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ABSTRACT: In arXiv:1310.5713 [1] and arXiv:1310.6659 [2] a formula was proposed
as the entanglement entropy functional for a general higher-derivative theory of gravity,
whose lagrangian consists of terms containing contractions of the Riemann tensor. In this
paper, we carry out some tests of this proposal. First, we find the surface equation of
motion for general four-derivative gravity theory by minimizing the holographic entan-
glement entropy functional resulting from this proposed formula. Then we calculate the
surface equation for the same theory using the generalized gravitational entropy method
of arXiv:1304.4926 [3]. We find that the two do not match in their entirety. We also
construct the holographic entropy functional for quasi-topological gravity, which is a six-
derivative gravity theory. We find that this functional gives the correct universal terms.
However, as in the R? case, the generalized gravitational entropy method applied to this
theory does not give exactly the surface equation of motion coming from minimizing the
entropy functional.
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1 Introduction

In the context of AdS/CFT, the entanglement entropy! for a boundary field theory which
is dual to Einstein gravity can be calculated using the well-known Ryu-Takayanagi pro-
posal [4-6]. This proposal states that the entanglement entropy Sgg of any region on the
boundary of AdS can be calculated by evaluating the area of a minimal surface in the bulk
which is homologous to this boundary region:

Spr = *E . (1.1)

Building upon earlier attempts [7-10], this proposal was recently proved in ref. [3], for a
general entangling surface.

The entanglement entropy formula in eq. (1.1) is of the same form as the formula

for calculating the entropy of a black hole. In the black hole case, there exists a simple

generalization of this area law for calculating the entropy of a black hole in any general

!There exists a huge literature on entanglement entropy. For background and interesting applications
see [11-33].



higher-derivative gravity theory, known as the Wald entropy [34-38]. It is natural to ask
then if one can generalize the Ryu-Takayanagi prescription to higher-derivative gravity
theories by simply replacing the r.h.s. of eq. (1.1) with the Wald entropy. However, this is
known not to be the case [39, 40].

Recently, a general formula for calculating the holographic entanglement entropy
(HEE) in higher-derivative gravity theories was proposed in refs. [1, 2]. It was also conjec-
tured that the minimal entangling surface can be determined by interpreting this formula
as the entropy functional for the higher derivative gravity theory and extremizing it. At
present there exists no general proof of this proposal. In this paper, we will carry out
various tests to determine the validity of this conjecture.

We will first work with general four-derivative theory. The conjectured form of the
holographic entropy functional for general R? theory first appeared in ref. [41]. The formula
of refs. [1, 2] also reduces to this functional for general R? theory. For the purpose of this pa-
per, we will refer to this functional as the FPS (Fursaev-Patrushev-Solodukhin) functional
after the authors of the paper where it was first proposed. In ref. [42] it was shown that
this entropy functional leads to the expected universal terms in the entanglement entropy
for cylindrical and spherical entangling surfaces, so the FPS functional passes this basic
first test. The obvious next step is to determine whether the surface equation of motion
derived from extremizing this functional is the same as that derived using the generalized
gravitational entropy method (which we will refer to as the LM method) of ref. [3].

General R? theory depends on three parameters: A, Ao and \3. Gauss-Bonnet grav-
ity is a special point in this parameter space [43, 44] and the FPS functional reduces
to the Jacobson-Myers functional at this point. For Gauss-Bonnet gravity, the ques-
tion whether the surface equation of motion one gets from the Jacobson-Myers functional
matches with the surface equation of motion derived using the LM method was addressed
in refs. [42, 45, 46]. We will look at the Gauss-Bonnet case again in this paper to emphasize
several interesting points for this theory. For this theory, the surface equation of motion
that one gets from the Jacobson-Myers functional matches with what one gets from the LM
method, provided that terms cubic in the extrinsic curvature are suppressed. In this paper,
we will find that for general R? theory using a procedure similar to the Gauss-Bonnet case
leads to a match in the leading-order terms on both sides, where we designate terms cubic
in the extrinsic curvature as sub-leading. However, as we will show, in the case of R?
theory, the LM method also yields an extra condition that cannot be satisfied at arbitrary
points of the parameter space. The conclusion is, therefore, that for a general R? theory
the conditions that follow from the LM method do not correspond exactly to the surface
equation of motion derived from the FPS functional.

An alternative method to demonstrate that the FPS functional is the correct entropy
functional for R? theory is to show that it can be interpreted as the action of a cosmic
brane. This method was employed in ref. [1], where it was referred to as the cosmic brane
method. In this paper, we will re-examine this procedure for R? theory and show that the
result we get is consistent with what we get using the LM method.

What happens when we go to a six-derivative gravity theory? In this case, we consider
quasi-topological gravity [47, 48] which is again a special point in the parameter space of R?



theories. We first construct the entropy functional for quasi-topological gravity using the
formula proposed in refs. [1, 2]. We then show that this functional reproduces the expected
universal terms for this theory for the cylindrical and spherical entangling surfaces. This is
in agreement with the result of ref. [49] that the entropy functional proposed in refs. [1, 2]
leads to the correct universal terms for a general higher-derivative theory. We also find the
minimal surface condition for this theory using the LM method and show that it deviates
from what is expected from the HEE functional.

Our paper is organized as follows. In section 2 we review the general entropy functional
proposed in [1, 2]. Our main focus in this paper is general four-derivative gravity theory,
for which the entropy functional is the FPS functional. In section 3 we find the surface
equation of motion for R? theory by extremizing the FPS functional on the codimension-2
surface. We then compare it with what we obtain using LM prescription. We also make
some remarks on the Gauss-Bonnet case. We then investigate the cosmic-brane method
of ref. [1]. In section 4, we repeat our analysis for quasi-topological gravity. Lastly, in
section 5 we summarize our findings and discuss their implications.

2 Proposed entropy functional for general theories of gravity

In this section we will review the general entropy formula proposed in [1, 2]. First we
summarize the argument leading up to this proposal, following [1]. For details the reader
is referred to [1-3, 41]. Some applications of this entropy formula are in [50-53].

In field theory, the entanglement entropy Sgpp = —Tr[plog p| can be calculated as the
n — 1 limit of the Rényi entropy. The Rényi entropy in turn can be computed as

1
Sp = — . (log Z,, — nlog Z7) . (2.1)
n J—

Here Z,, is the partition function of the field theory on the manifold M, which is the n-
fold cover of the original spacetime manifold M;. In the holographic dual theory one can
construct a suitable bulk solution B,, with boundary M,. The manifold M,, at integer n
has a Z,, symmetry that cyclically permutes the n replicas. In [3] it was proposed that
this replica symmetry extends to the bulk B,. Orbifolding the bulk by this symmetry
results in a space En = B, /Z,, , that is regular except at the fixed points of the Z,, action.
The fixed points form a codimension 2 surface with a conical defect in the bulk. This is
the surface that is ultimately identified with the minimal entangling surface in the n — 1
limit. Further, one can use gauge-gravity duality [54] to identify the field theory partition
function on M, with the on-shell bulk action on B,, in the large-N limit

Zp = Z[M,) = e 5Bl (2.2)

It is now straightforward to calculate the entanglement entropy. By construction, one can
identify
S[By] = nS|[By] (2.3)

at integer n, where S [Bn] is the classical action for the bulk configuration B, not including
any contribution from the conical defect. By analytically continuing B,, to non-integer n,



eq. (2.3) can be used to define S[B,]. Using egs. (2.1) and (2.2) and expanding around
n =1, one gets

n

Spp = lim (2.4)

n—1n—1

(S18.] - SIB1]) = 0.5[B,]

e=0

where € = n — 1. The quantity S[B,] can be calculated for the bulk theory by writing
the bulk metric locally around the surface in gaussian normal coordinates and introducing
a conical defect. It can be shown [1, 3] that 8.S[B,] gets a contribution entirely from
the tip of the cone. To compute it, therefore, one employs a metric regularized at the tip
of the cone.

