branch-and-bound/reduce techniques
[24]. For EP–RNP, we find that BARON can only give a reason-
ably good solution when N and M are very small (e.g., N less
than 5), and it fails to provide reasonable lower and upper
bounds for a network of moderate size.

In this section, we present a competitive heuristic algorithm
to the EP–RNP problem. Before we describe this algorithm,
we present some basic results on the relationship among the
search space, MILP/LP formulation, and optimality, which will
be the basis for some of the simplifications we will make in the
algorithmic design.

A. Some Basic Results

Suppose that the locations for the M potential RNs are
fixed (although they may not be optimally placed). Then, cik

and ciB [in (13) and (14)] are now all constants and we can
solve the EP problem by tackling an MILP problem, which we
call EP(AFN+RN). EP(AFN+RN) attempts to allocate a total
amount of additional energy E to M points, where these M
points are an optimal set of M nodes drawn from the collection
of N AFNs and M RNs. Unfortunately, an MILP problem
is NP-complete in general [7]. Although there exist softwares
(e.g., CPLEX and LINDO) for solving MILP problems, the
computational time with such softwares is only acceptable for
a one-time computation. In other words, such softwares are
not suitable for a large number of repetitive routine calls as
required in our heuristic algorithm. To ensure that the heuristic
algorithm is computationally efficient, we must find an alter-
native approach other than solving the MILP problem directly.

6Note that we use inequalities in (11) and (12) instead of equalities. This is
because these inequalities have the convexity property and thus are easier to
solve. After we obtain an optimal solution, we can change these inequalities
back to equalities by reassigning exact values to Dik’s and DiB’s. Conse-
quently, we will obtain an optimal solution [3].

Let us examine the following simplified problem. Instead of
drawing an optimal set of M points out of the N AFNs and
M RNs, we consider provisioning energy only to the M RNs
and denote this problem as EP(RN). The problem formulation
for EP(RN) is similar to the EP(AFN+RN) problem except
that the sets of constraints

∑N+M
i=1 µi = 1,

∑N+M
i=1 λi = M

(λi = 0 or 1), and µi − λi ≤ 0 are replaced by
∑N+M

i=N+1 µi = 1
and µi = 0 (1 ≤ i ≤ N); and when an RN coincides with
an AFN, there is no energy consumption for receiving
and transmitting a data stream between them. Clearly, this
EP(RN) problem is an LP and can be solved efficiently [13].

It is not hard to see that for the same fixed network topology
and initial energy on each AFN, an optimal solution for the
EP(RN) problem is not better than an optimal solution for the
EP(AFN+RN) problem. This is intuitive and can be easily
proved by noting that the solution for the EP(RN) only con-
siders one special case for the EP(AFN+RN), i.e., provi-
sioning energy only to the M RNs.

Now, let us consider the following situation. Instead of
comparing the solutions to EP(AFN+RN) and EP(RN) for
one topology instance, how about that we try out all possible
locations for placing the M RNs and compare the best solution
under EP(AFN+RN) and EP(RN) among all possible place-
ment topologies? The answer to this question is a key to our
algorithmic design and is given in the following lemma.
Lemma 1 (Optimal Equivalence): Suppose that the M RNs

can be arbitrarily placed over some region (including those
locations for the N AFNs). Then, the best placement solu-
tion (among all possible solutions) for problem EP(AFN+RN)
yields the same network lifetime performance as the best place-
ment solution for problem EP(RN).

Proof:

1) It is not hard to see that for the same fixed network
topology and initial energy on each AFN, the optimal
solution for the EP(RN) problem is not better than the
optimal solution for the EP(AFN+RN) problem. Conse-
quently, the best placement solution (among all possible
solutions) for problem EP(RN) is not better than the best
placement solution for problem EP(AFN+RN).

2) We now show the converse is also true. For the
EP(AFN+RN) problem, we have

(
N+M

M

)
possible strate-

gies of adding energy to M points. But each strategy
corresponds to one instance of placement strategy for the
EP(RN) problem. Therefore, any optimal solution for this
EP(AFN+RN) problem has also been considered by the
EP(RN) problem under a certain instance of placement
strategy. Hence, the best solution to the EP(AFN+RN)
problem among all possible RN placement topologies is
not better than the best solution to the EP(RN) problem
among all possible RN placement strategies. The proof is
now complete. �

Lemma 1 suggests that if we choose the M -node placement
points wisely, then the solution to the simpler EP(RN) problem
will yield a similar result as that to the EP(AFN+RN) prob-
lem. We will exploit this result in the design of our heuristic
algorithm. Fig. 3 shows the relationship among all the prob-
lems we have explored so far in this paper. EP–RNP is an
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Fig. 3. Relationship among the problems and their complexity in our
investigation.

