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0. Summary

We shall be concerned with the indicator p of an analytic functional 4 on a complex
manifold U:

plg) = Tim ~ log |u(e?)],
trte0
where @ is an arbitrary analytic function on U. More specifically, we shall consider the
smallest upper semicontinuous majorant p* of the restriction of p to a subspace F of the
analytic functions. An obvious problem is then to characterize the set of functions p* which
can occur as regularizations of indicators. In the case when U =~=C" and F is the space of all

linear functions on C*, this set can be described more easily as the set of functions

lim lim —}log lu(t0)| (0.1)

8-> t-—>+o0

of #n complex variables {€C" where u is an entire function of exponential type in €*. We
shall prove that a function in C* is of the form (0.1) for some entire function  of exponential
type if and only if it is plurisubharmonic and posiﬁively homogeneous of order one (Theorem
3.4). The proof is based on the characterization given by Fujita and Takeuchi of those
open subsets of complex projective n-space which are Stein manifolds.

Our objective in Sections 4 and 5 is to study the relation between properties of p” and
existence and uniqueness of F-supports of u, i.e. carriers of y which are convex with respect

to F in a certain sense and which are minimal with this property (see Section 1 for defini-

1 This work was supported by the Swedish Natural Science Research Council and Air Force
Office of Scientific Research grant AF-AFOSR~359-64.
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tions). An example is that under certain regularity conditions, p® is convex if and only if
1 has only one F-support.
Section 2 contains a result on plurisubharmonic functions in infinite-dimensional linear
spaces and approximation theorems for homogeneous plurisubharmonic functions in C".
The author’s original proof of Theorem 3.1 was somewhat less direct than the present
one (see the remark at the end of Section 3). It was suggested by Professor Lars Hormander
that a straightforward caleulation of the Levi form might be possible. I wish to thank

him also for other valuable suggestions and several discussions on the subject.

Notation. The complement of a set A with respect to some bigger set which is under-
stood from the context is denoted by (4. We write A\ B for 4 N ( B. The Cartesian product
of n copies of 4 is denoted by 4™

The interior of a set 4 in a topological space is denoted by 4°, its closure by 4, and its
boundary by 94. N, R, C stand for the set of non-negative integers, real numbers, and
complex numbers, respectively. The sets [— co, +oo[=RU{—oo} and [—oo, +oo]=
RU{—o0, +oo} shall be equipped with their natural topologies so that, for instance,
[ =0, + o] is compact. We use a bar to denote complex conjugation of complex numbers
and complex-valued functions. The differential operators 9/0z, and 0/0%, are defined for

functions of n complex variables by

2ol(E8), il )
0%, 2\om, oy)’ 0% 2\om,  ow)’
where z, =, +%,; %, ¥ER, k=1, ..., n. The space of complex-valued linear forms on C*
is denoted by £ or £(€") and the value of L €L at a point z€C" is written {(2) =<z, {). There
is sometimes no advantage in identifying £ with C" on other occasions, however, we shall

do so by means of the formula (z, {> =>12,{; The norm in C* (and in £ when we use coor-

dinates there) will always be Euclidean: |z| =(Z72Z,)'2.

1. Basic definitions

Let U be a complex analytic manifold. We shall denote by 4(U) the space of all ana-
Iytic functions in U equipped with the topology of uniform convergence on all compact
subsets of U. A continuous complex-valued linear form y on A(U) or, in other words, an
element of the dual space 4'(U), is called an analytic functional in U. If u€ A4'(U), the
continuity means that for some compact set K< U and some constant C we have

(@) <C sup || (1.1)
for all p € 4(U).
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It is convenient to have a name for sets which are limits of decreasing sequences of

compact sets for which (1.1) holds:

Definition 1.1. A carrier of an analytic functional u€ A'(U) is a compact subset K of U
such that for every meighborhood L of K there is a constant C such that |u(p)| <C sup;|@| for
all p € A(D).

In Martineau [8] the word carrier is used with a different meaning. However, Marti-
neau’s definition and Definition 1.1 coincide if U is a Stein manifold and K is holomorph
convex and this will usually be the case in what follows.

The main part of this paper is devoted to a study of carriers of an analytic functional
4 which are minimal with respect to inclusion in the family of all those carriers of y which

are convex in a certain sense. We proceed to define these convexity properties.

Definition 1.2. Let M be a subset of U. We define the supporting function H,, of M by

Hy(p)= sup Re ¢(z), @€ A).

{The supremum over the empty set is defined as — oo.)

With obvious conventions on infinite values, H,, is convex and positively homogeneous
in 4(U), that is

Hy(tp) = tHy(p), Hulp+y)<Hylp)+Huly), t>0,9p€AU).

If M is non-empty and relatively compact in U, H, is in addition real-valued and con-
tinuous. In the special case when U =C(", the restriction of H, to the linear functions
in ¢" is the usual supporting function of M and it is well-known that every convex and
positively homogeneous real-valued function in £ is such a restrietion. In general, however,
the restrictions of the supporting functions to a subspace F of A(U) form a proper subset

of the convex and positively homogeneous functions in F.

Definition 1.3. Let F be an arbitrary subset of A(U). We define the F-hull by M of a set
M<Uhby

hyM = {z€U; for all p€F, Re @(z) < Hy(p)}-
If haM =M we say that M is F-convex. The manifold U is called F-convex if hy K is compact

for every compact set K< U,

In other words,‘ ks M is the largest subset of U whose supporting function coincides in
F with that of M. If F< G= A(U) and M= N<U it is obvious that b M <h; N. We also
bhave hyhy M =h; M =hgh, M if F< G; in particular ;M is G-convex. Another property of
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the JF-hull is that (VM ,)< Nh,;M ;; this implies that the intersection of a family of F-con-
vex sets is F-convex.

If U=C" and F=L, the space of all linear functions on C*, A, M =h M is the closed
convex hull of M. More generally, if J is a finite-dimensional complex linear subspace of
A(U) we can choose & basis o, ..., a, in F, and then k, M is the inverse image under o=
(a5 --» %) Of the closed convex hull of «(M). Another important special case is when
F=A(U). Then the J-hull is the usual holomorph convex hull. In fact, if z is in the holo-
morph convex hull of M we have |g(z)| <supy|g| for all g€ A(U), in particular with
p=e¢’, *¥D <sup,e™¥ so that 2€h,p, M. On the other hand, if 2€h,,M and g€ 4(U),
[t] =1, we obtain Re fp(z) <sup,Re tp <sup,|p| and hence |¢(z)| <supy|p| which means
that z belongs to the holomorph convex hull of M. The same proof shows that the real
parts in Definitions 1.2 and 1.3 can be replaced by absolute values without affecting A; M
if F is a subalgebra of 4(U) and in addition either F is closed or M is relatively compact
in U.

Definition 1.4. A compact subset K of U is called an F-support of u€ A'(U) if K is an
F-convex carrier of u and K is minimal with respect to this property, that is, h;L> K for every
carrier L of p such that L K.

By the Zorn lemma, u has an JF-support if (and only if) y is carried by some F-convex
compact set. This is always the case on an F-convex manifold.

The supporting functions of the F-supports of a functional are closely connected with
the growth properties of a generalized Laplace transform g of u. This relation is the subject

of Section 5; we prefer, however, to define 2 now.

Definition 1.5. Let u€ A'(U). The (generalized) Laplace transform f of p is defined by
(@) =ple?), € A(U), and the indicator of u (or of g} s p(p) =limy 100 log |attp) |1, £>0.

If U=C", the restriction of & to L is the usual Laplace (or Fourier-Borel) transform
of 4 which is an entire function of exponential type in £. The name indicator or indicator
function is also usually reserved for the restriction of p to L.

Now suppose that K is a carrier of u. If L is a neighborhood of K there is a constant C
such that for all p € 4(T),

|altp)| = |u(e”)| <O sup exp Re tp,
hence if t >0,

1 1
7 log |a(tg) [ <7 log €+ Hy ().

Taking the ‘upper limit as t—> 4 oo, we get
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plp) <Hy(p).

Since L is an arbitrary neighborhood of K we finally obtain

p(p) < Hlg) (1.2)

for all g € A(U). In Section 5 we shall prove under certain assumptions on a linear subspace
F of A(U) that conversely u is carried by an F-convex compact set K if (1.2) holds for
allp€F.

2. Plurisubharmonic functions

Let Q be an open set in a linear topological space F over the complex field C. A function
F in Q with values in [ —oo, +oo[ is called plurisubharmonic (in symbols F € P(Q)) if ¥
is upper semicontinuous (i.e., {p € Q; F(p)<c} is open for every real ¢) and the function
t—>F(p +ty) is subharmonic for all ¢, 9 €F in the open subset of € where it is defined. This
means that F € P(Q) if and only if F is upper semicontinuous and

F((p)<}1fDF((p+tzp) dA(t) (2.1)

for all g, p €F such that ¢+ Dy<Q, where D={t€C; |t| <1} and dA is the Lebesgue mea-
sure in C.

In Section 5, F will always be a subspace of 4(U) with the topology induced by the
latter space (U is a complex analytic manifold). If u€ 4'(U), then g is analytic in 4(U)
(that is, g(p+tp)=p(e”*’) is analytic in t€C for all g, p€.4(U)) and also continuous;
therefore log || € P(A4(U)). From this basic example we can construct other plurisubhar-
monic functions by means of the following theorem which extends a result of Ducateau

[1, Proposition 11].

THEOREM 2.1. Let F be a complex linear topological space such that there exists a coun-
table base for the neighborhoods of the origin. Let Q be an open set in F and (F )., a family
of plurisubharmonic functions in Q indexed by a directed set I which is cofinal with a sequence
(¢n the applications I will be either the integers or the reals with their natural order). Suppose
that (F)),c; 7s bounded from above on every compact set in €. Then the upper regularization
F*of F =ELE ', is plurisubharmonic in Q. The analogous conclusion holds for the upper

regularization of G=sup,, F, without any restriction or structure on the index set.