This calculation is similar to that employed in ref. [55] for calculating the Wald entropy
from a regularized cone metric. Indeed, evaluating S [En} for a bulk theory with the cone
metric to linear order in € and using eq. (2.4) will result in two terms. The first is Swalq:
the Wald entropy for the theory. However, as was noted in [41], there is a second way
for a linear contribution to arise. A term in the bulk lagrangian that is of order € can
get enhanced to order e after integrating over the transverse directions. Following [1], we
label the contribution of such terms as Sanomaly- At this point, the calculation of the form
of Sgg is basically finished. Eq. (2.4) can be used to find the entanglement entropy for
any higher-derivative theory, including ones whose lagrangians involve derivatives of the
Riemann tensor. However, for a general higher-derivative theory it can be computationally
difficult to compute Sanomaly directly using eq. (2.4).

In [1, 2] a simpler prescription for calculating the holographic entanglement entropy
for higher-derivative theories of gravity in d 4+ 1 dimensions, for which the lagrangian (£)
contains only contractions of the Riemann tensor, was given. The formula is:

or 921 8K i K sk
—on [ diyVh e .
SEE 71-/ yf { OR.z.2 - ; <8Rzi2j8Rzkzl ) a Yo +1 } ( 5)

The notation used in the above equation and also in the rest of the paper is as follows:
we use Greek Letters p, v, p, o, --- to label the bulk indices. We use the Latin letters
a,b, ... m,n to label the indices of the codimension 2 surface, while reserving the letters
p,q,7,s to denote the indices of the transverse directions. In these directions, we use
the complex coordinates z and z. The bulk metric is denoted by g,,.The metric on the
codimension-2 entangling surface is denoted by h;; while the surface itself is denoted by .
The bulk Riemann tensor is denoted by R,,,, while the intrinsic Riemann tensor of the
surface is denoted by R;xj;. The extrinsic curvatures of the surface are denoted by IC;j,
where the first index labels the extrinsic curvature in the transverse directions. We follow
the curvature conventions in ref. [56].

The first term in eq. (2.5) is the Wald entropy. The second term is the correction to the
Wald entropy and is evaluated in the following way: the second derivative of the lagrangian
L is a polynomial in components of the Riemann tensor. We expand the components



quija Rpiqj and Rikjl using

—_ D . LKk o xck
Rpgij = Rpgij + ’ka’qu‘ /szklcqj )

_ D .. Sk -
Rpiqj = Rpigj + /Cp]k/qu quw )

Rirjt = Rikji + KpirKpjr — Kpii Kphi - (2.6)

Here, Qpqij = %Gpﬁqgij]z. quij and Rpiqj can also be defined in terms of metric variables,
but the exact definition is not needed here. The variable « is used to label the terms in the
expansion. For each term labelled by «, g, is defined as the number of Q..;; and Qzz;j,
plus one half of the number of KCp;j, Rpgri, and Ry;55. The final step is to sum over o with
weights 1/(1 + ¢o). The quantities quij, Rpiqj, and R;i; can then be eliminated using
eq. (2.6), resulting in an expression involving only components of R0, Kpij and Qpgij-

To yield the entanglement entropy, the formula in eq. (2.5) should be evaluated on the
minimal entangling surface. This surface is supposed to be determined following the LM
method. Refs. [1, 2] also contain the proposal that the minimal surface can be determined
by extremizing Sgg as given in eq. (2.5) — Sgpg therefore being the entanglement entropy
functional for a general theory of gravity.

3 Test of the entropy functional for R? theory

In this section we consider general R? theory in five dimensions. The lagrangian for this

theory is
L=L+Ls, (3.1)
where 19

is the usual Einstein-Hilbert lagrangian with the cosmological constant appropriate for
five-dimensional AdS space and

2

L
Ly= (M Baps RO + Ao Rog R + A B2 (3.3)

is the R? lagrangian.
The proposed entropy functional for this theory is

SEE, R2 = SWald, R2 T SAnomaly, R? ; (3.4)
where
2
Swald, R2 = 73 \f{l—i- (2X\3R +)\2an,lfnr“+2A1Ruypgnﬂn§nrpnsg)}, (3.5)
and

o / , L
d’xVh
3 >
2 3 f L2
SAnomaly, R2— @ d’zvVh ?(

— Ik, KT — 2A1Ksijlcsij)} . (3.6)



As mentioned earlier, this entropy functional leads to the correct universal terms. In this
section, we will further test this entropy functional by determining whether the surface
equation of motion one gets from extremizing this functional is the same as the surface
equation of motion one gets following the LM method. In section 3.1, we extremize the
functional for R? theory. In this particular section, we will first find the surface equa-
tion of motion for this functional in a general spacetime background. However, the Ryu-
Takayanagi proposal and its generalizations are most precisely formulated in the AdS/CFT
context, so eventually we will specialize to the AdS background. In section 3.2 we find the
surface equation of motion using the LM method. In this case, we will always assume that
the bulk is AdS space. Since a variation of the LM method — called the cosmic-brane
method — was used in ref. [1] to formulate a proof that the FPS functional is the correct
entropy functional for R? theory, we also investigate this method in section 3.3.

3.1 Minimal surface condition from the entropy functional

To extremize the functional in eq. (3.4), we follow the methods of refs. [57-61]. We denote
the surface we are going to extremize w.r.t. the action in eq. (3.4) by X. The induced
metric on ¥ is

hij = efe;gw, (3.7)
where g,,, is the bulk metric and ef = 0, X" are the basis vectors tangent to the surface
>, X* being the bulk coordinates. On the surface Y, the g;- component of the bulk
metric vanishes. The two normals to the surface are denoted by n} where r = 1,2 are the
transverse directions. The metric tensor in the tangent space spanned by the normal vectors
(the metric tensor of the normal bundle of the sub-manifold ) is the Kronecker delta:

Ops = €nking g, (3.8)

We work in Euclidean signature and set ¢ = +1. We use the inverse metric 4", to raise
indices in the normal directions: n"* = §"*nk. Note that, repeated s indices always imply
summation over the transverse directions: nsn”* = n{'n¥ 4+ nin¥. In this notation, the
completeness relation relating ¢*¥, the inverse of the bulk metric, to A%, the inverse of the
induced metric, is

gt = hijefezf + nkn”s. (3.9)

The Gauss and Weingarten equations are

Vie! = el + TV efe erk = —Kjmlt
Vm“ Ok + T4 efnY — Tl = K e el (3.10)

Here, V is the Van der Waerden-Bortolotti covariant derivative [57, 58] which acts on a

general tensor Tﬁjj; as
VTS = VT + T T 4+ T TP (3.11)

where V is the usual covariant derivative associated with the surface Christoffel. This
Christoffel is related to the bulk Christoffel FUV as

e = (Ojel + nge] )eu (3.12)



The Chrisoffel I'}_ is the Christoffel induced in the normal bundle. It is related to the bulk
Christoffel as
= (Oint + [H ef no)n;, . (3.13)

ovbi o

This Christoffel can be interpreted geometrically as the freedom to perform rotations of
the normal frame. It is, therefore, equivalent to a gauge field Ay, commonly referred to as
a twist potential. This field is defined as:

1
-Ak = §€rs rJks 5 SO that Fjr = 5p857‘p-’4j ) (314)

where €, is the Levi-Civita symbol.
The Gauss identity relating the bulk Riemann with all indices projected in the tan-
gential directions with the surface Riemann is

Rw,pgeke el ] lej IC’,;IIC”-j + ICglerﬂ . (3.15)
The Codazzi-Mainardi relation is
Vikrij — Vikykj = Ruvpocher egni. (3.16)
From eq. (3.15) we get the Gauss-Codazzi identity
R =R —2R,,n""nt' + R pon’ n"*nfn + IK,.K" — lele? . (3.17)

We now consider an infinitesimal variation of the surface X given by X#* — XH# 46X,
The change § X* is
SXH =€k + gl (3.18)

where ¢ and & are small parameters. For deriving the equation describing the mini-
mal surface we are only concerned with the variation in the normal direction, since the
tangential variation leads to a constraint equation. The variation then reduces to

SXH = & nk (3.19)

The variation 6 X* in the surface will induce a variation in the basis vectors e!’. This can
be computed by finding the basis vectors at X# 4 0 X* and parallel transporting them back
to X*. Taking the difference between the parallel-transported quantity and the original
basis vector at the coordinate X#, using the identities in eq. (3.10) and then restricting to
normal variation results in

Jel' = nl'Ve* + ekl e (3.20)

The details of this calculation are in refs. [57, 58]. As stated in eq. (3.11), the covariant
derivative V acts on &, as
V& =0;8° + 13,8 (3.21)

The variation in any other tensor quantity can be calculated in a similar way, by
parallel transporting the quantity at the new coordinate back to the old coordinate and
taking the difference. This gives the variation in the bulk metric as zero. We write down



the result for other variations. For details the reader is referred to [57, 58]. The variation
of the induced metric is

Ohij = 26" Krij
Vh = ¢"VhK, . (3.22)

The variation of the extrinsic curvature is

0K5; = (—=ViV;68 + K5 KE + Ruvpon™nlelel)e"
OK% = (—ViV,;65 — lC’“—i—h”Rw,pan Hngelel)E . (3.23)

1]

The covariant derivatives V act all the way to the right.
Using these variations we can now compute the change in the action. For this we first
rewrite the R, n;/n"" and Rm,ponrn n"Pn®? terms in the action given in eq. (3.5) as
Rn""nl! = R — hinWefL»’e?