MINLP problem, which is NP-hard and most difficult to
solve. If we assume that the locations for the M RNs are fixed,
then the EP–RNP problem becomes EP(AFN+RN), which is
an MILP problem and is NP-complete in general. However,
for a one-time computation, software packages such as LINDO
can solve it in an acceptable time for the sizes of network
under our investigation. On the other hand, if we consider
provisioning energy only onto the RNs, then the EP(AFN+RN)
problem becomes EP(RN), which is LP and can be solved
efficiently. In Section IV, we will also consider the case that
energy is only added onto the existing AFNs (without RNs).
This makes the EP(AFN+RN) problem become EP(AFN),
which is an MILP problem.

B. SPINDS: Procedural Description

We are now ready to present our heuristic algorithm. The
heuristic algorithm that we developed is called SPINDS. The
main idea of SPINDS is as follows. Suppose we start with
some initial locations for the M RNs. If these locations for M
RNs are not optimal, then it is possible to relocate some RNs
to a better location so that the network lifetime can be further
extended. Now, we repeat this process iteratively. Eventually,
when movement of any RN cannot further increase the net-
work lifetime, we declare that the M RNs are placed at optimal
locations and the algorithm terminates.

The proposed SPINDS algorithm consists of two phases:
1) SP and 2) INDS and works as follows. Initially, we put
all RNs at the BS B.7 At the beginning of each iteration,
we first obtain the best flow routing under these RNs’ loca-
tions. Then, we estimate the lifetime of each node8 (include
AFNs and RNs) and order the nodes in increasing order of
node lifetime. We identify the node with the smallest node
lifetime through this process and denote it as node i. Note that
node i can be either an AFN or an RN.

Suppose that node i is an AFN. In this case, we consider
node i as the center point relative to other nodes and denote it
as O. We then make a list of all RNs in the order of increasing
distance to point O. Then, we pair node i with an RN, say rj ,
that is farthest away from point O in the list of RNs. This is the
SP step in SPINDS.

7If we have better position that we know a priori, we can start by putting
RNs at these locations. This will help speed up the algorithm’s running time.

8This is done based on current incoming and outgoing flows at each node.

Fig. 4. INDS step in the SPINDS algorithm. (a) Node i is an AFN. (b) Node
i is an RN.

Once an RN rj is paired with node O, we attempt to move
this RN to a better location within the disc region where the
disc is centered at point O and has a radius (say L) equal to
the distance between point O and BS [see Fig. 4(a)]. Note
that it is sufficient to search this disc area (with radius L) for
RN since AFN i would reach the BS with a shorter distance
if an RN is outside this disc. It is also necessary to search the
entire area of the disc (instead of only the segment between
O and B). This is because that we are not interested in the
increase of any individual node’s lifetime, but rather the lifetime
of the entire network. An increase of network lifetime will
need the collaboration of rearranging the flow routing topology
among all N AFNs and M potential RNs, which means that any
point on the disc could be a potential candidate to place
this RN and make an improvement in network lifetime.

Since AFN i has finite energy, the closer the RN rj moves
to AFN i, the longer the lifetime of AFN i can be prolonged.
The closest position to AFN i, in the extreme case, is point O
itself. Therefore, we first try to put the RN rj to coincide
with point O, which corresponds to the situation that energy
will be provisioned on AFN i directly. With this placement,
if the network lifetime is increased, we are done. Otherwise,
the possible distance from rj to i is in (Rl, Ru) = (0, L). We
search a circle C1 having radius R = (Rl + Ru)/2 = L/2. In
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particular, we start from point P1 [see Fig. 4(a)] and move
along the circle C1 with equal phase angle θ. That is, we
try points (P2, P

′
2), (P3, P

′
3), (P4, P

′
4), and so forth on the

circle C1 over 360◦. If the network lifetime increases when
the RN is placed at any of these new points on the circle
C1, we update Ru by R and move to circle C2; otherwise
(no network lifetime improvement), we update Rl by R and
move to circle C3. Again, the radius of the new circle is
R = (Rl + Ru)/2. Then, we repeat the search process for
the points on the new circle as we have done for circle C1.
Clearly, the radius of each circle involved in the search process
resembles a binary search. Eventually, the search terminates
if Ru − Rl is less than a threshold δL. This is the so-called
INDS step.