Here the upper regularization F* is the smallest upper semi-continuous majorant of

F with values in [ — oo, +oo[, i.e., F¥(¢) =th‘,,_,¢F(1p).



6 C. 0. KISELMAN

Proof of Theorem 2.1. Let ¢ and y be fixed elements of F such that ¢+ Dy< Q. Take
any 4€JF so near the origin that ¢ +y+Dp<Q. Since (F,) is bounded from above on
the compact set ¢+ y+ Dy, Fatou’s lemma can be applied to the family of functions
t—>F, (p +x+ty) on D which gives

F(p+x)<lim ! F,(p+7+tp) dAlt)
D

eI T

<}J Flo+x+ty) dl(t)<%[f F*(p+ 1 +ty) dA3), 2.2)

where [, denotes the Lebesgue lower integral. In view of our assumption on F there is a
sequence (y,),eN tending to 0 such that lim, . F(p +7,) = F*¢). Also F* is bounded from
above on @+ Dy, hence on a neighborhood of this set so that the sequence of functions
D3i—F*(@+y,+ty) is bounded from above. Applying Fatou’s lemma to this sequence we
obtain from (2.2)

- — 1
F*(@)=lim F(p+2,) < lim ' j F¥ o+ x,+ty) dA) <= f F*( +ty) dA(t),
Jor 00 j>+e T JD TJp
i.e., we have proved that (2.1) holds for F*.
The proof for G* is similar except that the inequality corresponding to (2.2) is trivial:

1
Glp+n< %f G o + X +ty) dAE).
b
The theorem is proved.

Tf @ is plurisubharmonic in a linear space F satisfying the assumptions of Theorem 2.1

and if
Glp)<C+4q(p), ¢€F,

for some constant ¢ and some continuous seminorm ¢ in F we define
Flg)=Tlim G(g)/t.
t—+o00

The family of functions G(¢p)/t, t>1, is bounded from above by |C| +¢(g) so Theorem 2.1
shows that F*€D(J). In particular, if F is an arbitrary subspace of A4(U) where U is a
complex manifold which is countable at infinity, then the upper regularization of the
restriction to F of the indicator of an analytic functional u€ 4'(U) is plurisubbarmonie

and positively homogeneous of order one in F.
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We shall need the following result of Hardy and Rogosinski [3, Theorem 5] concerning

(pluri-)subharmonic functions in one variable which are positively homogeneous,

THEOREM 2.2. Let Q< C be a connected open set such that 0 ¢Q and 1 €Q if LEQ, t>0.
Suppose that F € P(Q) is positively homogeneous of order g, i.e.

F@l) =1F(Q), [€Q,t>0.

Then F is convex with respect to the functions in Q which are harmonic and positively homo-

geneous of order o in the sense that if b—a <g*=inf (2n, w|g| ™), the open set
{Ce; (8| =1, a<arg {<b, F({)<H(()} (2.3)

18 connected for every such harmonic function H defined in the sector a <arg {<b. If p=1,

F is convex in the usual sense in Q.

Proof. The harmonic functions which are positively homogeneous of order p=0 are

given locally by
H() = 4 Re ({/a)® = Ar® cos o(g —,),

where { =re”?, a =e'" and we have defined (¢ e.g. when  is not <0. If p=0, we have
H({)=Ap+B.

It is easy to see that there is exactly one such function which assumes given real values
at two given points ;, {, satisfying 0 <arg {, —arg {; <g*.

Now suppose that b —a <g* and that (2.3) is not connected for some harmonic function
H. This means that we can find points {;, {; such that a <arg {; <arg {;<b, F(Z,) <H(L,),
F(Ls) <H(L,) and the set

Ky=1{G |l =1, arg {; <arg { <arg §,, F(L)>H(L)}

is contained in Q and not empty. Let H, be the harmonic function which is positively
homogeneous of order ¢ and assumes the values H((;)+¢ at {;, j=1, 3. Choose £>0 so
that Ky is non-empty but F({)<H () for all { satisfying arg £, <arg { <arg ;. Let 7, be
the point in K, with least argument. Taking a small disk with center at {, we conclude

that F—H, is <0 in the whole disk, =0 at its center but <0 somewhere in the disk. Clearly -
this violates the mean value property (2.1). This proves the theorem. We have in particular
proved that F cannot assume the value —oco without being — co everywhere in Q. It is

also obvious that F is continuous.
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Remark. If p=1 and Q=C\{0} we can extend F to a function in P(C). For the con-
tinuity implies that | F|<C on the unit circle, hence |F(Z)| <C|¢|, {40, which proves
that F becomes continuous if we define F(0)=0. Moreover, if { +0 we obtain

0 =1lim 25 F(if) <lim (F(isC +) + F(is{ —0)) = F({) + F(-0),
50+ s>0+
which means that F is convex on every straight line through 0, hence everywhere.

We note also that the theorem gives a bound from below for the second differences of
the functions considered. If §>>0 is sufficiently small (how small depends only on g) we
obtain for all n €[ -4, 4]

A% = F(1+in) —2F(0) + F(1 —in) = — Oy sup (| F(1+3n)|, | F(L—in)]),

where the constant C depends on p and é but not on F or 7. To prove this estimate we let
H(re®)=Are cos p(¢ —@,) be a harmonic function homogeneous of order p==0. A calcula-

tion shows that when { =1+ iy =re”,

& H el —0)

a—nz— {rei®y= R H(re'),
where ¢; =@(1 —2/p). Hence
&H
sup|—— | <|o(1-)| sup |H|,
1, |0 I

where I,={1-+1iy; n€[~n,, 1o]} and I, is the arc J,={re”-2/0; re”€ I} which occupies
an angle |1 —2/o| times that of I, viewed from the origin. Now it is easy to see that when
arg (1+in,) and [1—2/p|arg (1+1in,) are smaller than e<g*/2, sup, |H| can be estimated
by the value of | H| at 1 +iz, and 1 —iz,:

sup [ H| < Co.c sup (H(L+ing), | (H(L—ing)]),

where the constant is independent of H and #,. Hence

2

Ao sup ((H(1+in,)|, |[H(Q—1ing)])

sup B}

[

if 0==0 and #, is small. If p=0 it is easy to prove this inequality directly. We therefore

have proved in particular that
H(L+ing) —2H(1) + H(L ~ing) > —Cn sup (|H(L+ing)|, | H(L—ing)])

and changing notation we obtain the desired estimate for A%. Now if ¥ is only subharmonic
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we choose H harmonic such that H(1 +4n) = P(144), H(1 —én) = F(1 —in). Then H(1) > F(1)
by the convexity so that

Ar> Ay > —On* sup (|H(L+in)], |[HA—in)|)= — Oy’ sup (F(L+in)|, |[F1—in)|),

which is the required conclusion.

CoROLLARY 2.3. Let F€P(F\{0}) be positively homogeneous of order 1 where F is an
arbitrary complex linear topological space and suppose that F is not identically — oo, Then F
is finite everywhere. Moreover F is bounded in a neighborhood of the origin if F can be extended
to a plurisubharmonic function in F. Conversely F admits such an extension if F is bounded

from above near 0 € F.

Proof. Suppose that F(y)=—co for some w€F\{0}. Since the restriction of F to
{ty; t€C, t==0} is convex, we must also have F(—y)= —occ. The open set Q={p€eF;
F(p)< —1} is therefore a neighborhood of {p, —w}. But if ¢, —@p€Q we obtain
F(p)= —co for otherwise 0<F(p)+F(—¢)< -2, a contradiction. Therefore F= —co in
the open set QN —Q which means that F = —oco everywhere contrary to our assumption.
We have proved that F assumes only real values.

Now if F can be extended to a function in PD(F) we must obviously have F(0)=0,
hence F <1 in a neighborhood o of the origin. When ¢ €w N —w we therefore obtain F(p)<1
and F(p)> —F(—¢)> —1, hence |F(g)| <1. Conversely, if F(¢)<C when ¢ is small we
get an upper semicontinuous function if we define F(0)=0 and the remark following the
proof of Theorem 2.2 shows that F becomes a subharmonic function on every complex

one-dimensional affine subspace.

CororLraRrY 2.4. Let FEP(F\{0}) be positively homogeneous of order 1 in a finite-
dimensional complex linear space F. Then I can be extended to @ plurisubharmonic function
m F.

Proof. By the preceding corollary it is sufficient to prove that F is bounded from
above near 0. But by definition F is bounded from above on 2K if K is a compact neigh-
borhood of 0€F; hence ¥ is bounded from above on {p; 0<i<1, p€0K}> K in view of
~ the homogeneity.

In Section 3 we will need an approximation theorem for functions which are either
positively homogeneous of order one or coinplex homogeneous of order zero. We prefer,

however, to prove the following result for arbitrary p.

THEOREM 2.5. Let Q be an open set in C* such that tL€Q if {€Q and t >0 and suppose
that F € D(Q) is positively homogeneous of order g, i.e.
1—-662903 Acta mathematica. 117. Tmprimé le 1 novembre 1966.
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and that F is not identically — oo tn any component of Q. Then there exists a sequence (F;) of

functions in C™\{O} with the following properties:

(i) F,€C™(C"\{0});
(ii) F; is positively homogeneous of order g in C"\{0};
(iii) F,€ P(Q,) where ; is an open subset of Q such that L €Q; if L€Q;, >0, and every
compact set K< Q) is contained in ; when j> iy for some index jg;
(iv) (F,) converges to F in the sense that for every compact set K contained in Q and every
continuous majorant g of F, sup (F;, g) tends to g and inf (F;, F) tends to F
uniformly on K, provided the ranges are given the natural uniform structure of

[—o0, +ool.

