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Abstract. We introduce equality up-to constraints over finite trees
and investigate their expressiveness. Equality up-to constraints subsume
equality constraints, subtree constraints, and one-step rewriting con-
straints. We establish a close correspondence between equality up-to
constraints over finite trees and context unification. Context unification
subsumes string unification and is subsumed by linear second-order uni-
fication. We obtain the following three new results. The satisfiability
problem of equality up-to constraints is equivalent to context unifica-
tion, which is an open problem. The positive existential fragment of the
theory of one-step rewriting is decidable. The 3*V*3* fragment of the
theory of context unification is undecidable.

Keywords tree constraints, subtree relation, string unification, context
unification, linear second-order unification, one-step rewriting, semantic
processing of natural language.

1 Introduction

Trees are widely used in computer science and computational linguistics. They
serve as representation for all kinds of symbolic structures such as programs,
proofs, data structures, syntactic and semantic analyses of natural language ex-
pressions. However, one often needs to represent structures which are only par-
tially known, and relationships between several such partially known structures.
For these purposes, it is convenient to use tree constraints. These are ordinary
predicate logic formulae with variables denoting trees and with relation symbols
interpreted by predefined relations over trees.

We introduce a new class of tree constraints, which we call equality up-to con-
straints over finite trees, and investigate their expressiveness. Equality up-to con-
straints subsume equality constraints, subtree constraints, and one-step rewriting
constraints. We establish a close correspondence between equality up-to con-
straints and context unification. Context unification subsumes string unification
and is subsumed by linear second-order unification. We obtain the following three
new results. The satisfiability problem of equality up-to constraints is equivalent
to context unification, which is an open problem. The positive existential frag-



ment of the theory of one-step rewriting is decidable. The F*V*3* fragment of
the theory of context unification is undecidable.

Equality Up-to Constraints. The semantics of equality up-to constraints is based
on the equality up-to relation over finite trees. Given finite trees 01,07, 02, 05 the
equality up-to relation oy /o =04/0% holds if o1 is equal to o5 up-to one position
p where o has the subtree o] and o the subtree o.

An equality up-to constraint is a conjunction of expressions s;/s|=s2/s5 where
1,81, Sa, 84 are first-order terms with first-order variables.

Equality up-to constraints subsume equality constraints s; =s, by equivalence to
s1/s1=s2/s1 and subtree constraints s;<s; meaning that the denotation of sy
is a subtree of the denotation of sy by the equivalence so&s1 < s1/$2=51/52.
Venkatamaran [28] proves that the 3*V* fragment of the theory of the subtree
relation (including negation and equality) is undecidable. This implies that the
F*V* fragment of the theory of equality up-to constraints is undecidable.

Context Unification. A context is a tree with a hole. More precisely, a context
with hole X is a first-order term s with a single occurrence of X and no oc-
currence of any other variable. We prefer to work with context functions rather
than with contexts. A context function + is a function from trees to trees that is
defined by some equation of the form 7(o) = s[o/X] where s is a context with
hole X. Note that a context function is a second-order function that is linear in
that it uses its argument exactly once.

We assume a set of second-order variables ranged over by C'. A second-order term
t is either a first-order variable X, a construction a(ty,...,t,) or an application
C(t). A context constraint is a conjunction of expressions t;=t5. A second-order
variable denotes a context function whereas a second-order term denotes a tree.
The denotation of a second-order term C(t) is defined as the application of the
denotation of C' to the denotation of ¢. Context unification is the satisfiability
problem of context constraints with respect to the above interpretation.

Correspondence. Context constraints plus existential quantification are at least
as expressive as equality up-to constraints, since s;/s|=s2/s} is equivalent to
AC (s1=C(s}) A s2=C(s})). Conversely, we can encode context constraints into
equality up-to constraints (up to satisfaction equivalence) even if some context
variables C occur more than twice. This fact is not obvious, and it is proved in
the paper. The given correspondence has the following two consequences. The
satisfiability problem of equality up-to constraints is equivalent to context unifi-
cation. The 3*V*3* fragment of the theory of context constraints is undecidable.