Ryvpon” ' n"*nfnd = R — thjRWei”e;‘ + hikhﬂRngefe]”-egef (3.24)
using the completeness relation in eq. (3.9). The variation of a term such as h%/ RWe;’e? is
given by

S(h9 Ryvefel) = (Sh)Ryef e + 209 Ry, 6 (e} el + I 6(Ry, )ef el (3.25)

The first two variations can be computed using egs. (3.22) and (3.20) respectively. For
evaluating the last term we need the variation of the bulk Ricci Tensor? which is given by

6(R,u1/) = ng@UR;wgr - (3.26)

The variation in the bulk Ricci scalar and Riemann tensor take a similar form. All these
variations are under the integral sign in eq. (3.5) and we perform a integration by parts
where needed, discarding the term that is a total variation. Then using the variations given
above we obtain:

§(VRR) =Vh K RE + n* VAV, RES,

S(VRRn""nk) =Vh KsRun' nke® + 2Vh Vi (R,,nlel)es —

VhnIhiel' e’V o Ry & + ' VhV,RE
5(\/ERngnm’n”Sn”ng) =Vh Ks Rywpon! n”Infng £ — 4\/Evi( Ryyponls €] efef hﬂ’“)gs
AVhV(Rn”et)es + VhhFhilel e “ehefng VeaRupol® —
2nlh el efN, Ryl + VbV RES. (3.27)
Similarly the variations for the terms present in the action in eq. (3.6) are
S(VRK*Ks) = — 2VhV,VICE" + VR, KK — 2V Ky KU €T —
QﬁKsRMVthZ]n“e ngej&",
S(VhKi;K*7) = — 2VhV,; VK9 +Vh /cricsij/csijgr — 2V hK i KR ¢ —

2VhKSI R,y pontel nled (3.28)

J

2We thank Joan Camps for pointing out that such terms will contribute to the total variation.



Adding these variations up with the appropriate factors will give us the equation for the
minimal surface for the action in eq. (3.4) in a general spacetime background.

As a check of these equations we now demonstrate that the above results lead to
the correct surface equation of motion in the Gauss-Bonnet case. For Gauss-Bonnet the
entropy functional for general R? theory reduces to the Jacobson-Myers functional

_27T 3 2 [ Z T ur, Vs, p, o s LSty
Sim = g /d eVR{(1 + AL*(R — 2R,,n" ¥ + Ry pont n"*nfnd + KK* — KgijK59)} .
(3.29)
This functional is valid in a general space-time background. Note that the integrand is equal
o Vh(1 + AL*R) on using the Gauss-Codazzi identity eq. (3.17). The surface equation of
motion for this theory using this form of the functional is [42],

K4+ AL2(RK — 2RYK;;) = 0. (3.30)

We now find the surface equation of motion by directly varying eq. (3.29). Using the vari-
ation equations egs. (3.27)-(3.28) and simplifying using the identities in eqgs. (3.15)—(3.16)
we get

Vh Ks €5+ AL2 [\/E KR E — 2VIR K3k ¢
+ Vhh*pitele Yehelng VaRuwpet® —2Vh V(R Ryponlsese; Peg hki)es
—2VhK'R ngh”n“e nfej &’ —I-Q\f/C”JRngn eynpef &’
+2\fRnge efere; h’llCJk & (3.31)

The first three terms give precisely the equation of motion for Gauss-Bonnet theory. The
rest of the terms add up to zero, as we show in the following. We use the Bianchi identity
on the @QRWW factor of the fourth term giving

VOCR},LVPO' = _VO'R;,LVOép - vauuaa (332)
and then rewrite each of these terms as

hikh]le“e”ezefn @URWQP = ef@a(hikhﬂe el eknO‘RWQP) efﬁg(hikhﬂe“e”eZn VRuwap -

(3.33)
The expression in brackets in the first term of the R.H.S is a bulk scalar and therefore this
term can be written as

o) (hlkhﬂe e" eknO‘R#mp) Vi(Rw,pgn e’et e”h]k) + 17, hmh]le e ekno‘RWap—i—

ER )

ry Thikntellel e n Ryuyap (3.34)

Inserting these expressions in eq. (3.31) after expanding the second term on the R.H.S of
eq. (3.33) and using the identities in eq. (3.10) will lead to cancellation of all terms except
for the terms in the first line of eq. (3.31).



AdS background. We now specialize to the case of AdS background which is the back-
ground we will use while finding the equation of motion using the LM method. In AdS
space the Riemann tensor is

R,uupa = _C(Qupgua - guagup) ) (335)

where we have defined C' = f,/L?. Here, L is the length scale associated with the cos-
mological constant and is related to the AdS radius L as L = Ly/fw. The variable fa
satisfies the following equation for R? theory

1
1— foo+ gfgoul 42Xy +10X3) = 0. (3.36)

For ease of comparison with later results, we also rewrite the variation in VAR given
in eq. (3.27) using the Gauss-Codazzi relation eq. (3.17). The minimal surface equation
is then

K"+ LQ{/\g(RICT — 2RYK]; + 2V2K" — 2V, VK" —
KKy + 2KLKY + KKy — 2K5 — 18CK")+
1 1 ..~ 1 i 11
A T2 _ gt KTy o T r

2(2V K 4IC IC2+2ICUIC2 20/C>+
M2V VK™ — K"Ky + 2K — 40167”)} =0, (3.37)
where we have defined Ky = K K5, KY = K5, Ky = KK and K = Ko K5I
Note that these are a set of two equations one for each of the extrinsic curvatures X!, 2.
In AdS space we can make a further simplification using eq. (3.16). The R.H.S of this
equation disappears on using eq. (3.35). We then get the identity V¥V ,IC, = VIVJ Krij on
taking a further covariant derivative of the L.H.S. As explained in appendix A, in the LM

method for a time-independent metric, we can set ! = K? = K. We, therefore, also drop
the r index and eq. (3.37) simplifies to

K+ Lz{/\g(RIC — 2RYIC;; — K3 4 3KKs — 2K5 — 18CK)+
1, 1 5 1 11
)\2<2V K- 4IC + 2/CIC2— 5 CIC>+
M (2VEK — Ko + 2K — 40&)} =0. (3.38)
We have also verified this equation by determining the bulk extremal surfaces for different
types of boundary entangling regions (sphere, cylinder and slab).
For the Gauss-Bonnet case: Ay = A\, A\a = —4) and A3 = ), this equation reduces to the

known result in eq. (3.30). Note that terms cubic in the extrinsic curvature as well as the
CK terms are not present in that equation. The Gauss-Bonnet case is special in this sense.

,10,



No such simplification occurs if we set the value for Weyl? theory, A = A\, A\ = —4\/3 and
)\3 = / 6:

AL?

K+ == (RK - QRYIC;; + 8V + K3 — 7KKy + 10K3 +2CK) = 0. (3.39)

The CK term, in particular, stands out. If we trace the provenance of this term, it comes
se7 ineqgs. (3.27) and (3.28)

— terms that have components normal to the surface. Nevertheless, for AdS background

from terms of the form KCs Ry po 0t nyn? n and K3 Ry ponlieln

these reduce to a term intrinsic to the surface. In fact, using the Gauss-Codazzi identity,
eq. (3.17), we can rewrite this CKC term as ~ K3 + RK.