The corresponding conclusion holds if we replace everywhere “positively homogeneous” by
“complex homogeneous™, i.e. if we require instead that t{€Q and F(t{)=|t|® F(C) if (EQ,
t€C\{0}, and similarly for Q; and F,.

When F is complex homogeneous of order zero the theorem is most naturally regarded
as an approximation theorem for plurisubharmonic functions in open subsets of projective
(n —1)-space.

Note that when Q=C" or Q=0"\{0} the sets Q; are all equal to €, at least from some
index on. When g =1, of course, the cases Q=C" and Q=C"\ {0} are the same by Corol-
lary 2.4.

The function |{|¢ is plurisubharmonic if p>0 or n=1. Therefore the approximation
from below can be improved in these cases: by adding ¢,;|(|% to F,; we can arrange that

F (&)= F(L) when { belongs to a given compact set K in Q and F({)> —C, §2jg ¢.

Proof of Theorem 2.5. Let I' be the unitary group in C%, i.e. the group of all complex
linear maps of €* onto itself which preserve ||. Since y €T is analytic, the function y—1(Q) 3
¢—>F(y({)) is also plurisubharmonic. Let w, be the set of all points ¢, |{| =1, with distance
to {0¢Q; |8] =1} greater than §>0, and let Q;={l; >0, {E€w,} (if Q>€"\{0} we take
all Q; equal to Q). Obviously s and ) share the same homogeneity properties. Define
Fy(0)=F() when {€Q;, Fs(l)=0 otherwise. We shall define regularizations of # by

Gs(0) = fr Fsly(O)k(y)dy, (€C\{0},

where dy is the Haar measure on I', and % is infinitely differentiable on I' with k>0 and
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Jrk(y)dy =1. (G4(0) = F(0) if 0€Q.) Then it follows that G is C* on the unit sphere, hence
in C"\{0}. Also G, inherits the homogeneity of F. Note that Fy(y({))=F(y({)) if L€Q;s,4
y Esupp k, and the support of k is contained in

{yET; |ly —e|| <0’} (2.4)

where ¢€I" is the unit element of T, i.e., if k(y)=0 if |y({)—¢| >0’ for some ¢, || =1. If
{+DO€Q;, s we therefore obtain with the notation of (2.1)

fDGa<c+te>dz(t> - f k) fumy(o Lty (O > nGy(0)

since the order of integration can always be inverted when the integrand is semicontinuous.
This means that @; is plurisubharmonic in Q;_ 4 (in fact in Q, for some ¢<§+4').

Now for every {€Q;, s and every £>0 we have Fy(y(0)) < Fs({) e if 0 is near { and
the support of & lies near e. Choosing a sequence (k;) of functions on I' with supports shrink-
ing to {e} and a sequence (J;), J,\ 0, we obtain a sequence (F,) = (Gs,) such that for arbitrary
LeQ o

lim  sup F (0)<F(0).

j, m=>+o0 |0-2|<1/m

This proves that sup (F;, g) tends to g uniformly on every compact set which is contained
in Q if g is a continuous majorant of 7.

It remains only to study the approximation from below. For this purpose we suppose
in addition to the properties of % already mentioned that % is a function of the trace of
¥, k(y) =ko(tr y), where k,€CF (C) and k() =k,(?). Since the sets {y €T; |n—tr y| <e} form
a fundamental system of neighborhoods of ¢€T it is still possible to find functions of this
kind with supports arbitrarily close to e. We then have %(a8) =k(fa) and k(&) = k(o) = k()
for all «, B€I" if & denotes the element of I' obtained by taking the complex conjugates of
the entries of the matrix determined by « in any given coordinate system. Choose coordi-
nates in such a way that {=(0, ..., 0,1), let H be the real hyperplane {#€C"; Re 0,0}
and denote by do the Lebesgue measure in H. Then if the support of % is sufficiently small
(e.g. if k(y)=0 when |p(8)—0| > |0] for some 6) there is one and only one function kb in H
such that

| f Fr(E) k) dy =f HE+O)h(O)do(0) @5)
T H

for all continuous f which are homogeneous of order zero; in particular [ h(6)do(f)=1.
We denote the coordinates in C* by 6 =(6’, 6,) where 6’ €€, §,€C and in H by 6= (0, in),
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n€R. We claim that h(x(0))=h(0), 6€H, for every «€I" of the form «(f)=(a'(8), £0,),
H€C", where « is a unitary map in €"-1; in other words, A(6’, t7) depends only on |6’| and
|7]. In fact, do is invariant under such maps « and if we assume in addition that «(l)=C

we obtain

[ 1 oraonaoo = [ saryemtay - | frenenay
by the left invariance of dy, and then from k(xy)=k(ya) by the right invariance of dy,

frf(y(é))k(ay)dy - f SNk = Lf(cw)h(o)da(e),

where the last equality follows from the fact that () =C. To prove the assertion for arbi-
trary « of the indicated form it is now sufficient to consider only the map defined by
a(@)=(0", —0,). Then h(x(0))=h(), 6€EH, by what we have just proved, and we obtain

since ¢ is real in the coordinate system and k(y) =k(9),
[ sc+omonds) - [ scromose - | oo
- [ irenrniay = | e+omordod),

This proves that h(8) =hy(|0'|, |7]).
We now apply (2.5) to the function (&) = | &| "°F(&) and get if £ €Q;, 5 and the support

of % is contained in (2.4)
60~ [ FCr0a+10Py e hodo0) = [ an [ 16 0+ 10 00,

where dA(f') is the Lebesgue measure in C"-1. Now we can use the plurisubharmonicity of

F and the fact that #(0) depends only on |6’| for fixed # to conclude that

6= [ B +in) il
where hy(n) = fc”—l R(0) 1 +|0]>)22dA6")

and | himan= [ w6y +1opyerasto. (2.6)

We shall prove that for given 8, £>0, Gy({) > F({) —& when the support of k and thus of &
is small. Moreover, we want this to hold uniformly when | F({)| <C and { €ws., 4 for given
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C, §>0. If we take C so large that F<C in w; 4 this will imply that sup (—C, G5) >
sup (—C, P)—¢ in wy, s which is equivalent to the formulation given in (iv). Suppose,
therefore, that | F({)| <C and that {€w,, ;. Writing f(7) = F({(1+ %)) we obtain

Gs(8)> j_ () by () dn = fo (Hm) + H(—m) hy()
10 mndn+ [ e =210+ 1= ) i) .

The observation following the proof of Theorem 2.2 shows that when the support of k lies
in the set (2.4) and # is in the support of &,, the second difference occurring in this formula
can be estimated by f(n) —2f(0)+f(—n)> — Cn? where C, is a constant which depends
on C, o and ¢’ but not on { or ¥. Hence

+ 00

@210 +10) ([ meman=1)- o[ rthman

=F()—-C

+o0 + o0
f_ hy(n)dn—1 ‘ - leo n*hy(n) dy,
which proves the assertion since §*%k,(n)dn tends to 1 when the support of A, shrinks to
{0} in view of (2.6). The proof is complete.

If =1 it is clear that the second difference is non-negative so the proof can be some-

what shortened in this case.

3. An existence theorem for entire functions of exponential type

We have seen that the upper regularization of the function

i Llog |(e*)| (3.1)
s—>+o0 8

defined for all linear forms { on C" is plurisubharmonic if 4 € 4'(C") (Theorem 2.1). Through-
out this section we identify the space of linear functions on €" with C* itself by the formula
L(2) =<z, & =21%;{;. We shall now prove that, conversely, given a positively homogeneous
function F € P(C"), there exists an analytic functional g in €* such that the upper regulari-
zation of the function (3.1) is F. This will generalize a result of Lelong [7] who has proved
Theorem 3.4 under the extra assumption that ¥ is complex homogeneous, i.e., F(t£) = [¢| F({)

for all Z€C, tE€C.
A crucial step in the proof is Theorem 3.3 which is a consequence of the following result.
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TarEorEM 3.1. Let F be a positively homogeneous and plurisubharmonic function in
C*. Then the open set
Qp = {C€C™; for some t€C, F(tl)<Ret} 8.2)

1s connected and pseudo-convex.

Note that it is trivial that Q is pseudo-convex if F is complex homogeneous for then

Q= {CECh F(2)<1}.

Proof of Theorem 3.1. We first prove that Q is connected by joining an arbitrary point
in £ to the origin by means of a curve in Q. Let {€£); and take a non-real ¢ such that
F(tf)<Ret. This is possible because the set {t€C; F(¢) <Ret} is open and not void. If
5§20 we then have F(t2) <Re #(1 +sf) which means that /(1 +sf) €2;. The continuous curve
{C/(1 +si); SE[0, + oo]} fulfills our requirements.

Next we shall prove that Qg is pseudo-convex if F is sufficiently regular. Later the
extra hypothesis will be removed.

Thus suppose that F is three times continuously differentiable outside the origin and
that F({)—e|l| is plurisubharmonic for some £>0. Define G(r,{)=F(z{) —Re 7, 7€C
LeC" and ¢(8)=infjy-1 G(z,{). Then GEC*{(r,)EC*"; 7{=0}) is plurisubharmonic in
C*+" and, by Theorem 2.2 and the remark following its proof, convex in 7 for fixed {. More-
over, g is obviously continuous in C* and Qp={Z €L g({) <0}. We claim that g is also twice
continuously differentiable in the set w,={{€C" {30 and g(C)<a|C |} where £>0 is so
small that F({)—¢|{| is plurisubharmonic. It is clear that w, is a neighborhood of 6Qr
for 0€Q);.

Let ¢ €w,. This means that —>G(z, {) —¢|t{| which is a convex and positively homo-
geneous function has a negative minimum on the unit circle. But such a function can attain
its minimum on the unit circle more than once only if it is >0. Thus there is a unique point
7 such that |7| =1 and G(7, {) =¢((); we define a continuous function « in w, by means of
the equation a(f)=7.