One-Step Rewriting. The first-order theory of one-step rewriting has attracted
some attention starting with [3] because it allows to express several decidable
properties of rewrite systems. The hope was that the whole theory could be
decidable. Treinen [26], however, has shown that the 3*V* fragment of the first-
order theory of one-step rewriting is undecidable. Several improvements of this
result have been achieved [14, 29] where only restricted rewrite systems are
needed.

Equality up-to constraints subsume one-step rewriting constraints. A one-step
rewriting constraint is of the form X;—X, with s;—s; and means that the
tree denotation of X; rewrites in one-step to the tree denotation of X, via an
application of the rewrite rule s;—s2. Let {Y71,...,Y,} be the set of variables
occuring in sy and so. If {X1, Xo} N {Y1,...,Y,} = 0 then the one-step rewrit-
ing constraint X;—Xo with s;— s, is equivalent to 3Y; ...3Y,, (X1 /s1=X2/s2).
The condition {X7, Xo} N {Y¥7,...,Y,} = 0 can always be assumed by renam-
ing the variables in the rewrite rule s;—ss. The equality up-to constraint that
we obtained X/s1=Xs/s9 is satisfaction equivalent to the context constraint
X1=C(s1) A X3=C(s2), which is a stratified in the sense of Schmidt-Schauf} [22]
because of the condition {X7, Xo} N {Y7,...,Y,} = (. The decidability of strati-
fied context unification is proved in [22]. Hence, the positive existential fragment
of the theory of one-step rewriting (constraints) is decidable.

Plan of the Paper. In Section 2, we discuss related work. In Section 3, we
introduce equality up-to constraints, relate them to subtree constraints, and
distinguish decidable fragments. In Section 4, we define context unification and
formulate results in analogy to those for equality up-to constraints. In Section 5,
we formulate the correspondence between equality up-to constraints and context
unification. In Section 6, we relate to the first-order theory of one-step rewriting.
In Section 7, we illustrate how to compute solutions of context constraints in
several simple examples, based on an algorithm formulated in Appendix B of
the full paper.

In the full version of the paper [16], three appendixes are added. In Appendix
A, we give a proof omitted in the conference version of the paper. Appendix B
presents a simple correct and complete but not necessary terminating algorithm
for context unification (in Plotkin style). This algorithm is modified in Appendix
C such as to obtain an algorithm for context unification in the style of Lévy’s
second-order unification algorithm. It is claimed in [12] that this algorithm ter-
minates for all presented decidable fragments of linear second-order unification
(and thus context unification). At the time of submitting this paper, however,
the termination proof given there for the case of stratified linear second-order
unification has not been agreed on to be complete.

2 Related Work

String Unification.  String unification is the problem of solving word equa-
tions. For instance, all solutions of the word equation Ca=aC map C to a word



described by the regular expression a*. String unification is subsumed by con-
text unification. The above word equation corresponds to the context constraint
C(a(e)) = a(C(e)) where a is a function constant and € is a fixed first-order
constant representing the empty word. Every solution of this context constraint
maps C' to the context function v with v(¢) = a(... (a(c))). The correspondence
between v and a* is obvious.

String unification has been discovered and investigated by several independent
research communities (for an overview see [2]). The notion of string unification
stems from the field of automated deduction [21, 24], where it is also called A-
unification [1] with a single associative function symbol. String unification has
first been presented by Markov [15] in 1954 and is called Markov’s problem by
mathematicians in eastern countries. It is called Lob’s problem by mathemati-
cians in western countries, for example by A. Lentin and M.P. Schiitzenberger
[11]. A solution to the string unification problem was found by Makanin [13] in
1977. Subsequent papers on this topic [18, 9, 23, 10] were concerned with finding
a better description of Makanin’s algorithm, closing small gaps in the proof of
correctness, and studying its complexity.