So far, we have only considered normal variations of the surface. Considering tangen-
tial variations leads to a constraint equation. For R? theory this constraint equation is
indistinguishable from the condition in eq. (3.16) which is the Codazzi-Mainardi relation.

3.2 Minimal surface condition from the Lewkowycz-Maldacena method

We will now derive the surface equation for R? using the LM method. As already men-
tioned, the main idea of ref. [3] is that one can obtain the minimal surface condition by
extending the replica trick to the bulk. The bulk will then have a Z,, symmetry. Orbifolding
by this symmetry will lead to a spacetime in which the fixed points form a codimension-2
surface with a conical deficit. In the n — 1 limit this surface can be identified with the
entangling surface. The metric of this surface can be parametrized in gaussian normal
coordinates as follows:

ds? = @A dzdz + 2 FAO(zdz — 2d2)?} + (945 + Krija" + Qreija’a®)dy'dy’ +
202 A (A + Bix") (2dz — zdz)dy' + - - - . (3.40)

Here p(z,z) = —5In(2Z) and € = n — 1, while 2! = z and 2? = z. This is the most general
form of the metric upto terms second order in z(Z) [1, 2, 41, 62]. The - - - denote higher-order
terms. As we will see later, for R? theory we also need to include third-order terms in the
metric expansion. The quantity K;; in this metric is identified with the extrinsic curvature,
while A; is identified with the twist potential. Both of these are standard quantities that
characterize the embedding of the surface in the bulk. The quantities 2, B,; and Q in the
second-order terms in the metric are not arbitrary, but can be written in terms of KC,;;, A;
and the components of the curvature tensors.

The bulk equation of motion will now contain divergences arising out of the conical
singularity of the form £, 5. However, the matter stress-energy tensor is expected to be
finite. Therefore, we must set all divergences to zero. This condition fixes the location of
the entangling surface.

The bulk equation of motion for general four-derivative theory is [63, 64]:

1 6 L?
Rop = 590pR = 75908 — 5 Hap =0, (341)
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where
1 . o
Hap =\ <anﬁR5WR5UW — 2RuosuRp™" — AV2 Ry +2Vo VR +

4R?¥R/35 + 4R60R5a50> =+

.. R 1 1 .
A2 (VQWR + 2R% Rsaps — V2 Rap + igagR(;gR‘S“ — an,gv?R) +

.. 1 .
A3 (—QRRag + 2V, VgR + 5gaﬁR2 — 2ga/3V2R> : (3.42)

3.2.1 (Gauss-Bonnet theory revisited

Our eventual goal is to find the surface equation of motion for general R? theory, but it is
illuminating to look at the Gauss-Bonnet case first. The Gauss-Bonnet case was addressed
in refs. [42, 45, 46] using a metric linear in z(Z). In this section, we will find the surface
equation of motion for this theory using the metric in eq. (3.40).

We first show that the second-order metric in eq. (3.40) suffices for Gauss-Bonnet
theory and inclusion of higher-order terms in this conical metric will not affect the surface
equation of motion that we find for this theory from the LM method. The bulk equation
of motion for Gauss-Bonnet theory can be obtained from eq. (3.41) by setting A\; = A, A2 =
—4X and A3 = A giving:

Hap = 4R Rgs — AR% Rsapy — 2RRap — 2RagsuRp70M +

1
3 9o (Rsow RO7M — AR5, R + R?). (3.43)

The surface equation of motion is derived by finding the divergences in this equation that
arise on using the conical metric in the limit z = z — 0. Terms higher than second-
order in the metric will not contribute to the curvature tensors to zeroeth-order in z(z),
although they might contribute at higher order. This is because the curvature tensors are
of dimension 1/Length? while third-order terms in the metric will be of order 1/Length?®.
The explicit values of the curvature tensors are listed in appendix (B). These are calculated
using a conical metric which is third-order in z(z). Note also, that the curvature tensors
contain at most divergences of order 1/z. In the above equation of motion all terms are
the product of two curvature tensors. Since each curvature tensor can only contribute at
most a 1/z divergence and no third(or higher)-order term occurs at zeroeth order in any
curvature tensor, third(and higher)-order terms will be absent in the divergence equations.

By the same logic one can see that second-order terms will contribute to the divergence
equations. However, in this case, cancellations between terms remove most of the second-
order quantities, leaving only the quantities Q..;; and Qzz;; in the divergence equations.

In the z = Z — 0 limit K' = K? as explained in appendix A, so we drop the index r
on K. The divergence in the zz component from H,g term in the bulk eom is

H..— E[A(RK - 2/0‘]‘73@-]-)} + 2[6_2"(’2’2))\{ — K3+ 3KK, — 2K3H L (3.44)
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Setting this divergence to zero should yield the condition for the extremal surface. There
is no divergence in the zz component. The divergence in the zi component is

H.; = g [672’)('2’2))\{2KV1‘K — QICVjICg — 2]Cng/C + QICZ‘ij’ij —
26 Vil + 20 VKCE | (3.45)

This divergence is equivalent to the constraint equation one gets for the entropy functional
(which doesn’t have to be necessarily the Jacobson-Myers functional) using tangential
variations of the surface and vanishes similarly by eq. (3.16). Finally, the divergence in the
1J component is

4 .
Hij = 5 [6—4P<Z72>A{2/cik/c“iclj + hijKKe — KijKa — hijKs — KKKl — 4hi;K Q...

+ 4D Ky QM — 8K Q];zj +4K;;9.. + 4ICszij}] +

Q—‘f [N 200K = 2ACaICE = high? + higla } | (3.46)

z

In the above equation we have set Q..;; = Qzz;;. Using the value of the R.;.; component
of the Riemann tensor from appendix B and setting the background to AdS space, using
eq. (3.35), we can show that Q..;; = %IC“JC;? and as a result the £ divergence exactly
vanishes. However the ;—i divergence will remain.

The final step is to take the €,z — 0 limit. Depending on the ordering one chooses,
there are two ways to do this. One way is to take z — 0 limit first. Physically, this
corresponds to looking for a divergence in the bulk equation of motion while there is still a
small but non-zero conical deficit parameter e. The second way is take ¢ — 0 first. The final
result depends on the order in which the limit is taken, so there is an inherent ambiguity
in this procedure. In fact, this ambiguity is even larger in scope. Mathematically, the
divergence is a function of two variables: € and z. In this e-z plane there are an infinite
number of paths along which we can take the limit. At least on a mathematical level, there
exists no reason why the limit should only be taken along the z = 0 or ¢ = 0 path.

The path z = 0 is, however, the simplest way to take the limit so as to obtain £ —
oo. In this case, all terms containing £ are leading divergences while terms containing
e=2(22)¢ /7 = (2%)%/z contribute to sub-leading divergences. Therefore, in this way of
taking limits, setting the H,, divergence to zero will yield two different conditions for the
minimal surface. The first condition which, after adding the Einstein term, corresponds to

the surface equation of motion is
K+ L’A(RK — 2K R;;) = 0. (3.47)

This agrees with the surface equation that comes from the Jacobson-Myers functional.
However, there will also be an extra constraint [19] of the form

— K% 4 3KKy — 2K3 =0, (3.48)

coming from the sub-leading divergence. The H;; divergence will also lead to a similar
constraint. The above condition can only be true for very special surfaces and therefore
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is an over-constraint on the surface. In fact, if these two conditions were to be true
simultaneously, the surface equation of motion we would end up getting is:

K+ oL} (K3 — 3KKy + 2K3) = 0. (3.49)

To get this form of the equation, we have used the Gauss identities on AdS space. Here,
¢ = (1—2fxA) is proportional to the Weyl anomaly and « is a variable that can take any
arbitrary numerical value. The surface equation of motion corresponding to the Jacobson-
Myers functional can be recovered if o = 1. However, at present nothing within the LM
method sets the value of this parameter to one. Note that if o was zero, the minimal
surface that we would get is the same as in the Einstein case. It also the minimal surface
that would follow if one were minimizing just the Wald part of the entropy functional.