Since @ is positively homogeneous in 7 for fixed { we have the Euler identity

oG _oG
I e AP 3
T +7 77 (3.3)
and, taking /07 of this equation,
*a  _°aG

o327 =0. 3.4
ok Torer 0 (3.4)

We also note that 92G/070% >¢|(|82| 7| /0107 =¢|C|/4 when |7|=1, for G(r,{)—¢|t]| is

plurisubharmonic in 7 by assumption.
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When 7— @7, {) attains its minimum on the unit circle, that is, when 7 =u({), we get

oG _oG
A 35
Tor oz O (3.9)
Define H(t, {)=Im (10G(z, {)/ét). To prove that « is smooth we shall apply the implicit
function theorem to the C? function h(s, {) =H(e¥, £), s€R. Obviously one of the solutions
s of h(s, £)=0 satisfies «({) =e*. From (3.3) and (3.4) we get
oh ( 1500 62G) 1 PG 1

7o - Im et o= 2i o) =5 G20 2 <g e|l]-2¢]L]/4=0

when { €w,. This proves that each solution s of A(s, {) =0 is locally a C? function of {, hence
that «€C%w,). As a consequence, g()=G(«x(l), ) is twice continuously differentiable
in w,.

Furthermore, the gradient of g never vanishes when g=0. For we have in view of
(3.3) and (3.5)

G F
Qg=a_qgoi+808m+%=3_=“3_ (3.6)

ot; ov a¢; ot °¢; oL, oty ey
Also 0=—=3>0->—4 (3.7)

when 7=a({) which proves that >¢,09/00;=1«((), in particular the gradient is non-zero.

Now an open set Q={{€C"; g({) <0} where g is twice continuously differentiable and

has a non-vanishing gradient whenever g=0 is pseudo-convex if and only if the Levi form
L{g) of g satisfies

8;5,20 3.8

gl 3C 85 " 38)

for all points on the boundary of Q (which is {; g(¢) =0}) and for all s €C" such that
3.9
g ’ ac, 3.9)

(See Theorem 2.6.12 in Hoérmander [5].)
We shall express the Levi form of ¢ in terms of that of F. First note that the homo-
geneity of F gives

__oF oF |
F—E@Cﬁrza—ack.
Hence O—ZGCﬁCk Lot Y —— 3Cj3§k

which can be written
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H(F; 5,0+ L(F; 8,£) =0 (3.10)
where H and L are, respectively, bilinear and sesquilinear forms:

H(F;s,t)=2 % site,  L(F;s,8)=2,

and the argument for the derivatives is {. Taking /0, of 69(0)/0;= @ F(al}[00; we get

with this notation

32
—— &1, .
at;a8, "

oF Jo & Do
L(g; s)= T 5§, —a A+ L(F; 8) + P L(F; s, 08) > &, — + H(F; 8, 2l) 2,8 —=»
(95 9) Esfagjz Ica;k ( ) ( 02 kaék ( 02 kaé.k
where the argument for the derivatives of F is «f. (L{F; sy=L(F; s, s) and analogously for
H(F; 5).) In view of (3.6) and (3.9), the first term on the right-hand side is zero. Also ag@ =1

implies

o Ou
w0k (
so that we obtain Lg; 8) =L{F; 8) + 23,02 L F; s, &{) (3.12)

if s,=37s,0a/0(, It remains to express s, in terms of F only. If we operate with 8/8f; on
(3.7) we get using (3.11)

=3 H(F; al) + 8o L(F; of) + &L(F; of, 8) =0,
the argument for the derivatives being «{. Hence by (3.10)
28, L(F; al) + &2L(F; «f, s) = 0.

This gives an expression for s, which inserted into (3.12) yields

L(F; s) L(F; al) — L(F; s, af) L(F; al, 9)
L(F; o)

L{g; 8)= .
(Note that L(F; «f) >1e|Z| >0.) Thus the Cauchy-Schwarz inequality shows that L{g; s) =0
when (3.9) is fulfilled; we have proved that Qj is pseudo-convex in the special case we
have treated so far.

Now suppose that F satisfies the assumptions in the theorem and let (F;) be a sequence
of smooth positively homogeneous and plurisubharmonic functions converging to F in the
sense of Theorem 2.5. (If = — oo there is nothing to prove.) It is of course no restriction
to assume that F;> F and that F;({) —¢;|(| is plurisubharmonic for some £,>0 so by what

we have just proved it follows that
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ij = {C€0"; for some tEC, F(#)<Ret}

is pseudo-convex for every j. Now a pseudo-convex set {2 is characterized by the fact that
—log d(Z, Q) is plurisubharmonic where it is < 4 oco. (We use the notation d(, [Q)=

infoeq|0—C]|.) If therefore Q; are pseudo-convex open sets the function

&)= —jﬁglog i, 6Q))
is plurisubharmonic wherever it is <+ oo and continuous in C” if its range is given the
usual topology of [ —oo, ++c0]. Hence the set where ()< + oo is pseudo-convex (see e.g.
Hormander {5, Theorem 2.6.7]).

To prove that Qp is pseudo-convex it is thus sufficient to prove that lim, , ., . d({ ,GQFi) >0
if and only if £ €Q;. Suppose {€Q,. Then F(i) <Re ¢ for some ¢ €C, hence, keeping ¢ fixed,
we find £>0 such that F(#0) <Re ¢—¢ for all § in a bounded neighborhood w of {. By the
properties of the sequence (F,) there is an index j, such that F,(t0)<Re for all j>j, and
all 0€w. This proves that wCQFi when j>4,, hence gnj_,ﬂod({ ,0 QF],) >0. On the other
hand, F<F, for all § so that Q> ij, therefore { ¢ implies lim,,., .. d(C, [}pr) =0. We
have proved that Qj is pseudo-convex.

We shall now consider open subsets of the complex projective n-space P,(C). We
denote by 7 the canonical projection C*+1\{0}—>P,(C) and define a hyperplane H, = {{ €C"t1;
2a;6;=1} for every a €C"+, |a| =1.If F' is a function in w’ < P,(C), F({) ==*F'({) = F'(7(())
defines a function F=x*F" in 7' (w"). Conversely, if F is given in n~1(w’) and is complex

homogeneous of order zero, F'(n({)) = F({) defines a function F’ in w'.

THEOREM 3.2. Let w' be an open set in P (C), o ==P,(C), and define v =n"1(w')<
C\{0}. Then ' ts a Stein manifold if and only if H, N w is a pseudo-convex open subset of
H, for every a€C™1, |a| =1.

Proof. If ' is a Stein manifold there exists a continuous plurisubharmonie function
@’ in o’ such that {{€w’; G'({)<c} is relatively compact in w’ for every real ¢ (see e.g.
Theorem 5.1.6 in Hérmander [5]). Then G =a*@ is plurisubharmonic in » and {{€H, N w;
G(0) +|¢]P<c} is relatively compact in H, N for every c. Hence H, N w is pseudo-convex
in any of the senses of this word, see Theorem 2.6.7 in Hérmander [5].

To prove the converse we shall use the solution of the Levi problem given by Grauert,
see Theorem 5.2.10 in. Hormander [5]. We shall thus construct a function G' € C*°(w’) which
is strictly plurisubharmonic and tends to infinity at the boundary of o', i.e. {{ €w’; /() <c}
is relatively compact in o’ for every real c.

2 — 662903 Acta mathematica. 117. Imprimé le 1 novembre 1966.
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By our assumption on H, N, the function —log d, is plurisubbarmonic in H, N e if

d, denotes the distance to the boundary of w in H,:
@,(0) =inf (| ~0]; 6€H,\w), (€H,No,
(it may happen that d, = + o). Let
D) =1+ 2[5, (€H,Nw,
and extend d, and D, to points in w, ={( €w; >d,{,+0} by

da(C) = da(C/Zde}): Da(C) = Da(C/EdJCf)’ Cewa'

Then —logd, and —log D, are plurisubharmonic and complex homogeneous of order zero

in w,. Define D and d in w as the infimum of D, and d,, respectively:
D) =inf (D,(0); |a| =1, w,30),  d({) =inf (d,(0): lal =1, w,30).

We claim that —log D is continuous and plurisubharmonic in .

First of all, let us note that -D({) is never -co. For if £ €w we take a § ¢ U {0} which
exists by assumption and choose @ so that |a| =1, £d,(;4=0, 2d,0,50. Then /Za,{,€ H, N w,
6/Za;6,€H,\w and .

0
D)< D(E)<d(0) < | == ~
O<DO<ALO< 557" 5q7

< + oo,

It is also easy to see that D({) is always >0. Let 4, 0<A <x/2, be the angular distance
between a point {€w and (w. Using the notation x=|{/Zd,{;| =1 we obtain d,({) >z sin A
if £ €w, and hence

D) =d () (1 +22) Y¢=2(1 +22) Yisin 4 >2 Vsin 4,

which proves the assertion.
We shall now describe D({) locally as an infimum of D,({) where a varies over a set

independent of {. To this end we shall first prove that

214
2

d,(8) = when (€ H, N w.

If d,(l) = + oo there is nothing to prove so we suppose that d,({) = | —0| for some 0 € H,\w.
Let B be the angle between the rays determined by £ and 6, 0 < B <. Obviously d,({)=
|&—6] =] sin B. Now define b=(;+6)/|C+0] if 0<B<zm/2 and b=({—-0)/|{—0] if
72/2 < B <. Then in view of the fact that 6 and —6 both belong to {w
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d() < dy(C) <2 inf (tan zg , cot g) .

du(0) |£] sin B B . .B\_|{
Hence T2 =[¢| sup (cos —, sin —) =
@ 2inf (ban §, cot E) 2 2 2
2 2
We therefore obtain if EH, Nw
Da(8) |C|D ©_ i
D(C) (C) d.(0)  2(L+]|CPHY

Since the right hand side is >&>1 when |{| >5 and since D({)>0 we find that

D, (&) _
* D)

D) =int (D,0) lal =1, T2 <e) —inf (0,0 lal -1, 1< IS a2 ceo,

for any constant C >5. Hence

D() = inf (Do(0); la| =1, |¢] <6]|Za,,|)

for points 0 near {. This proves that —log D is continuous and plurisubharmonic since it

is locally a supremum of plurisubharmonic functions

1 log (1+]4/2 4,55 —log . (0).