Context Unification. Context unification is a subproblem of linear second-order
unification (see below) and a generalization of string unification. The notion of
context unification was first used in [12] but stems from [4] where it is called
unification with context variables. A formal definition of context unification is
given implicitly in [22]. To our knowledge, the decidability of context unification
is still open (in contrast to string unification).

Three distinct fragments of context unification are solved in [4, 22, 12] respec-
tively. Schmidt-Schaufl [22] considers stratified context constraints mentioned
above. Lévy [12] handles all context constraints where first-order and second-
order variables occur at most twice. Comon’s fragment [4] includes context con-
straints corresponding to equality and subtree constraints (see Section 4.2) but
also context membership constraints, which express that a context C' belongs
to a given regular set of contexts. A typical formula of this fragment is (in the
word case) =Cas A CE€(ajaz)*. Tt seems that nested Kleene stars cannot be
expressed in terms of string unification. In contrast, a single Kleene star can be
expressed, for instance x=Cay ACEaj is equivalent to x=Cas ACa;=a1C, which
is however not a member of Comon’s fragment, since C is applied with distinct
arguments as and a; .

Linear Second Order Unification. Context unification can also be considered
as a subproblem of linear second-order unification [12]. This is the problem of
whether a conjunction of equations between second-order A-terms in long (n
normal form has a solution that maps variables to linear second-order A-terms.
Lévy’s algorithm is correct and complete for linear second-order unification but
not always terminating. The decidability of linear second-order unification is
open but as for context unification, three decidable fragments are known [12].
Note also that linear second-order unification is a subproblem of second-order



unification, which is undecidable [7] but only a fragment of higher-order unifica-
tion [19, 8].

Ellipses in Natural Language. The motivation of the authors for the investi-
gation of equality up-to constraints stems from the area of semantic processing
of natural language. This line of research started with higher-order unification
[5, 6] and led to a definition of linear second-order unification [20] independently
from Lévy in [12]. An application of context unification for semantic processing
of natural language is presented by the authors in [17].

Here, we give a linguistic toy example that illustrates how equality up-to con-
straints (and thus context unification) can be applied to the analysis of an elliptic
sentence. Consider Peter likes Riesling, Chardonnay too. This sentence is composed
of two subsentences Peter likes Riesling and Chardonnay too. The semantics of
both subsentences are boolean values. The semantics of the word Peter is of type
person, and the semantics of the words Riesling and Chardonnay are of type grape.
The semantics of the word likes is some function of type person—(grape—bool).
Given the semantics of all these words, the semantics of the subsentences can be
represented by the following two trees respectively:

@(@(likes Riesling) Peter) and @(@Q(likes Chardonnay) Peter)

More precisely, the semantics of the subsentences is obtained from the semantics
of its words by evaluating the above trees where @ is interpreted as function
application.

The above trees can by described as the solutions of the following equality up-to
constraint with respect to the variables X; and Xs:

X;=Q(@(likes Riesling) Peter)) A X;/Riesling=X,/Chardonnay

Such a constraint can be derived on the basis of a syntactic analysis of the
sentences, and a resolution of the ellipsis that takes Riesling and Chardonnay
to play a structurally parallel role in their respective contexts. Note that the
semantics of the word too in the above sentence is described by the context
function v with v(o) = @(Q(likes o) Peter), but not by a tree.

3 Equality Up-to Constraints

We define the syntax and semantics of equality up-to constraints, relate them to
subtree and equality constraints, and distinguish some decidable and undecidable
fragments of their first-order theory.

3.1 Syntax and Semantics

We assume an infinite set of first-order variables ranged over by X, and a set
of function constants ranged over by a, a; and as. Every function constant is
equipped with an arity, which is an integer n > 0. For all undecidability results,



we assume that there is at least one constant of arity > 2 and one constant of
arity 0.