In the above paragraph we outlined one way in which the LM method could potentially
give rise to the correct surface equation of motion. Let us now explore if we can change
the limit-taking procedure itself to get the correct equation. This can be accomplished
by choosing a different path in the e-z plane to take the limit. Taking the limit along
the path ¢ = 0 will simply kill off all divergences; this is not surprising since physically
this corresponds to turning off the conical deficit in the metric. However, we can pick a
path in the ¢, z plane that will kill off the sub-leading divergence but preserve the leading

divergence. For example, as was shown in ref. [45], taking any path of the form ()% =

(2)
€
this point, we can offer no justification of why one should choose this particular way of

, where v is a number greater than one, will keep only the leading divergence. At

taking limits. We are merely demonstrating that there does exist a way to take limits in
the €, z plane that leads to the correct surface equation of motion in the Gauss-Bonnet case.
This way of taking limits is equivalent to discarding terms suppressed by e~2/(:) and was
also used in ref. [1] to show that the LM method leads to the same surface equation of
motion in the Lovelock case as can be derived from the entropy functional for Lovelock
gravity [1, 37, 38, 65]. This is the way of taking limits that we will use. However, unless
one can specify a mechanism or a physical interpretation which reproduces this way of
taking limits, the argument that the LM method reproduces the correct surface equation
of motion for Gauss-Bonnet theory remains incomplete.

The same ambiguity in taking limits exists for general R? theory. To remain consistent
with the Gauss-Bonnet point, for R? theory we will continue to take limits as stated in the
paragraph above. However, in the general case this is not an ideal solution. As we will
see, ~ K3 terms always occur with the e 2°(3:%) factor in the divergence equations for R?
theory. This means that if we use the above way of taking limits we will never get such
terms at any point in the parameter space. As we saw in eq. (3.38), the surface equation of
motion for R? theory does contain such terms. However, our goal for general R? theory is
to see to what extent we are able to reproduce the surface equation of motion in eq. (3.38),
while taking the limit in such a manner that the result at the Gauss-Bonnet point agrees
with what comes from the Jacobson-Myers functional. It is clear, though, that the question
of taking limits in the LM method deserves more study.
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3.2.2 The general case

We now work out the divergence equations for the R? case. For general R? theory all
second-order quantities will enter into the divergences. We can anticipate the effect that
terms containing (2 and B will have on the surface equation of motion coming from the LM
method. Consider the following components of the bulk Riemann tensor around z = z = 0:

Foars (2=0,z=0) B —3€4p(275)épqgmg7
Rpqri =322 ¢g, B,y (3.50)
(2=0,z=0)
where, £, is defined as £, = —é5, = e~ 20(2,2) g.z. The quantity € is therefore equivalent

to —1/3R,ponrnining evaluated at z,z = 0. We can determine a numerical value for the

quantities B and €2 in the metric by demanding that the bulk Riemann tensor be the AdS
solution at zeroeth order. Since for AdS space the Riemann tensor is given by eq. (3.35),
we can write the components of the bulk Riemann tensor on the L.H.S of eq. (3.50) in
terms of the components of the bulk metric. Expanding the metric using eq. (3.40) and
keeping only the zeroeth-order terms in z, z we get

1
Q=-2C and Bi=0 (3.51)

zZz
1]

3 Nzz

Therefore, B can be set to zero. In writing the divergences, we also ignore ;; and

the remaining component being Qi; = QFF = Q7.
For R? theory the derivative order of the equation of motion is four. That means we
should include order z3 terms in the metric, since they can contribute to the divergences.

These terms can be parametrized as

ds? = etP(#:2) qumt:cpa:qazrda:sdxt + Wrspijxrxsxpdyidyj + 262p(z’2)Crsixrxs(2dz — zdi)dyi .

(3.52)
This is the most general form of the third-order terms in the metric. Here, we have written
the €2°(#2) dependence of each term explicitly. As for the second-order quantities, the third-
order quantities Apgrst, Wispij and Crs; can be found by calculating the curvature tensors,
but to linear order in z(z). Then, for example, e4p(Z’2)qurst = —1/60,(Ryuponnining)
evaluated at z = Z = 0. Note that the factor of e**(+?) will cancel from both sides on using
the AdS background. In fact, this particular term vanishes altogether in this background.

On using the metric with the third-order terms listed above to find the divergences in

terms that are relevant are W..z;; and Wsz.,;, because as will show below they will lead
to unsuppressed CC terms. Without loss of generality, we can set them to be equal and
denote this term as W;;.

3 As we saw for the Gauss-Bonnet case, these terms will be present in the divergences, but they will not
change our conclusions for R? theory.
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For general R? theory, the divergence in the zz component from the H,p term in the

bulk eom is
H,, = 2 [ - %(AQ +AX3) V2K + (201 + A2 + 2X3)VIVIK,; + As(RK — 2K R,;) +
4(=2XM1 + 3Xg + 14A3) iy APAT — 6( A2 + 403)KA'A; +
8(3A\1 + 2\ + 5)\3)169] —
; [6_2”(’2’2){(2)\1 — Xy — 6X3)Ka + %(Ag + 4X3)K? +2(\g + 4)\3)9}] +
g [e%(m){ — A3K3 4+ (A2 + TA3)KK2 — 2(3M\1 4 2X2 + 6X3)K3 +
(6A1 + 52 + 1403)K;; QY — g(/\z +4X3)KQ —
4(Ag + 4/\3)WH : (3.53)
The divergences in the other components are
H., = % [e—%(m){ </\3 + iA2> K3+ <)\1 — gxg — 7)\3> KKo +
2(=2A1 + Ao 4 6X3)KCs + (2M1 — 3\ — 14X3) K QFF +

g()\g +4X3)KQ + 8( A2 + 4)\3)WH : (3.54)

H. = % [e—ww{ ~ %(% + M) KEVLK — (3A1 — Ao — 63) KMV, Ky —

1

7 (3% +8X3) VK + (5A1 + ) KEV KL — MKV KE +

(9)\1 + 2/\2)1ijka]'2' — (/\2 + 4)\3)V¢Q — (4)\1 + AQ)VkQ,’:: —
1

(10A1 — 22 — 18X3) A; K9 — 5(3)\2 + 12A3)A¢IC2 +

8(4A1 + X)) Ky KR Ay — 2( o + 4)\3)A¢QH : (3.55)

Hij = % [6_4‘)(2’2){ <;A1 + i& + §>\3> higK® — (TA1 + 2X2 + 2X3) KKK +
2(16A1 + 4Xg + A3)Kin KM — (A1 4 3Xa + 10A3) his KKy —
(BA1 — 22g)Ki K — %(/\1 18X — TON)hyyKs +
2040 + A2) Qi K + 2( A2 + 4X3)hij KQ — 8(4M + )\Q)IcikQ;? -
(A2 + 4X3)KijQ — T( Ao + 4XA3) hij Ky O + 32(4M1 4 M) Wij+
32(\o + 4)\3)hijW}] . (3.56)

Whether or not the divergences in the ij, zi and zZ components vanish before taking the
€ — 0 limit will depend upon the exact values of the second-order terms. The zi divergence,

,16,



in particular, should be equivalent to the constraint equation coming from the tangential
variations and should vanish by the Codazzi relation in eq. (3.16). As in the Gauss-Bonnet
case, the divergence in the ij component is not expected to fully vanish by itself. We
therefore take the limit as prescribed in the last section. This reduces the divergences in
the zi and 7j components to zero. However, because of the presence of the VW term there
still remains an unsuppressed divergence in the zz component. This divergence can only
go to zero if I = 0 or the theory is at the Gauss-Bonnet point.