The case when node i is an RN is similar to that for the
case when i is an AFN, except that the center of the disc
O is now defined as the midpoint between RN i and the
BS [see Fig. 4(b)]. The reason why we choose this midpoint
as the disc center is as follows. Since node i is an RN, its
energy is therefore also adjustable. Thus, the lifetime of RN
i can be prolonged by adding more energy. A good starting
point to place an RN (from the viewpoint of RN i) would be
the midpoint between i and B, which we choose as the disc
center O. Since point O is the center point, we organize the
RNs (excluding RN i) in a list in increasing distance toward
point O and designate the RN having the largest distance toward
point O as RN rj . We pair (i, rj) together and start INDS.
Although the search region is still a disc centered at i with
radius L [shaded area in Fig. 4(b)], where L is the dis-
tance between i and B, the center of the search circle is
now O. Hence, the largest circle that covers the shaded disc
has a radius of 1.5 L. However, when we search points on
circles C1, C2, C3, and so forth for a better RN place-
ment point, it is only necessary to search the portion of the
circle that lies within the shaded disc area. The radius of
each circle involved in the search process also resembles a
binary search.

At the end of each iteration, we will either have moved
the RN to a new location and obtained an increased network
lifetime (as well as an EP strategy) or have no improvement
and thus this RN rj will not be moved. In the former case,
we move on to the next iteration (start with a new set of
pairing). In the latter case, we drop RN rj from the current
pairing and choose the next RN in the list of RNs, which is
the RN that is second farthest away from point O. Should all
the RNs have been considered for pairing, we move on to the
next node on the list with the second smallest node lifetime
and perform the same pairing and search process. The algo-
rithm terminates when the network lifetime cannot be further
improved after pairing all the nodes with all the RNs during an
iteration. The pseudo-code for the SPINDS algorithm is given
in Fig. 5.
Substituting MILP With LP: Note that for each placement

trial for RN rj , we need to solve an EP(AFN+RN) problem,
which is an MILP. Due to repetitive routine calls by SPINDS,
the computational burden would be prohibitively high. Fortu-
nately, Lemma 1 shows that if the heuristic algorithm is de-
signed wisely, then solving a simpler EP(RN) (which is an LP)

Fig. 5. Implementation of SPINDS algorithm.

would yield the same result. Thus, we will use the simpler
EP(RN) computation for each RN rj placement decision during
each iteration of SPINDS. It is not hard to show that the
SPINDS algorithm terminates in polynomial time.

IV. NUMERICAL INVESTIGATION

In this section, we present results from our numerical in-
vestigation. First, we use a simple network example (with
known optimal solution) and show that SPINDS can indeed
offer good results after going through its algorithmic itera-
tions. Then, we demonstrate the performance of SPINDS for
general network configurations and compare it to some other
approaches. We will also provide important insights on the
EP–RNP problem.
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Fig. 6. Example illustrating the iterations of SPINDS. The unit for lifetime T
is in 1000 × 104 s.

A. A Simple Example

To show how SPINDS can indeed offer good solutions
to the EP–RNP problem, we use the following simple one-
dimensional test network to demonstrate the iterative behav-
ior of SPINDS. Suppose that we have three AFNs that are
located along a line away from the BS (see Fig. 6). Assume
that the position for the BS is location 0. AFN1, AFN2,
and AFN3 are located 300, 400, and 500 m away from the
BS, respectively. The initial energy and local data generation
rate for each respective AFN are e1 = 6.4 kJ, g1 = 1 kb/s;
e2 = 4.1 kJ, g2 = 1 kb/s; e3 = 1.8 kJ, g3 = 1 kb/s. Now,
suppose that the total amount of provisioning energy E is
13.8 kJ and that we can deploy up to two RNs (M = 2).
By using back-of-the-envelope calculations, it can be easily
found that the optimal places for these RNs should be 100 and
200 m away from the BS, respectively, and on the same line
with the other AFNs. Also, each RN should be provisioned
with an amount of energy of 6.9 kJ. The maximum achiev-
able network lifetime is T = 1000 × 104 s.

Now, we apply the SPINDS algorithm to the same problem.
Fig. 6 shows the iterative steps in placing RNs for each iter-
ation. As the example shows, SPINDS terminates to the
optimal result after six iterations.

B. Performance of SPINDS

We will use the 10-AFN, 20-AFN, and 50-AFN network
topologies for our numerical investigation. Without loss of
generality, in all network topologies, we assume that the BS
is at the origin point (0, 0) (in meters). Tables II–IV give each
AFN’s location (xi, yi) (in meters), local data generating rate gi

[in kilobit per second (kb/s)], and initial energy ei [in kilojoule
(kJ)] for each topology, respectively, all of which are generated
randomly. The amount of available provisioning energy for the
10-AFN, 20-AFN, and 50-AFN networks are 1000 kJ, 1400 kJ,
and 500 kJ, respectively, which are also set randomly.