A first-order term s is either a first-order variable X or of the form a(si,..., sn)
where n is the arity of a and s1,...,s, are first-order terms. An equality up-to
constraint is a conjunction of expressions of the form eq,(si, s}, 2, s5) that we
write as s1/s]=s2/s5 for better readability. A (finite) tree ¢ is a ground first-
order term, i.e. a first-order term without variables. A context function - is a
function from trees to trees that is described by an equation of the form

(o) = slo/ X] for all trees o

where s is a first-order term that contains a single occurrence of the variable X
and no occurrences of any other variable (i.e. s is a context with hole X).

The relation symbol eq, is interpreted as the following 4-ary relation between
finite trees.

o1/oy=09/0h iff exists v such that o1 = v(0]) and o3 = v(0h)

Let a be a variable assignment that maps first-order variables to finite trees. We
extend a homomorphically to first-order terms.

ala(st, ..., sn)) = ala(sr),...alsy))

An equality up-to constraint s;/si=s2/s5 is satisfiable over finite trees if there
exists a variable assignment a such that a(s;)/a(s})=a(s2)/a(sy) holds.

3.2 Subtree and Equality Constraints

Equality up-to constraints can to express equality constraints s=s' and subtree
constraints s<Ks'. A variable assignment « is a solution of an equation s=s’ if
a(s) = a(s'), and of a subtree constraint s<s’ if a(s) is a subtree of a(s’).

Proposition 1. The following equivalences hold in the structure of finite trees:
S1=89 ¢ S1/81=8S2/s1 and 51K82 ¢ S2/s1=82/%1

Proof. The implication from the right to the left in the first equivalence can be
proved as follows. If o1 /01=02/0; then there exists v such that oy = y(01) and
o2 = 7(o1). This yields o7 = o9. The second equivalence is trivial.

Theorem 2 (Venkataraman 1987). The existential fragment of the first-order
theory of subtree constraints s<&Ks' over finite trees is decidable and NP-complete.
The F*V* fragment of this theory is undecidable.

A proof has been given by Venkataraman in [28]. Note that Theorem 2 carries
over to the subtree relation on infinite trees [27, 25]. In this case, explicit equality
constraints s=s’ have to be provided, since the equivalence X< X' A X'« X <«
X=X’ does not hold over infinite trees in contrast to finite trees.



Definition 3. An equality up-to constraint is uniform if all its conjuncts are of
the form s;/s=s9/s.

Lemma 4. An equality up-to constraint is equivalent to a uniform equality up-to
constraint if and only if it is equivalent to a conjunction of subtree and equality
constraints. The corresponding constraints can be computed in linear time.

Proof. This follows from the equivalence s;/s=s3/s < s1=$3 A $&Ks1, which
holds over finite trees (and also over infinite trees).

Theorem 5. The existential fragment of the first-order theory of uniform equal-
ity up-to constraints is decidable and NP-complete. The 3*V* fragment of this
theory is undecidable.

Proof. Every uniform equality up-to constraint is equivalent to a conjunction of
subtree and equality constraints by Lemma 4 and conversely by Proposition 1.
Thus, the theorem is a corollary to Theorem 2.

The decidability of the positive existential fragment of the first-order theory of
uniform equality up-to constraints can also be reduced to Comon’s result [4]
about uniform context constraints reformulated in Theorem 11. Via Lemma 4
this yields an alternative proof to Venkataraman’s decidability result in Theorem
2 but without negation.

3.3 Two Occurrences Restriction and Stratification

We distinguish two more fragments of equality up-to constraints that have a de-
cidable satisfiability problem. Both fragments are obtained by translating known
analogous results for context unification. In particular, we note that our notion
of stratification for equality up-to constraints given here is motivated by an
analogous notion for context constraints introduced in Section 4.3.

Theorem 6. The satisfiability of equality up-to constraints with at most two
occurrences per first-order variable is decidable.