We now examine the divergences in the zz component, to be able to compare it with
the surface equation of motion derived using the FPS functional. First looking at the 1/z
divergence in that component, one can see that it contains the unsuppressed terms ICZ-inAj
and KA’ A; which are not present in eq. (3.38). However, these terms can be eliminated in
favor of other variables. Consider the R.;z; component of the Riemann tensor expanded
around z =0,z = 0:

R.izj = 1e2ﬂ(z’f>fij — 26202 A, A + 1/CZZ-le’;- — lgzgij : (3.57)
(2=0,z=0) 2 4 )

Using eq. (3.35) again and multiplying both sides by K;;, we find that the A;A;KY term
can be written as ~ CK + e 2P(22) (3 4 ¢=20(22) QK. The A; A'K terms can be written in
a similar fashion. Since only the C'K term is unsuppressed we find

A@'.Ajlcij = % + .-+ and
: 3CK
A ALK = 0 e (3.58)

where the dots denote the suppressed terms.

Next looking at the e~2°(2:2) /z divergence we find that the WV term will contribute to
the surface equation of motion, since this term contains a e2°(*%) factor that enhances the
divergence to 1/z. This term can be determined by using the following equation

0. Rzz o W+ 262 AT A A — 2P EDQK 4 - - (3.59)

The R.H.S of this equation disappears in the AdS background. Using eqs. (3.51) and (3.58)

we find

2p(2,%)
W 2 : oL (3.60)

The Q terms that are also present in this divergence do not contribute since as we show

below they are expected to contain only ~ K? terms and therefore remain suppressed.
Substituting these values in eq. (3.53), and adding the Einstein term we find that the

1/z divergence of the zz component gives rise to the following surface equation of motion:

1 .
K+ LQ{ (2)\1 + 2/\2> V2K + A3(RK — QICU'R,Z']‘) + MO+ A Co K + )\303]C} =0 (3.61)
where C; = —4C, Cy = —11C'/2 and C3 = —18C". The coefficients of the V2K, RK, ICinij

and CK terms in the above equation all match with those in eq. (3.38). Because of the
way we are taking limits, the K3 terms that are present in eq. (3.38) are not present here.
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Finally we look at the €/2z? divergence in the zz component. For this divergence to
vanish, we get the condition

1
(ZM—Ag—&&Mb+§Q2+4&M?+2Qy%M@Qzﬁ. (3.62)

To satisfy this condition at arbitrary points of the parameter space, one has to demand
that Q be a function of ~ K? terms, and also A\;, A2 and \3. Demanding that Q be
independent of A1, A2 and A3, will pick out a special point in the parameter space (apart
from the Gauss-Bonnet point where this condition is trivially satisfied).

To summarize the results for R? theory:

1. Apart from the absence of ~ IC3 terms, eq. (3.61) that we found using the LM method
is exactly the surface equation of motion that results from the FPS functional.

2. There are some problematic extra divergences. The zZ component of the bulk equa-
tion of motion has a divergence that can only disappear at the Gauss-Bonnet point.
There is also a second-order 1/z? divergence in the zz component. This can be taken
to fix the value of the term Q; however, it is not possible to do this in a way that is
independent of the parameters of R? theory.

3.3 The stress-energy tensor from the brane interpretation

In ref. [3], it was noted that a equation of motion of a cosmic string is the same as the
equation for the minimal entangling surface. This is because a cosmic string produces a
spacetime with a conical defect with a metric of the form in eq. (3.40). The equation of
motion is given by minimizing its action. For Einstein gravity this is just the Nambu-Goto
action and equation of motion of a cosmic string is

K=0. (3.63)

This condition minimizes the surface area of the string as it sweeps through spacetime.
The same thing holds for a cosmic brane.

As was done in ref. [1], where it was referred to as the cosmic brane method, this fact
can be exploited to construct the entropy functional from the bulk equation of motion. In
this section, we will check this construction of ref. [1]. The idea is that the bulk equation
of motion in eq. (3.41) should lead to the cosmic brane as a solution, to linear order in
€. In particular, this means that L.H.S of eq. (3.41) should be equal to the stress-energy
tensor of the brane. Since the brane is a localized source, the stress-energy tensor will

contain delta functions. Once we have found the stress-energy tensor we can identify the
6S

6905[3'

Let us see how this works in the Gauss-Bonnet case. In the bulk equation of

associated action via Ty, 5 =

motion, terms such as 0:0,p(z,Z) correspond to delta functions. We set 0(z,z) =
e 2r(22)9,0,p(z, Z). Note that 6(z, Z) defined this way contains a factor of e.
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The delta divergences in the 75 component of the bulk equation of motion to linear
order in € are then:

T%j = (5(2’, 5){ — 4\ (hin — 2Rij)+
— 2N e 2D (K — hiK2 + 264K — QIC,»,CIQ?)} . (3.64)

To identify this as the stress-energy tensor coming from the Jacobson-Myers functional
(interpreted as a cosmic brane action), the second term should go to zero. This term
carries a factor of e~2°(3%) as compared to the first term and according to our way of
taking limits is suppressed. Our result is then in agreement with the claim in ref. [1] that
the cosmic-brane method can be used to show that the Jacobson-Myers functional is the
right entropy functional for Gauss-Bonnet theory.

However, as we will see there are problems for the general four-derivative theory. For
R? theory, the delta divergences in the ij component are

Tij = (5(2’, Z) |: —4 )3 (hin — QRZ']') — 16(6)\1 + 11X + 38)\3)hijQ +
e*2f’<z’2>{ — (Mg + 229)i; K2 + 2(Ag + 3Ag)hi; Ky —
2(12/\1 + 4N + 4/\3)Qij — 2()\2 + 4/\3)th]' —
2(4M1 + Ao + 2X3)Ki K + 2(14M1 + 4o + 4X3) Ky K) +
16(20A1 + 11As + 24\) Aid; } |+
¢~20(22) {Gzé(z, %) + 0:6(z, 2)}{ — 2(2X1 + Mg + 2X3)K; + (X + AQ)hij/c} -
467229 9.8.6(z2, 2) (Ay + 4)3) . (3.65)

Again, barring the term suppressed by e 2°(#%) we have checked that the result for this
component is of the same form as that produced on calculating the stress-energy tensor from
an action equivalent to the FPS functional. The derivative of delta terms like 0,d(z, z) are
typical in the stress-energy tensor of actions containing terms that depend on the extrinsic
curvature [61]. However, the zz and zZ components of the bulk equation of motion also
contain delta divergences that are not suppressed:

T.. = —40%5(2,2) (201 + Ao + 2)3) — 20.6(2, 2)(4\1 + A2)K (3.66)
and

Toz = —2{0.6(2,2) + 0:6(2,2) } (2A1 + X2 + 2X3)K +
482855(z, 2)(2/\1 + Xy + 2)\3) . (3.67)

Taking the delta divergences in all components into account, the T}, we have found does not
look like the stress-energy tensor for a cosmic brane corresponding to a three-dimensional
surface in the five-dimensional bulk. Note that the extra divergences all vanish for the
Gauss-Bonnet theory. The Gauss-Bonnet result therefore stands. However, any attempt
to use this method to show that the FPS functional is the correct entropy functional for
R? theory should be able to account for these extra delta divergences.
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4 Quasi-topological gravity

The lagrangian for quasi-topological gravity [47, 48] contains terms cubic in the Riemann
tensor. It can be used to study a class of CFT’s involving three parameters in four dimen-
sions. It has many interesting features including the fact that its linearized equation of
motion is two-derivative order. Unitarity for this theory was studied in ref. [66].

In section 4.1, we find the HEE functional for quasi-topological theory using eq. (2.5)
and compute the universal terms is section 4.2. In section 4.3, we find the surface equation
of motion for this theory using the LM method.