It is also obvious that —log D tends to -+ oo at the boundary of w except at 0.

Let us also note that the function —log D’ which is induced by —log D is strictly
plurisubharmonic in o’. For f()=%log (1 + |{/Zd,C;[?) is strictly plurisubharmonic in
HyNw, since it is the composition of the strictly plurisubharmonic function C**136 —
1 log (1+]6|?) and the regular analytic map H, N 0,3 L/ Za,l,€C 1. We can even choose a.
strictly plurisubharmonic function g in a nelghborhood U,=H, of b such that fa —g is
plurisubharmonic in U, for all a satisfying |X@;b,;| >1/6. This implies that for (€H, N

near b,
—log D({) —g(¢) =sup (—log do() +10)—9(0); |a] =1<6|Zab,|),

where the right hand side is a supremum of plurisubharmonic functions, hence —log D
is strictly plurisubharmonic in H, near b which means that —log D’ is strictly plurisub-
harmonic in w'.

We have thus seen that —log D’ has all the properties we require except that we only

know that it is continuous. We shall now regularize it by means of a construction which
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is patterned after the proof of Theorem 2.6.11 in Hormander [5]. Let F= —log D in w
and choose a sequence (F,) of C* functions in €™\ {0} with the properties mentioned in
Theorem 2.5. Define w,={{ €w; F({) <j}. By relabeling the functions F; and adding a small
constant we may suppose that F,;€ D(w;) and that

Fy()= LFW(C)) By (£)dE +¢,

when { €w;. Here ¢; may be chosen so that F <F,<F+1 in w; which is possible by the re-
mark preceding the proof of Theorem 2.5 since F is continuous. This shows that F; (which
is defined by Fj(n(l))=F,(¢)) is strictly plurisubharmonic in w;=n(w,;). If therefore
y€EC™(R) satisfies y(#)=0 when #<0 and y'(f), ¥ (t)>0 when ¢>0, the function
E—rap(FHE)—j+2), a,>0, is plurisubharmonic in w;, strictly plurisubharmonic inw;\@;_2
which is an open neighborhood of w;\w;_1; it is zero when F;(()<j—2 in particular
when {€w; 3. Hence .
G (8)=Fo(0) +Zla;-x(1”§(5)—7'+2)

defines an infinitely differentiable function in €"+\{0} and G;=G,, in w; if k,m>j+1.
Moreover, the constants a; can be recursively determined to make G strictly plurisubhar-
monic and = F’ in wy. The limit G’ =lim,_, , . G, is defined in w’ and has all desired prope-

ties so the proof is finished.

TuHROREM 3.3. If FE€P(C") is positively homogeneous of order 1, the open set wy =n(wy)

in projective n-space defined by
wp = {L €EC™Y; for some t€C, F(Ly, ..., 1,) <Re tl,,;}

is a connected Stein manifold if (and only if) F is not identically — co. Moreover wy determines
F uniquely: if F, GEP(C") are positively homogeneous of order 1 we have F <@ if and only

Proof. Let H, be as defined before Theorem 3.2, We shall prove that I, N wy is pseudo-
convex in H,. First suppose that a,,,30. Then

n+1

H,Nwp={C€C""; > a,{;=1 and for some {€C,
1
F(@pi1tly, .oy @nyitl,) +Re ; a,tf; < Ret}

is isomorphic to Qg where we have defined G({)= F(d,.,{)+Re Z7d,{;, €C", and Qg is
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given by (3.2) with F replaced by G. Since Q, is pseudo-convex by Theorem 3.1 the same is
true of H, N wp. Also, since Qg is connected, H, N w; and w} are connected. We shall now
consider a €C**1, a,,, =0. If H,Nw;=H, there is nothing more to prove. If, on the other
band, H,\wz=+=0 the distance function d,({) defined in the proof of Theorem 3.2 is ob-
viously a uniform limit of distance funections d,({), b,,,=F0, hence —log d, is plurisubhar-
monic which ig equivalent to pseudo-convexity. The first part of the theorem now follows
from Theorem 3.2.

If F <@ it is obvious that wy> w;. Conversely, suppose that F, G € P(C") are positively
homogeneous of order one and that F({)>@G({) for some {€C". Choose a complex number
{niq such that for all €€

Re Lyt <F(), Rel,,y =F()>G().

This means that (y, ..., {ns Cnyy) €06 \wy. Hence the inclusion w ;< is impossible unless

F <. The proof is complete.

TurorEM 3.4. Suppose F € P(C") is positively homogeneous of order one. Then there is

an entire function u of exponential type such that for all €C"

— =1

lim lim —log |u(sB)|=F(L); (3.13)
8¢ s—>4oa0 8

equivalently, there exists an analytic funciional p€ A4 (C") such that the upper regularization

of the restriction to L of its indicator is F.

Proof. If F = — oo we take u =0, y =0. Otherwise wy, defined in Theorem 3.3, is a proper
subset of P,(C), hence a Stein manifold. Therefore there is a function f; € 4(wy) which cannot
be continued across the boundary of wy, more precisely, we shall require that for every
connected open neighborhood V of an arbitrary point on the boundary of &, each component
of VNwyp contains zeros of f; of arbitrarily high order (the construction is given e.g. in
Hérmander [5, Theorem 2.5.5] for sets in C* but can obviously be extended to Stein mani-
folds in P,(C)). The set M =n{{ Ewy; £,y =0} is a closed submanifold of wj, thus there is a
function f; € 4(wyr) which is zero on this set without being zero identically in w3 (a conse-
quence of Cartan’s Theorem A, see [5, Theorem 7.2.11]). It follows that f’ =fif; is zero on
the submanifold M and cannot be continued beyond wy. Let f=n*f'. Since 0 €Qy, the func-

tion ¢{ly, ..., £,) =f({y, ..., Cy 1) which is analytic in Q; has a power series expansion

g(0) =2 @ "

which converges near the origin (k=(k;, ..., k,), ¥={5", ..., Z&»). Tt is then easy to see that
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K

5)—Zak|k|,

is entire and of ‘exponential type (|k| =k, +... +k,). (The relation between g and u has been
studied before by Paris [9].) Define u€4'(C") by u(e* ) =u(l), that is, u(p) =Zab,/| k]!
if g(z)=2Xb"/k! where k!=Fk,! ... k,!. Let p be the indicator of y restricted to the linear
functions, i.e. p(C) =lim,., , ., log [u(sZ) |22

We recall that the Borel transform of an entire function U of exponentlal type in one

complex variable is glven for large |¢| by

~
-~

A,

J

o) = ; A, i U=

M3

The corresponding integral representation is
+o0
H(ty= f U(st)e ** 1ds,
0

where 7€C has to be chosen suitably for every ¢. It follows from this formula that H can

be analytically continued into the complement of the convex compact set

K={te(; for all 7€C, lim ~10g |U (s7)| = Re t}.

§—>+ 00

Conversely we have
- _1__ {13
Ule)=5 fFH(t) et dt,

where I' is some large circle. This integral representation of U shows immediately that for

all e>0 we have
|U(z)] <C. exp (sup Re tv+¢|7])
telL

if H is analytic outside a compact convex set L= Cle™ > =0).
Now let k() =g(L/t)/t =t"f(Cy, ..r Cnp ) for some fixed {€C". Then h; is the Borel

transform of T—u(7{) so that

u(el) = f he(6) o dt.

In view of our choice of f, h; can be analytically continued to every point ¢ such that
{, 1) €wp; in particular there is no singularity at the origin if (£, 0) Ew;. We can therefore
choose I' in any neighborhood of the convex set {{ €C; for all T€C, F(v{)>Ret7} and esti-
mate » by

|u(xt)| <C, exp (P(xt) +¢]7])

for every ¢>0 (£ is fixed). Hence p(¢) < F({) and, since { is arbitrary, p*<F.
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On the other hand, the integral

he(t) = J”m u(szl) e 7ds

converges absolutely and uniformly for all (, #) satisfying p(z{) <Re it —e. It follows that
he($ ) 1s an analytic function of (£, {,.1) in @y, in particular £, 18, q) =/(C1s o Cns Casa)
can be analytically continued to a function in 4(w,+). But since c,« is connected by Theorem
3.3 this is possible only if w,+< w5, therefore, by the last part of the same theorem, p*> F.

The proof is complete.

Remark. When F is sufficiently regular, Theorem 3.4 can be proved more directly.
For example, if F is Lipschitz continuous we can use Theorem 4.4.3 in Hérmander [5] to
find an entire function of exponential type such that the left hand side p*({) of (3.13) is
< F(¢) for all £ €C™ with equality at any given point. A category argument then shows that
. there exist functions # € 4(C") of exponential type such that p* < F and equality holds in a
dense set in C”, hence everywhere since F is continuous and p* is semicontinuous.
This can be used to give an alternative proof of Theorems 3.3 and 3.4 even for general F.
For by tracing the argument in the proof of Theorem 3.4 backwards we can establish that
w}j is a Stein manifold if F; is a regularization of F' found by means of Theorem 2.5. Then,
using Theorem 3.2 together with the discussion in the two last paragraphs of the proof of
Theorem 3.1, we conclude that w itself is a Stein manifold, that is, we have obtained
Theorem 3.3. We therefore have to employ the Borel transformation a second time in order

to arrive at the conclusion of Theorem 3.4.