Proof. This theorem reduces via Proposition 15 to the analogous result for con-
text unification formulated in Theorem 12 (which has first been proved by Lévy
[12] in the setting of linear second-order unification).

Definition 7. An equality up-to constraint ¢ is stratified if whenever a variable
X occurs in s} or s, in a conjunct s;/s]=s2/s} of ¢ then X does not occur in
s1 and s2 and not in any other conjunct of ¢.

Theorem 8. The satisfiability of stratified equality up-to constraints is decid-
able.

Proof. This theorem reduces via Proposition 15 to an analogous result for con-
text unification given in Theorem 14 (which has first been proved by Schmidt-
Schauf} in [22]).



4 Context Unification

We define the syntax and semantics of context constraints and the notion of con-
text unification. We also distinguish some decidable and undecidable fragments
of the first-order theory of context constraints.

4.1 Syntax and Semantics

We assume an additional infinite number of second-order variables ranged over
by C. A second-order term t is either a first-order variable X, a construc-
tion a(ty,...,t,) where the arity of a is n, or a term of the form C(t), where
t,t1,...,t, are second-order terms. In particular, every first-order term s is also
a second-order term. A context constraint is a conjunction of equations t=t'
between second-order terms?.

Semantically, we interpret context variables as context functions and second-
order terms as finite trees (like first-order terms). Let a be a variable assign-
ment that maps first-order variables to finite trees and second-order variables to
context functions. The interpretation a(t) of a second-order term ¢ under « is
defined homomorphically.

ala(ty, ..., tn)) =ala(tr),...,a(ty))
a(C(t)) = a(C) (a(t))

A solution of a context constraint ¢ is a variable assignment a that satisfies
all equations in 1. A context constraint is called satisfiable if it has a solution.
Context unification is the satisfiability problem of context constraints.

4.2 Subtree and Equality Constraints

As shown in Section 3.2, subtree and equality constraints can be expressed with
uniform equality up-to constraints and vice versa. Here, we define uniform con-
text constraints in analogy. This notion has been investigated before by Comon
[4] but without stating the correspondence to subtree and equality constraints
(see Lemma 10).

Definition 9. We call a context constraint ¢ uniform if whenever C(¢;) and
C(t9) occur in 1 then t; is equal to ts.

Lemma 10. Every uniform context constraint is satisfaction equivalent to a con-
junction of subtree and equality constraints. The corresponding constraint can be
computed in cubic time.

Proof. As we will show in Propositions 15 and 17, every uniform context con-
straint is satisfaction equivalent to a uniform equality up-to constraint and vice
versa. Thus, the result follows from Lemma 4.

3 In higher-order unification, a context constraint would be called a context unification
problem.



Theorem 11 (Comon 1992). The positive existential fragment of the first-order
theory of uniform context constraints is decidable. The 3*V*3* fragment of this
theory is undecidable.

The decidability result in Theorem 11 has also first been proved by Comon in [4].
A simpler proof has been presented in [12] and can also be found in Appendix
C. The negative result of Theorem 11 is original to the present paper.

Proof. The full theorem follows from Lemma 10 and Theorem 5 (which is a
consequence of the Venkataraman’s result).

Note that the correspondence in Lemma 10 is formulated with respect to satis-
faction equivalence. We therefore needed an additional layer of existential quan-
tifiers in the undecidability result of Theorem 11, i.e. we obtain a weaker unde-
cidability result for context constraints than for equality up-to constraints.

4.3 Two Occurrences Restriction and Stratification

We recall two more decidability results for fragments of context unification that
have been proved by Lévy [12] and Schmidt-Schauf} [22].

Theorem 12 (Lévy 1996). Context unification restricted to context constraints
with at most two occurrences per variable (first and second-order) is decidable.

Proof. This result has first been proved by Lévy [12] in the framework of linear
second-order unification. A proof adapted to the setting of context unification is
sketched in Appendix C.