4.1 The entropy functional

The action for quasi-topological theory in five dimensions is

_ 1 5
SQT——@ d $(£1+E2+I/Z5), (4.1)

where £; is the Einstein-Hilbert action given in eq. (3.2) and L9 is the Gauss-Bonnet
lagrangian as in eq. (3.3) with A\; = A3 = A, A2 = —4\. The last term is the R? lagrangian:

Zs = HORa575R76”VR/LVaﬂ =+ ,ulRaB'y(sRﬂncSCRanwg" + /J/QRaB'ycSRaB'Y&R +
113 Raprs R RO + 114 Ragys R R™ + s RaPRgTRy™ + s RC RS R+ 17 R . (4.2)

There are two different consistent R? theories. For the first theory

3 9 15 18 33 15
:07 :1’ :7, :—77 :—’ :—7 :—77 [ — 43
1o 111 o= Qo M3 = —os H4= o, M5 = oy o= —ogs 1= o (43)
and the coupling constant is v = 7#?, while for the second theory
3 60 72 64 54 11
Ho , M1 y M2 2 , U3 7 , M4 7 , M5 7 y M6 14 , M7 14 ( )
and the coupling constant v = % .
The R? part for the HEE functional is
2y
SEE, R3 = g%/d?’x\/ﬁ (E\Nauld7 R3 T £An0maly,R3) ) (45)

where

EWald,R?’ = 6M0R22aﬁRziaﬁ + 3 (RZO(EBRzaZﬁ - RzazﬁRzaz'B) + w2 (RaBpURaBpJ -
_ _ _ 1 _
AR R**:,) + 2u3(Ra®s° R, — Ry™.7R%; + 5R(MRW%) + pa(2R? .3 RY® +
(R?.)? = R*R..) + 315 R** R.o + pt6 (RagR™ + 2RR?.) + 317 R?. (4.6)
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The symbols z and z in the above expression label the two orthogonal directions while the

indices «, 3, ... are the usual bulk indices. The expression for the anomaly part is
ij 3 3 2 ikjl
'CAnomaly, R3 — u0(12 ]CQ Qz‘j — 6](:4) — M1 5 IC4 - §IC2 + 3/CijICklR —

M2(6K22 — 2Ky K2 — 8K O+ 4’C2R)—

1 g g g
3 <2/C4 + B ’C22 — Ko Q — 2]C21]Qij - QIC”QZ‘]' K+ 2’C2”Rij> -
pa(2K3 K — Ko K? — 2K Qi K+ 2 KR K)—

1
15 <i Ky K2 — g/@ Q) — 6 <;’ Ko K2 = 5K — 2K2Q+IC2R> - (47

where K4 = ICijIlelClleki. In calculating the anomaly part from eq. (2.5), we have used
the value of B = 0 that we found in section 3.2.2. This is the reason that while terms
involving B’ are supposed to contribute to eq. (2.5), the above equation does not contain
any terms containing B’. The full HEE functional has contributions from the Einstein and
R? part also which are given in egs. (3.5) and (3.6).

4.2 Universal terms

In this section, we will demonstrate that our HEE functional for the quasi-topological
gravity produces the correct universal terms. For the general structure and calculation
of the universal term of the entanglement entropy in four dimensions, see [67, 68]. These
central charges can be easily calculated using the technique of ref. [69].

We follow the procedure given in [42] for R? theory. Here we sketch the main steps of
this calculation. We will minimize eq. (4.5) for a bulk surface with a spherical and cylin-
drical boundary. We will carry out this procedure for the five-dimensional bulk AdS metric

L? . .
ds? = ?(dZQ +dr? + hijdx'dx’) . (4.8)

Here, L is the AdS radius and hi;j is a 3-dimensional boundary metric given below. For
the calculation of EE for a spherical entangling surface we can write the boundary h;; in
spherical polar coordinates as

spherep, datdad = dp? + p2dQ3 (4.9)

where dQ% = d6? + sin? 0d¢? is the metric of a unit two-sphere, 6 goes from 0 to 7 and ¢
goes from 0 to 2m. Similarly, for a cylindrical entangling surface

Cylinderhijdxidxj _ du2 + dp2 + ,02d¢2 ) (410)

Here, u is the coordinate along the direction of the length of the cylinder. For a cylinder
of length H, u goes form 0 to H .

We set p = f(z),7 = 0 in the metric in eq. (4.8) and minimize the entanglement
entropy functional (whose R? part is given in eq. (4.5)) on this codimension 2 surface to

— 21 —



find the Euler-Lagrange equation for f(z). Using the solution for f(z) we evaluate the
entropy functional to get the EE.
For the spherical boundary, we get f(z) = / fg — 22 which gives the EE as

SEE = —4aln <J;O) . (4.11)

Here, 0 is the UV cut-off that comes from the lower limit of the z integral and fy is the
radius of the entangling surface. The value of a is
w23

_ o 2
_ 7342@(1 6fso X+ 9f2 11) . (4.12)

For this case, the entire contribution comes from the Wald entropy as the extrinsic curva-
tures are identically zero.
For the cylindrical boundary, we find f(z) = fo — % + ... leading to

cH . ([ fo
=——1In(~=]. 4.1
SEE T ( 5 > (4.13)
The value of ¢ corresponding to the theory in eq. (4.3) is
w23 9 9
c= 3/263{1 — 2fooA + 9foo b + foop(42p1 — 33642 — 56#3)} ) (4.14)
o tp

while that corresponding to the theory in eq. (4.4) is
n2L3

c= ———
3/263
oo tp

{1 200X+ 972 — J2(16805 + 283) } (4.15)
The 1+9 fgo w part is the usual Wald entropy contribution, while the remaining part comes
from the anomaly part. After putting in the values of u’s given in egs. (4.3) and (4.4)
we obtain

L3

c= W(l — 2focX — 3f2 1) (4.16)
oo p

for both theories.

These results for the universal terms agree with those calculated in ref. [42] for the
two quasi-topological theories. Note from eqs. (4.14) and (4.15) that only a few terms
from £ nomaly, 3 have contributed to the universal term. Terms of the form ~ K* do not
contribute to this calculation at all. Since O ~ ICQ, terms of the form ~ K2Q also do not
contribute.

4.3 Minimal surface condition

We now find the surface equation of motion for quasi-topological gravity using the LM
method. For ease of calculation, we set all second-order quantities and cross-components
in the metric in eq. (3.40) to zero. The bulk equation of motion for this theory is [63, 64]:

1 6 L2

Rop = 590pR — 75908 — 5 Hap = vFas =0, (4.17)
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where Fi,g is defined in refs. [47, 48, 63, 64]. The £ divergence in the zz component of the
equation of motion coming from the F,z term is

€ 3 3 1 .
F =- [ <2u1 e dpe — 12u7> RINVZK;; — (2u2 + pe + 6u7> RYK: R+

1 1 .
Mo + ,uﬁ + 3/17) RZ]R ],C + = <M6 + 2#4) ,CVQR + (M4 + pus + 4/.1/2)VZ'VZIC_

3 1 .
<3M1—8u 2 — 3us — pug + us,)vnmkvklw 5 (ha + 31 KMV VI Ry

3 1 3
i *Mz —H3 GHa = g Hs — 26 — 6M7> RV'VI K+
1
Z(/M + 2us3 + 8ug) K" EAVAVS R:| (4.18)

While we haven’t computed the surface equation of motion that one gets on minimizing
the functional in eq. (4.5), this is not very hard to do using the methods of section 3.1 and
Mathematica.* The main point is, however, that the surface equation of motion that one
will get from the entropy functional will contain K? terms that are absent in the above
divergence.

Other divergences are also present in the zz component:

_ 4 o 7
F2 :% [6‘2”(2 Z){ (3M1 + 192 + 23 + 3M6) Rk HICH — <2u6 + 18M7) R+

3
202 + /1«6 + 6u7> RIC? + <u4 — 2u5> KV?K —

4 4 . 3 o
gH2 —Hat M5 + 3M6) KV, VK — <M4 - 2M5> KV'NIKij+

o

3 2 3

2 3 2
3p1 + gh2 +pst 3pg — oHs + Suﬁ) VK VEIC,

2 3 2
< M1 — 2 — p3 + g — s — M6> Vi KIVEK,; —
<8,u2 — pa + ,u5> RiKYK + (31 + 8z — pa — QMG)Rz’j’Cjk’Ci}] +
= [ —4p(z, Z){(?),ul — 2p2 — 203)KC3 + (pa — 35 — 2#6)’C’C2H (4.19)

As for R? theory, these divergences can be used to determine second and higher-order terms
in the metric. At linear-order in the metric, divergences in all other components of the
equation of motion go to zero if we take the limit as mentioned in section 3.2.

5 Discussion

In this paper, we found the surface equation of motion for general R? theory and quasi-
topological gravity using the generalized gravitational entropy method of ref. [3]. We

4We have used the Xact package for a number of calculations in this paper.
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found that these do not match exactly with what can be derived by extremizing the HEE
functional for these theories — the HEE functional being calculated using the formula
proposed in refs. [1, 2].