4. Properties of supports of analytic functionals

In the first part of this section we shall study how the supports of an analytic functional
behave under analytic mappings. Later on this will be used to prove various properties of
the family of all F-supports of a functional and then, in Section 5, to relate the F-supports
to the indicator. (For definitions of these notions we refer to Section 1.)

Let U and V be complex analytic manifolds and o an analytic map of U into V. We
call & regular if its rank is everywhere equal to the dimension of U, that is, if for all choices
of local coordinates 2y, ..., 2, in U and w, ..., w, in V the matrix (8o;/0z,) has rank n where
it is defined. The map « is called proper if «~1(K) is compact in U for every compact subset
K of V. Finally, a proper, one-to-one and regular map is called an embedding of U into V.

Throughout the rest of the paper we shall use the notation o* for the map A(V)€Eyp—>
ypoa€ A(U). It is also convenient to denote its adjoint by « again, thus ou(y) =u(c*y) =
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ulypoa) if w€,4'(U). In particular this notation will be employed when U is an open subset
of V and ¢:U—V is the canonical injection.

For the purposes of this section and the next a Stein manifold may be defined as a
complex manifold which can be embedded into €™ for some m.

We will need the following result which is a consequence of Cartan’s theorems A and B.

THEOREM 4.1. Let o be an embedding of a complex manifold U into a Stein manifold
V (U is of course Stein, too). Then o*: A(V)—A(U) is onto, i.e. every ¢ € A(U) s of the form
o for some € A(V). Moreover, the value of v at a point z¢«(U) can be arbitrarily prescribed.
1t follows also that o: A'(U)—>A'(V) is an injection.

It was shown in Section 1 that F-convexity has a simple geometric meaning if F is a
finite-dimensional subspace of the analytic functions. The following approximation theorem

will therefore be useful.

Lemma 4.2. Let U be a complex manifold and F a complex: linear subspace of A(U)
such that F™ contains o proper map (o, ..., o) of U into C™ for some m. Then every F-convex
compact set K< U has a fundamental system of neighborhoods, each of which is compact and

convex with respect to a finite-dimensional subspace of F.

Proof. Let L be an arbitrary compact neighborhood of K and let G be the subspace of
F spanned by «;, ..., a,,. Then hgL is compact for it is the inverse image of the compact set
k(L) in €. Now for any 2€h;L\L" there is by assumption an element ¢,€F such that
Re ¢,(z) >supgRe ¢,. Let a, be real numbers satisfying Re ¢,(2) >a,>supxRe ¢, and denote
by w, the neighborhood of z where Re ¢,>a,. Finitely many of the w, cover h,L\L°. We
denote the corresponding functions ¢, and numbers a, by ¢, and a,, j=1, ..., k, respectively.

Then we have
KcA<L® U ChyL,

where A ={2€U; Re ¢,(z)<a;,j=1, ..., k}. If } is the space spanned by o, ..., &p, Pgs +os Pi
we have proved that A N AhyL< AN h;L< L° and hence hy(A N L)< hyA N hyL=A N b, L<L°
so that hy(4 N L) is a neighborhood of K contained in L°. This proves the theorem.

For later reference we list also the following result where both hypothesis and con-
clusion are weaker than in Lemma 4.2. Recall that we have called U F-convex if the F-hull
of any compact set is compact. Obviously U is F-convex if F™ contains a proper map of

U into €™ for some m.

LeEMMA 4.2°. Let U be an F-convex complex manifold where F is an arbitrary subset of
A(U). Then every F-convex compact set K in U has a fundamental system of F-convex neigh-
borhoods.
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Proof. Let L be an arbitrary compact neighborhood of K. Then k,L is compact by as-
sumption. We can therefore proceed as in the last proof, replacing both G and ¥ by F.

The next two lemmas describe the behavior of F-convexity under analytic mappings.

Lemma 4.3. Let U, V be complex manifolds and G a subset of A(V), « an analytic map
of Uinto V. Define F=o*@. Then

o Hhgo(M)) = by M 4.1)
for every subset M of U and
o Y hgN)> hyo Y (N) 4.2)

for every set N< V. In particular, o='(N) is F-convezx if N is G-convex. Furthermore, M is

F-convex if (M) is G-convex and o is one-fo-one.

Proof. If a ¢k, M there is a function ¢ € F such that Re ¢(a) >sup,, Re ¢. By assumption
@ =you for some y € § so that Re y(x(a)) > sup, Re po o =sup,y,, Re p. Hence a(a) ¢hgo(M),
ie. adoa(ho(M)). '

Suppose now, on the other hand, that «(a)¢hza(M). Then for some p €, Re p(a(a)) >
SUDgqr, BRe p=sup, Reyoa. Since poa€F this proves that a¢h,M. This completes the
proof of (4.1).

To prove (4.2), finally, it is sufficient to apply (4.1) to M =«~1(N) and use the obvious
inclusion a(a~YN))< N.

Lemma 4.3 shows in particular that if ¢ is a one-to-one map of U into V, a set M < U
is holomorph convex if there exists a holomorph convex set N< ¥ such that M =« (N),
ie., o(U)yN N=o{M). We shall now study the converse of this statement.

LreMMa 4.4. Let o be an embedding of a Stein manifold U into another V. Then
alban M) = h vy M) (4.3)
for all subsets M of U; in particular M is A(U)-convex if and only if o(M) is A(V)-convex.
Proof. By Theorem 4.1, A(U)=o*A4(V) so that Lemma 4.3 gives
o Hharo M) = by M.
Hence by M) = ola (b a0l M))) = ko M) 0 (V)

so that it suffices to prove that o M)<= a(U). But by Theorem 4.1 again, we can to each
b¢x(U) find p€ 4(V) such that (b)>0, p=0 on «(U), hence b&h v o(HM).
Next we study how a mapping affects a carrier of an analytic functional.
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LeMMA 4.5. Let U, V be complex manifolds and «: U=V an analytic map. If u€4(U)
1s carried by a compact set K< U, oy is carried by a(K).

Proof. Suppose that o is a neighborhood of «(K). Then o~(w) is a neighborhood of K
so that for some constant C we have |u(g)| <C sup,_,, |¢|. Hence [oau(y)| <O sup_1, |po o
<O sup,|y|. This proves that «(K) carrics au.

It is not equally trivial to treat the inverse image of a carrier. We first need an auxiliary

result.

LEMMA 4.6. Let V be a Stein manifold and « an embedding of a complex manifold U
into V. Then for any analytic functional ¥€ A'(V) such that v(y) =0 if =0 on a{U) there is
a unique analytic functional u€ A'(U) such that v =ou.

Proof. We can define u by u(p)=v(y) if p =yoa. Indeed, every ¢ is of the form poux
by Theorem 4.1, and if y,0x =y,00 we have p, —,=0 on «(U) so that »(yp,) =v(y,). This
defines u as a linear form on 4(U). To prove the continuity of u we note that A4(U) and
A(V) are Fréchet spaces, hence o*: A4(V)—>A4(U) is an open map since it is onto by Theo-
rem 4.1. For any compact set LS ¥ we can therefore find a compact set K< U and a con-
stant B such that for every @€ 4(U) there is a y€ A(V) with g=a*y and sup,|y|<B
supg|@|. Hence if |»(y)| <Csup;|y| we get |u(p)| <BC supg|e| so that u is continuous.

We can now prove that the inverse image of a holomorph convex carrier of oy is a
carrier of y. This is a theorem of Martineau [8, Ch. I, Théoréme 2.6] but we prefer to for-

mulate a complete proof here.

LevMA 4.7. Let o be an embedding of a complex manifold U into a Stein manifold V,
let L€ A'(U) and suppose that au is carried by an A(V)-convex compact set L= V. Then u
is carried by the A(U)-convex set a (L) =o~1(L N o(T)).

Proof. Put K=o« Y(L) so that «(K)=LN «(U) and let w be an arbitrary open neigh-
borhood of K. Now take by Lemma 4.2’ an 4(V)-convex compact neighborhood L, of L
such that «1(L,)Sw. By assumption there is a constant C such that |eu(yp)| <C supy, |yp|
for all y€ A4(V). Let V, <V be a Stein manifold containing L; but so small that U; =a=X(V,)
< (Lemma 4.2') and let ¢:U;—U and x:V;—V be the inclusion maps. Now a function
which is analytic in a neighborhood of L, can be approximated uniformly on L, by functions
in A(V) so that we may extend o by continuity into an analytic functional » on V; such
that |v(y,)| <C supg, |y, |, v, €A(V,). We thus have xy=oayu. But we know even more:
By e.g. Theorem 7.2.7 in Hérmander [5] a function g, € 4(V;) such that ¢, =0 on a(U) N V; =
a(U,) can be approximated uniformly on L, by functions y € 4(V) satisfying =0 on «(U).
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Since au(y)=0 for such functions v, we get »(y,) =0 for all g, which are analytic in ¥V,
and zero on a(U,). We can therefore apply Lemma 4.6 to prove that y =g for some g € 4'(U,)
for the restriction «; of « to U, is an embedding of U, into V;. Thus oy =x»v =xoy0 = oup.
In view of Theorem 4.1 the map o: A (U)—>A'(V) is injective so that o =oup implies
p=t. Hence u is continuous for the topology in 4(U) induced by A4(U,) which proves the
lemma.

We can now prove the following result on the image of F-supports.

TEEOREM 4.8. Let U and V be Stein manifolds, « an embedding of U into V, and G
a subset of A(V). Define F=o*G={ypoc; y€G} and suppose that K< U is an F-convex com-
pact set such that hyo(K) is compact. Then K is an F-support of an analytic functional u € A'(U)
of and only if hso(K) is a G-support of au.