TABLE II
LOCATIONS, DATA GENERATING RATE, AND INITIAL ENERGY

OF EACH AFN FOR A 10-AFN NETWORK

TABLE III
LOCATIONS, DATA GENERATING RATE, AND INITIAL ENERGY

OF EACH AFN FOR A 20-AFN NETWORK

First, we will examine the impact of the parameters (θ and
δL) for SPINDS. For the parameter δT , we set it to 100 s.
This value is much smaller than the final network lifetime and
is appropriate for all practical situations. The settings for θ
and δL reflect the tradeoff between computational complexity
and precision of search space. Fig. 7(a) shows, when δL =
50 m is fixed, the network lifetime obtained by SPINDS under
different θ for the 10-AFN network. As expected, the smaller
the θ, the better the network lifetime performance. An important
observation in Fig. 7(a) is that, when θ ≤ 30◦, the improvement
in network lifetime is negligible. Therefore, we choose θ = 30◦

in all of our numerical results. Fig. 7(b) shows, when θ = 30◦ is
fixed, the network lifetime obtained by SPINDS under different
δL for the same 10-AFN network. Again, as expected, the
smaller δL is, the longer the network lifetime can become.
Similar to the case for θ, when δL ≤ 50 m, the improvement
in network lifetime is negligible. As a result, we choose δL =
50 m for all numerical results.

To demonstrate the performance of SPINDS, we compare
it with two other approaches to the EP–RNP problem. The
first approach is the greedy incremental (GI) algorithm and is
based on the following simple idea. Although it is not computa-
tionally feasible to perform an exhaustive search for placing
M RNs simultaneously, it is possible to choose an optimal
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TABLE IV
LOCATIONS, DATA GENERATING RATE, AND INITIAL ENERGY FOR EACH AFN FOR THE 50-AFN NETWORK

position to place one RN at a time. The best location for placing
one node can be found by exhaustively searching all tiny grids
that are drawn within the feasible region. Once the location for
this RN is fixed, we can place the next RN following the same
process. Under this approach, the RNs are placed one by one
until all M potential RNs are placed. We choose the grid size to
be 10 × 10 m for the 1000 × 1000 network dimension, which
corresponds to 104 grids.

Another approach that we use in comparison is to provision
the available energy E only on the existing N AFNs without
deploying additional RNs. In this approach, since M provision-
ing points can only be chosen from the existing N AFNs, we
must have M ≤ N .9 Note that the constraint M ≤ N does not
apply to SPINDS or GI, where M can exceed N .

Fig. 8(a) shows, given the total available energy E =
1000 kJ, the maximum network lifetime obtained under
different EP approaches for the 10-AFN network. For the
SPINDS and GI approaches, we also used both LP and MILP in
the solution process. There are several important observations
from this figure. First, we note that for the SPINDS algorithm,
the numerical results using the MILP and LP match closely
with each other. Recall that in Lemma 1, if we can choose the
M -node placement points wisely, without losing critical points
in the search space, then the solution obtained by solving the
simple EP(RN) problem will yield the same result as that
obtained by solving the EP(AFN+RN) problem. Therefore,
we see that the SPINDS algorithm indeed explores search
space wisely, thereby justifying the use of the LP (and thus
polynomial) instead of the MILP in our algorithmic design.

Second, we examine the greedy incremental (GI) approach
using both the MILP and the LP techniques. Clearly, the LP
technique for the GI approach is considerably worse than the
MILP approach. This is mainly due to the fact that, under
greedy algorithm, the locations for RNs deployed during earlier
iterations cannot be changed in future iterations. As a result,

9This is the so-called EP(AFN) problem in Fig. 3.

although the location for each individual RN is best chosen
during each incremental placement, the locations for the M
RNs, when they are considered jointly, are poorly chosen.
Consequently, Lemma 1 would not be applicable here and we
conclude that the GI approach cannot offer good solutions for
EP–RNP with LP techniques.

Third, under the EP(AFN) approach where there is no RN
and additional energy can only be added on the existing
AFNs, the network lifetime performance is very poor com-
pared to SPINDS. Even when M increases, the increase in
network lifetime is still very small. This phenomena conclu-
sively demonstrates that there indeed exists deficiencies in
this network topology and EP on existing AFNs alone cannot
mitigate this problem and bring much improvement in net-
work lifetime performance. In this case, RN placement is
the only viable approach to fundamentally mitigate network
geometric deficiency and prolong network lifetime.