Let us summarize our findings regarding R? theory. First, the leading-order terms on
both sides do match. In fact, barring ~ K3 terms, the surface equation of motion that
follows from the LM method is precisely the surface equation of motion that follows from
the FPS functional.

The main problem with the LM method is that there are divergences in components
other than the zz component, for a general higher-derivative theory. In the Gauss-Bonnet
case, there are ways we can take the limit to set these divergences to zero. However, the
effect of taking the limit in this way is to remove all ~ KC? divergences from all components
of the equation of motion. This means that we do not get any ~ K2 terms in the surface
equation of motion using the LM method. No matter what the HEE functional for R?
theory is, it is unlikely that no ~ X? terms will occur in its surface equation of motion
at any point in its parameter space. Even after taking the limit as prescribed, for general
R? theory, there remain extra divergences in the bulk equation of motion. It is impossible
to set these divergences to zero at all points of the parameter space, although this can be
done for specific points like the Gauss-Bonnet point.

As we discussed in the paper, the absence of ~ K terms is the R? equation of motion
is an artifact of the way limits have to be taken in the LM method for the Gauss-Bonnet
case. The limit can also be taken in such a way so as to preserve ~ K2 terms. It is worth
recapitulating the results this way of taking the limit gives for Gauss-Bonnet theory. As
we showed, using the second-order conical metric, the bulk equation of motion for Gauss-
Bonnet theory, before taking the limit, has divergences only in the zz and ij components.
There is no divergence in the zzZ component, while the divergence in the zi component
turns out to be a constraint equation that vanishes by itself on using the Codazzi-Mainardi
relation on AdS space. This same constraint equation results from the Jacobson-Myers
functional, as well, on taking tangential variations of the surface. It is not clear what the
relevance of the divergence in the ¢j component is in the LM method. Were we to ignore
this divergence, the surface equation of motion that would result from the zz component for
Gauss-Bonnet theory, after taking the limit, is ¢ X = 0, where ¢ is proportional to the Weyl
anomaly. This equation is clearly not what comes from the Jacobson-Myers functional.
However, the resulting minimal surface is what one obtains on extremizing just the Wald
entropy part of the functional. It would be interesting to check whether the zz component
of R? theory also leads to the same result.

One of the pending issues with the LM method is to fix the ambiguity present in the
limit-taking procedure. However, fixing this by itself does not seem enough to simultane-
ously cure the two problems present for R? theory: the absence of ~ K3 terms and the
presence of extra constraints; although, it can remove one of these problems from the list.
The ambiguity in the limit-taking procedure is not unique to the LM method. Similar,
though not exactly the same, issues occur in studies of co-dimension two branes in the
context of brane-world gravity [70, 71]. It is possible that a further modification to the LM
method will fix these problems; on the contrary, it may be that one cannot get rid of it in
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any way. The problem of extra divergences is related to the derivative order of the bulk
equation of motion and seems to spring from the pathology of the general R? theory itself.
In this sense, it is not surprising that we encounter it for general higher-derivative theories.
Higher-derivative theories are known to suffer from problems regarding unitarity [72-78].
These problems seem to be manifested in the LM method in the inability to remove all
divergences, that occur on using the conical metric, from the bulk equation of motion.

What does our analysis say about the validity of the formula proposed in refs. [1, 2]
as the entanglement entropy functional? For general R? theory as we demonstrated the
leading-order terms match on both sides, which stops short of being a validation of the
proposal for this theory. This test, at present, is similar in scope in refining conjectured en-
tropy functionals for higher-derivative theories as the test whether the entropy functional
leads to the correct universal terms. As we showed in this paper, for quasi-topological
theory the universal terms are not sensitive to terms of the form ~ K% in the entropy func-
tional (similar statement applies for other higher-derivative theories) and one can change
these terms and still have the universal terms come out to be correct.

The LM method, therefore, in its current form has limitations that make it ineffective
in testing proposed entropy functionals for generic higher-derivative gravity theories. The
fact that the LM method only works for specific theories may indicate one of two things.
One possibility is that entropy functionals only exist for specific theories such as Lovelock
theories, for which the result of the surface equation of motion from the existing entropy
functional and the LM method coincide. The other possibility, as mentioned before, is that
the LM method needs some modification. In this context, it is also desirable that alternate
methods to test entropy functionals be developed.
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A Conical metric
Near the conical singularity the bulk metric can also be written as
ds?® = p(x,y) > (da® + dy®) + p(x,y) *“ap; daPdz’ + gij da'da’ . (A1)

The two-dimensional part is written in cartesian coordinates z and y and p(z,y) =
V@2 + y?. We have written the metric upto terms first order in z(y). The co-dimension
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two surface (X) is located at = 0 and y = 0. The metric g;; can be written down order

by order in z(y) after expanding around the surface ¥ as
9ij = hij +  Ougij|y, + Y Oygij|y, + - - (A.2)

The surface tensor h;; is independent of z and y. The variable a,; ~ O(x).
The extrinsic curvatures for the co-dimension two surface (3) are defined as

Ksij = efvinsg}z = e?(@insf; - fgﬁeians(g)lz . (A.3)

Expanding the Christoffel in terms of the metric and using the fact that the first term
ef Oingp vanishes it follows that

1 1
Kaij = 500 9ijlsyr Kyij = iaygij‘z- (A.4)

We now make the simplifying assumption that the metric g;; is independent of the co-
ordinate y. Under this assumption, the extrinsic curvature Ky;; vanishes as d,g;; vanishes.
The complex coordinates z and Z used in the metric in eq. (4.8) are related to x and

y as
z=x+iy, Z=1x—1y. (A.5)

In these coordinates the metric is
ds? = P2 (dzdz) + gijdx’da? + 262032 A;(zdz — zdz)dy’ (A.6)

where
gij = hij + 2 Ksij + 2Ksij + -+ . (A7)
The extrinsic curvatures in this coordinate system are related to Ky;; and KCy;; as

L, Kaij = Roaig — Ry (A.8)

Since Ky;; = 0 we have
Kij = Kszij - (A.9)

Similar considerations apply to the second-order quantities Q.
B Curvature tensors

In this appendix, we list components of the curvature tensors for the metric in eq. (3.40),
that do not appear in the main text. We retain only terms uptil zeroeth-order in z, z.
The components of the Christoffels are

Fzzz _ _2 7 FEZE _ _g , FZ’LJ _ _6*2P(272) ,CZZJ 7 FEZ] — _6*2,0(2,2) ]ij ,
P Lkl T, =Lk i— Lo, Ongij — 019,

z) — 9 vzg zZ) — 9 Vzj o ik — 29 ( 91k + kJlj l.g]k>>
[%=—2A;, T%=2A. (B.1)
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The components of the Riemann tensor are

Rpqij = 260528y, Fij + (KpjnKi — KpinKy)

1 €
Rzizj = Z’CZJICK:Z - szij - %K:zija

1 _ . 1 1
R.izj = 562p(z,z)}-ij — 2% A A + ZICzjkiC’g% — 5 Qezij

1
Rypiji = i(vklcpij — V;Kpir) ,

1 o

Rikji = Rikj + 3¢ 202 (K aKsjr + KsalKsjr — Kaighosmt — KsijKar) (B.2)

where }-z'j = 82'./43‘ - 8]./4,

The components of the Ricci tensor are

1.
R, = §(VJ/CZ]-¢ - Vik.), (B.3)
1 o1 €
S o I _ &
RZZ 4ICZ’L]ICZ 2QZZ 2Z,CZ7
1 | _ .
R:, = 1 K:Eij IC;J - inz - 2€2p(z7z) (.AZ.AZ — 3Q) ,

= 1 1
Rij = e 257 <l€l§j’sz‘k + ICE Kz — Kz K — 5K Kz — 2szij) +Rij — 8AA; .

As in the main text, V used in the above equations is the Van der Waerden-Bortolotti
covariant derivative [57, 58] defined in eq. (3.11).
The Ricci scalar is

R=TR+24Q — 164,41 — ¢~20(=7) (/czzcg — 3=, K+ 4925) . (B.4)
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