Proof. Suppose that K is an F-support of y. Then hgza(K) is by Lemma 4.5 a §-convex
carrier of o and we must show that it is minimal among these sets. Thus let L< h oK)
be a (-convex carrier of au. Then o~1(L) carries yu by Lemma 4.7. But we also obtain from
Lemma 4.3 that a(L)< e (hya(K)) =hsK =K and that o~Y(L) is F-convex. Hence «1(L)
must be equal to K, in particular o(K)=o({a(L))<L so that hge(K)=hL=L. We have
thus proved that hge(K) is a minimal G-convex carrier of au.

Now assume that conversely A;u(K) is a G-support of ou. Then K =h,K = o {(hya(K))
carries u (Lemma 4.7). Next let M < K be an F-convex carrier of u. Then hgo( M) is included
in hy(K) and carries ay (Lemma 4.5) so it must be equal to h;a(K ). Hence we have proved
that M =h,M = o (hgo(M)) = o (hge(K)) =hy K = K which means that K is an F-support.

CoroLLARY 4.9. Under the assumptions of the theorem, if LE V is a G-support of o,
then oY (L) ¢s an F-support of u.

Proof. Put K=oY(L). Then K is by Lemma 4.7 a carrier of g, so that hs(K) is a
(j-convex carrier of oy according to Lemma 4.5. Since Lo h;a(K) and L is a G-support,

L =hg(K) and we can apply Theorem 4.8 to get the desired conslusion.

CoroLLARY 4.10. We keep the hypotheses in the theorem. Denote by Ks(Lg) the inter-
section of all F-supports of u (all G-supports of ap). Then o (Lg)=Ky. In partwular u has
a unique F-support if and only if oy has a unique G-support.

Proof. If K is an F-support of u, hse(K) is a G-support of au so we get hga(K)>L
hence K =h; K =a~Y(ho(K))> o (Lg) and K;> oY(Lg).
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On the other hand, if L is a G-support of au, «(L) is an F-support of u, hence a~(L)>
K, and L> hga(o (L)) 2 hgo(K) which implies LS hga(K,) so that o (Lg) > a~(hga(Ky)) =
hs K=K,

Finally, if K, carries yu, hga(Ks)<Lg; carries e so that o has a unique §-support
(and then of course hyo(K,) =L,). Conversely, if L; carries apu, aY(Lg) =K, carries u.

THEOREM 4.11. Let U be a complex mam’fold and F a linear subspace of A(U) such that
F" contains a proper map (o, ..., ¢&y) of U into C™. Then an analytic functional u€ A'(U)
has a unique F-support if and only if u has a unique G-support for every finite-dimensional
subspace G of F such that oy, ..., 4, €G. -

Proof. First suppose that y has a unique F-support K and let G be any subset of F
such that A K is compact. Then it is clear that the G-hull of K is contained in every j-con-
vex carrier of y since every (-convex set is F-convex. This proves one half of our assertion.

Next assume that y has two different F-supports K, and K, and let L, L, be compact
neighborhoods of K, and K,, respectively, such that K,\L,+@ and K,\L,#+0. In addi-
tion we may choose L, and L, so small that u is not carried by L, N L,. In fact, since y is
not carried by K, N K, the same is true of some compact neighborhood L of K, N K, and
then it is sufficient to take L,, L, such that L, N Ly,=L. Now choose finite-dimensional
subspaces §; and G, of F such that hgK,=L;, j=1,2, (Lemma 4.2). Then hK;<L; if
G=G,+ G, so that u has two (§-convex carriers hyK,, h;K, but is not carried by their
intersection. Hence u cannot have a unique §G-support.

With the help of this theorem it follows from Corollary 4.10 that, for example, if u
is an analytic functional on a Stein manifold U with more than one A(U)-support, then
U can be embedded into C™ for some m in such a way that the image of u has several (-
supports.

The following result will be useful later when we shall study the restriction of a func-

tional 4 € A'(U) to A4(V) where V is another manifold containing U as an open subset.

THEOREM 4.12. Let U be a Stein manifold and F< A(U) a convex cone such that U is
F-convex. Suppose that u€ 4'(U) has two different F-supports K, and K,. Then for any
neighborhood o of K, there exvists an F-support K,—w, K,=+K, In particular, p has
infinitely many F-supports.

The proof will be divided into a few lemmas.

LeMma 4.13. Let F be a convex cone in AU), let Ky K, be subsets of U and
2€hy(Ky U K,) a fixed point. Define for t =(t,, ¢,) ER?
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g(t) =g(to, £;) = sup (Re @(2); p€F and Re p<t; in K,, j=0, 1).
P

Then g has values in [ — oo, + oo, 18 positively homogeneous and concave, t.e.,
gAt) = Ag(t), A>0,t=(t, ) ER?, (4.4)
gls+t)=g(s) +g(t), s, tER2 (4.5)

Proof. The homogeneity is trivial. It is sufficient to prove (4.5) when both g(s) and
g(t) are > —oo. Take arbitrary real numbers a<g(s) and b<g(f) and choose functions
@, pEF such that Re ¢(z) >a, Rey(z)=b and Rep<s,;,, Rep<t; on K;, =0, 1. Then
@+y€F and g(s +1) = Re (p +v) (2) >a +b which proves (4.5).

Lemma 4.14. With the notation of the previous lemma, suppose in addition that z ¢h;K,.

Then there is a constant g >0 such that for t, <t,,
g(to, 1) <tp—q(fo—1y).
Proof. From (4.4) and (4.5) we obtain

(81— 80)g () + (bg —£1)g(5) < glts1— 1S, tyS1—t150) (4.6)

provided s;<<s;, {; <t,. Now since z€hy(K,U K,) we must have g(f) <sup (¢, ¢,) which to-

gether with (4.6) implies
(81 —80)g(8) + (tg —11)g(8) <tys; — 18-

This can be written as g(t) <t, —q(t, —t,) where g =(g(s) —s,)/(s; —$,). Since we have assumed
that z¢hs;K, there is a function g €F such that Re ¢(z)>supg, Re @, thus g(sy, 5,) >s, if
$;= Supg, Re ¢. This proves that ¢ is >0 if s is conveniently chosen.

We need also the following result to prove Theorem 4.12.

TuEoREM 4.15. Let u€ 4 (U) where U is a Stein manifold and let K,, K, be carriers
of u, L=h (KU K;). Suppose that K is a compact set in U and that there exist two disjoint
sets My and M, which are closed in L\K and satisfy L\K =M,UM,, K\K<M,,j=0,1.
Then p is carried by K.

The proof has been given in [6] when U is (an open subset of) C™. The general case
follows easily from this if we embed U into €™ for some m and use Lemmas 4.4, 4.5 and 4.7,
The theorem can also be deduced from Théoréme 2.2, Ch. I, in Martineau [8] (using the
open case) in the same way as Theorem 2.4 was obtained from Corollary 2.5 in a remark

in [6). It has been pointed out by A. Martineau in a personal communication to the author
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that either proof of Theorem 4.15 remains valid if the assumption on L is replaced by the
weaker condition that L> K, U K;, H{(L; 0)=0 and L has the Runge property.

Proof of Theorem 4.12. By Lemma 4.2’ we can find an F-convex compact neighborhood
M of K, contained in w. Also, since K \K;==0, there is a function p€F such that
supg, Re =1 <ty=supg, Re p. Put K={2€M; Re ¢(2) <a}, where a is determined later,
My={z€EL\K; Re ¢(z)>a}, and M,;={z€L\K; Re ¢(z)<a}. Here we have written L for
hyun(Ky U K,). We shall check the assumptions of Theorem 4.15. It is clear that M U M, =
L\K and that M, and M, are closed in L\ K. Furthermore M,> K\ K and M,> K,\K
if ¢, <a. It remains only to verify that M, and M, are disjoint if @ is conveniently chosen.
If z6 Myn M, we have in particular Re ¢(z) =a so that with the notation of Lemma 4.13,
g(%y, t,) Za. On the other hand, Lemma 4.14 shows that g(¢,, t,) <t,—q(t,—*t,) for some con-
stant ¢ >0 since z¢h;K,. This proves that M,N M, is empty if (1 —q)t, +qt, <a. Applying
Theorem 4.15 we find that K< M carries u, and since K is JF-convex it contains an F-
support K,. Obviously K,==K, if we take ¢ in the interval (1 —g),+-¢t, <a <t,. This com-
pletes the proof of Theorem 4.12.

We conclude this section with a result which relates the property of an analytic func-
tional u of having a unique F-support with the same property of the restriction of u to the

space of functions which are analytic in a larger manifold.

LEmMA 4.16. Let V be a Stein manifold, U an open set in V and L a compact subset of
U which is A(V)-convex as a subset of V. Suppose that u€ A'(U) is carried by L. Then an
A(V)-convex set K<L carries p if (and only if) K carries € 4'(V) where ¢ is the inclusion
map of U into V. In particular, if U has the Runge property with respect to V, the A(U)-

convex carriers of p are the same as the A(V)-convex carriers of y which are contained in U.

Proof. Let w< U be an arbitrary neighborhood of an 4(V)-convex set K<L<U. We
shall prove that there is a constant C such that

|utg)| < Osup |g] (4.7)

for all € 4(U) under the assumption that K carries (. First take by means of Lemma 4.2
an A(V)-convex compact neighborhood L, of L, L;< U. Then for arbitrary ¢ € 4(U) and
wE€A(V) we have

@) | <|outy)| +| ule — ) <0 sup lpl+C sup |~y

for some constant C. Hence
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|atp)| < sup p]+2C sup |p—p].

But ¢ is analytic in a neighborhood of the 4(V)-convex set L, so the infimum of the last
term as p € 4(V) varies is zero by the Oka-Weil approximation theorem. This proves (4.7).

TueEorEM 4.17. Let V be a Stein manifold and G a convex cone in A(V) such that V
is G-convex. Let u € 4'(U), where U is an open subset of V, be carried by some (j-convex com-
pact set L which is contained in U. Let 1: U~>V be the inclusion map. Then w has a unique

G-support if and only if p has a unigue *(G-support.