Finally, we find that under the same total amount of avail-
able energy, the number of RNs can have a significant impact
on the overall network lifetime performance. For example, in
Fig. 8(a), under SPINDS, the network lifetime can increase
65-fold as the number of EP points (M ) increases from 1 to
15 under the same total provisioning energy of 1000 kJ.

In Fig. 8(b), we conduct a similar investigation for the
20-AFN network. The numerical results for this 20-AFN net-
work reaffirm all of our observations for the ten-AFN network.

To explore the performance limits of RNP, in Fig. 8(c),
we plot the network lifetime performance for a N = 50 node
network under three different approaches.10 For the N = 50
node network, the geometric deficiency problem is less of
an issue compared to the N = 10 and N = 20 networks dis-
cussed earlier. As a result, we suspect that the improvement of
SPINDS over other approaches may not be very significant.
In Fig. 8(c), we find that SPINDS is still noticeably better than

10Note that the complexities of the SPINDS with MILP approach and the GI
with MILP approach are both too high for numerical computation. Therefore,
their results are not shown in Fig. 8(c)
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Fig. 7. Network lifetime results of SPINDS from various parameters.
(a) Parameter θ. (b) Parameters δL.

GI when the total number of nodes in the network (M + N)
is less than 70 (or M ≤ 20). For M > 20, or the total num-
ber of nodes in the network exceeds 70 (N + M > 70), the
difference in network lifetime performance between SPINDS
and GI diminishes. Specifically, both SPINDS and GI tend to
reach a saturation point as the number of RNs increases. The
interpretation for these phenomena is that when the network
density becomes sufficiently high, all of its geometric defi-
ciency will be effectively mitigated (even under GI approach).
As a result, once above a density threshold, the network life-
time will reach a saturation point over which RNP can no
longer further increase this lifetime limit. For the network
under consideration, the network lifetime limit is approximately
89 days. Even under this scenario, there is still the advantage
of using SPINDS over GI. This is because SPINDS tends to
approach this limit much faster than GI. In particular, with
only M = 15 RNs, SPINDS can almost reach this limit, while
under GI, it will take at least M = 30 RNs.

Fig. 8. Network lifetime results from various EP approaches and computa-
tional techniques. (a) A 10-AFN network. (b) A 20-AFN network. (c) A 50-
AFN network.
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V. RELATED WORK

At the time of this work, there is no known prior work that
directly addresses the EP and RNP problems for wireless sensor
networks. Nevertheless, we will briefly review related research
on power control and network lifetime, which motivated us to
pursue this line of research.

On the network layer, most work on the power control
problem can be classified into one of two categories. The first
class comprises strategies of finding an optimal transmitter
power to control the connectivity properties of the network (see,
e.g., [12], [16], [18], and [25]). The second class of approaches
could be called power “aware” routing. Most schemes use
the shortest path algorithm with a power-based metric rather
than a hop-count-based metric (see, e.g., [14], [15], and [22]).
However, power-based shortest path routing does not ensure
good performance in energy-constrained applications (e.g.,
network lifetime). Using power-based shortest paths may
result in premature depletion of energy at certain nodes, which
is not optimal in network lifetime.

Maximizing network lifetime based on power control has
been explored in several recent works. In particular, Chang and
Tassilas [4] formulate the network lifetime problem as an LP
problem, which is similar to what we have done to calculate
network lifetimes for the EP(RN) problem. But none of these
prior efforts have addressed the EP and RNP problem, which
is the focus on this paper.

VI. CONCLUSION

In this paper, we investigated the important problem of
energy provisioning (EP) for wireless sensor networks. We
considered a two-tier wireless sensor network and studied the
joint problem of EP and relay node placement (EP–RNP) for
the upper tier aggregation and forwarding nodes (AFNs) to
increase network lifetime. Since the EP–RNP problem formu-
lation is NP-hard, we developed an efficient polynomial–time
heuristic algorithm, smart pairing and INtelligent Disc Search
(SPINDS), that solves the EP–RNP problem. SPINDS is an
iterative algorithm that attempts to increase the network life-
time by iteratively moving an RN to a better location. The
polynomial running time property of SPINDS was achieved
by transforming the original mixed-integer nonlinear pro-
gramming (MINLP) problem into an iterative LP problem.
Through numerical results, we showed that the proposed
SPINDS is highly competitive in solving the EP–RNP problem
when compared with some other approaches. We also offered
some important insights on network geometric properties, RN
placement, and energy provisioning.
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