Proof. Define F =*(G. First suppose that ( has a unique §G-support K. Clearly K,<L
so that K, carries 4 by Lemma 4.16. On the other hand, if K< U carries y it also carries
g 80 that h;K> K, therefore h,K =h,K N U> K. Hence the intersection of all F-convex
carriers of y contains K, which, as we have seen, itself is a carrier. This means that K, is
the only F-support of u.

Next assume that ¢ has at least two G-supports. Since ¢y is carried by L we can find
one (-support Ko<=L. Let L, be a G-convex compact neighborhood of L contained in U
(Lemma 4.2'). Then (i has also a G-support K; <Ly, K, 3=K,, by Theorem 4.12. But Lemma
4.16 shows that both K, and K, carry x whereas their intersection does not even carry yu.

Since K, and K, are also F-convex, y cannot have a unique F-support.

5. The indicator of an analytic functional

The results in the previous section will now be used to generalize a theorem of Mar-
tineau (Theorem 5.1 below). We shall also characterize the set of analytic functionals which

have a unique F-support under certain conditions concerning F.
THEOREM 5.1. Let u€ 4 (C*) and suppose that

P(8) <Hg(D), (€L, (5.1)

where p 1s the indicator of u (Definition 1.5) and Hy is the supporting function of a compact
set K< C™, L being the space of linear functions on C*. Then u is carried by h K. Conversely,
(5.1) holds if u is carried by h K.

This is Théoréme 4.1, Ch. II, in Martineau [8]. Other proofs have been given by Ehren-
preis [2] and Hormander [4], [5].
Before we extend this theorem to more general subspaces of the analytic functions

than C we draw some immediate conclusions.
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TarEoREM 5.2. Let u€ A'(C*). Then for every € L we have
P = igf (Hg(8); K carries p)

where p* is the upper regularization of the restriction of p to L.

Proof. We write P for p® and introduce complex coordinates in £. Let § be a fixed
element of £ with [0| =1 and let a be any real number greater than P(6). We have to prove
that Hy(6)<a for some carrier K of u. Put ¢,({)=a Re Z{;0;+s(|¢| — Re 2¢;0,) and let
M, be the compact set {{€L;|L]| =1, ¢()<P({)}. We claim that N M,=@. Indeed,
¢(0) =a>P(0) so that ¢ M. If =0, [¢]| =1, we have ¢({)—>+co when s—>+co so that
(¢ M, when s is large. This implies that M, =0 for some s>0, in particular ¢,() =P({) for
all €L, Let K, be the ball with supporting function ¢,. Then by Theorem 5.1, K; carries
u and we have seen that Hg, (0) =a. Since & was an arbitrary number >P(}) this proves
that the infimum is everywhere <P. Conversely we trivially have P <H for every carrier
K of u (see the end of Section 1).

CoroLLARY 5.3. If u€A4(C, u has a unique L-support if and only if p° is convex.

Proof. Suppose that p® is convex and let K, be the convex compact set such that
Hy =p°. Then Theorem 5.1 shows that a convex compact set K carries u if and only if
K> K, so that K, is the smallest convex carrier, hence the only C-support.

If, on the other hand, 4 has a unique C-support K, then p®=inf (H; K carries u) = Hp,
by the preceding theorem.

It can easily be proved that if p* is not convex, all minimal convex majorants of p*
must be linear in some open set. Hence, according to the corollary, the C-supports of a
functional with several £-supports must all have edges. This gives a new proof of Theorem
3.1 in [6].

The conclusion of Theorem 5.2 is false in general for u€ 4'(U), U a proper subset of
C*. The corollary, on the other hand, can be generalized by means of Theorem 4.17. We
shall not do so now, however, since more general statements will follow from the next

theorem.

TaroREM 5.4. Let V be a Stein manifold, U an open subset of V and denote by ¢ the
canonical injection U—>V. Suppose that the linear subspace G of A(V) contains elements
gy ooy Oy SUCh that (g, ..., &) ©8 an embedding of V into C™. Further, let n€ A'(U) be carried
by some G-convex set L U, and let K< L. Then p is carried by heK if (and only if)

p(*y) < Hg(y), y€G.
In particular, we have
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CoroLLARY 5.5. If u€A(V), where V is a Stein manifold, then p is carried by hynK
of and only if p(y)<Hg(y) for oll p€ A(V).

Another special case is of course Theorem 5.1.

Proof of Theorem 5.4. By Lemma 4.16 it is sufficient to prove that ¢ is carried by an
arbitrary neighborhood K, of K. Choose a finite-dimensional subspace 3 of ¢ such that
hyK < K, (Lemma 4.2). We may of course assume that o, ..., o, € . Leb o, ..., o, generate
H and define a=(oy;, ..., %). Then the hypotheses imply that the indicator ¢ of ouy satisfies
9(0) SHoy(8) it ¢ is a linear function on €*. Hence by Theorem 5.1, h.a(K) carries auu
and therefore, in view of Lemma 4.7, o'(h.(K)) =h, K< K, carries ¢u. This proves the
theorem.

Our next goal is to generalize similarly Theorem 5.2 and Corollary 5.3. We first need

a simple lemma on the operation of taking the upper regularization.

Lemma 5.6. Let U and V be complex manifolds which are countable unions of compact
sets and let a:U—>V be an analytic map. Further, let G and F=o*§G be closed subspaces of
AV) and A(U), respectively. Then if u€ A'(U) we have pi(y)=p (o) for all w€G where
p and p, denote, respectively, the indicators of u and au, and p* is the upper regularization of
the restriction of p to F, pi being defined similarly.

Proof. Tt is clear that p,(p)=p(yowa), p€G. Let p*(poa)<<c. Then p(p,)<c for all
¢, €F near poa, in particular p,(y;) =p(y,0x) <c for ¢; near . This implies that pi(y)<c,
hence pi(y) <p’(yoa).

Conversely, if p¥(y)<c we have p(p o00)=p.(y;)<c for all p, in a neighborhood w
of . But the restriction of «* to § is an open map by Banach’s theorem since it maps a
Fréchet space G continuously onto another, F. Hence o«*w is a neighborhood of pox in
F so that p*(Po o) <supPy, carwP(@y) <c¢. This means that p*(poo) <pi(y).

We will use this lemma only when F and ¢ have finite dimension so that the hypothesis
that they be closed is automatically fulfilled.

THEOREM 5.7. Let V be a complex manifold and G= A(V) a lLinear subspace such that
G™ contains an embedding of V into C™ for some m. Then for every u€ A (V) and every y€G

we have
P9(p) = inf (Hgly); K carries p),
K

where p% denotes the upper reqularization of the restriction to G of the indicator of p.

Proof. We need only prove that the left-hand side is not less than the right-

hand side. Let a=(cy, ..., &,,) be an embedding of ¥ into €™ and let y€G be fixed. Then
3 — 662903, Acta mathematica. 117, Imprimé le 16 février 1967.
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B =(0, ..., atp,,yp) embeds V into €™ and we denote by  the subspace of G spanned by

%, s Oy - It is obviously sufficient to prove that
P*(y) = inf (Hg(y); K carries u)

for p* <p%in . Let { be the linear function z—>z,,, in C™+.. Then Hx(y)=Hpsx () and,
by Lemma 5.6, p*(y) =p§({) so what we have to prove is

P§() = inf (Hpz)(L); K carries ). (6.2)

Suppose that L< 0™ is a convex carrier of Su. Then K =f-1(L) is in view of Lemma 4.7
a. carrier of u and S(K)< L which proves that

inf (Hp)(C); K carries y) <inf (H({); L carries fu).

But Theorem 5.2 shows that the right-hand side of this inequality is p§({) which proves
6.2).

CoROLLARY 5.8. Under the assumptions of Theorem 5.7 we have p*" =p% in G.

Proof. If K carries y we obtain p(y) <Hgx(y), y € A(V), and therefore p*"(y) <H ((p)
so that, by the theorem, p*"(y)<p%(y) for €. It is trivial that, conversely, p? <p*"
in G.

We finally extend Corollary 5.3.

TusorEM 5.9. Let V, U, G and u€ A'(U) satisfy the hypotheses of Theorem 5.4. Let p,
denote the indicator of € A' (V). Then pf is convex if and only if u has a unique *G-support.

A special case is, of course,

COoROLLARY 5.10. Let p be an analytic functional on a Stein manifold V. Then u has
a unique A4(V)-support if and only if p*V is convez.

Proof of Theorem 5.9. In view of Theorems 4.11 and 4.17, u has a unique ¢*@G-support
if and only if iy has a unique -support for all finite dimensional subspaces H of G such
that oy, ..., 2, €H. On the other hand, p¢ is obviously convex if and only if its restriction
to every such J{ is convex, and by Corollary 5.8, pf =p"’ =p! in  so that pf is convex
if and only if p? is convex for all # of the described kind.

It will thus be sufficient to prove that i has a unique H-support if and only if p} is

convex where  is a finite dimensional space containing «, ..., «,,. Let a, ..., o span H
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and define a=(o, ..., %), an embedding of V into C*. Now Corollary 4.10 shows that
has a unique H-support if and only if auy has a unique C-support and by Lemma 5.6 the
indicator g of auy satisfies g*(0) =p¥(Lox), (€L, so our assertion is finally reduced to Co-
rollary 5.3.

Added in proof. Theorem 3.4 has been proved independently by A. Martineau (see
Séminaire Lelong June 6, 1966). His proof is the same as that sketched in the remark at
the end of Section 3 except that a careful adoption of Theorem 4.4.3 in [5] allows him to
work without any regularity assumption on F. I am indebted to him for pointing out
that Theorem 3.2 is not new; it is due to R. Fujita and A. Takeuchi (J. Math. Soc. Japan,
vols. 15 and 16 respectively).
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