Definition 13. Let & be either a first-order or a second-order variable. A second-
order prefiz of £ in a term ¢ is a word of second-order variables that is obtained
when traversing ¢ from the root to an occurrence of ¢ in t. We write P (¢, t) for
the set of all second-order prefixes of £ in ¢. The set P(£,4) of all second-order
prefixes of ¢ in a constraint ¢ is defined homomorphically:

P Ay) =PE)UPE ), P i=t) =P UPEL)

A context constraint ¢ is called stratified if the set P(&,)) contains at most one
element for every first-order and second-order variable £ in 1.

Theorem 14 (Schmidt-Schaul 1994). Context unification restricted to strati-
fied context constraints is decidable.

Proof. This theorem has been first proved by Schmidt-Schaufl [22]. A simpler
proof has been proposed by Lévy [12]. However, at the time of submitting this
paper, the termination proof given there has not been agreed on to be complete.



5 Correspondence

The relationship of context unification and equality up-to constraints over finite
trees is formalized in this section. The only non-obvious fact we need is stated
in Lemma 16.

Proposition 15. There is a linear time transformation of equality up-to con-
straints into satisfaction equivalent context comstraints which preserves umni-
formity, stratification, and the number of occurrences of first-order variables.
Second-order variables may be introduced, but the introduced second-order vari-
ables occur at most twice.

Proof. This is a consequence of the following equivalence that can be used as a
transformation rule when oriented from the left to the right:

s1/si=sa/sy <+ AC(51=C(s}) A s2=C(s})) O

For reducing context unification to the problem of solving equality up-to con-
straints, we introduce generalized n-ary equality up-to constraints of the form
s1/s{=...=sn/s, for any n. These new constraints are interpreted with respect
to the n-ary equality up-to relation oy /c}=...=0,/0), which holds if there
exists a context function v such that o; = y(o}) fori =1...n.

Lemma 16 (Coherence). The following equivalence holds in the structure of fi-
nite trees for alln > 1:

51/81=...=8n/5, < /\ si/si=s;/5]
ij€{1,n}

A proof of this Lemma is given in Appendix A. In order to illustrate that this
Lemma is non-trivial, we give the following example:

f(a/b)/a:f(bvb)/b _ _
N e 7 F@D) a=(b5)/b=f(b.a)/a
In this case, the coherence lemma is not applicable because the required assump-
tion

fla,b)/a=f(b,a)/a

does not hold. This shows that the coherence lemma needs all pairwise equality
up-to constraints. Our proof has to take care of all of them simultaneously.

Proposition 17. There exists a cubic time transformation of context constraints
into satisfaction equivalent equality up-to constraints. This transformation pre-
serves uniformity but neither stratification mor the number of variable occur-
TENCES.

Proof. We apply the following five transformation steps consecutively.



Step 1 We replace equations t=t' by conjunctions X=t A X'=t' where X, X’
are fresh, unless ¢ is a variable. Thereafter, we replace equations of the
form X=a(ty,...,t,) by conjunctions X=a(Xy,...,X,) A Xi=t; A
...ANX,=t, and equations X=C(t') with X=C(X') A X'=t' where all
X’s are fresh.

Step 2 We regroup the conjuncts into equations s;=s» and conjunctions
$1=C(s)) A ... A s,n=C(s],) such that C occurs nowhere outside this
conjunction in the constraint.

Step 3 We replace a conjunction s;=C(s}) A ... A s,=C(s]) by the for-
mula 3C (s1=C(s}) A ... As,=C(s),)). This is a satisfaction equiva-
lent transformation since we assume that C' does not occur elsewhere.

Step 4 We apply the following equivalences as transformations from the left
to the right:

S$1=89 R d 81/51282/81

AC(s1=C(s)) A ... Ns,=C(s))) &  s1/s1=...=sn/5,

n

Step 5 We apply the equivalence of Lemma 16 from the left to the right.

All transformations above can be performed in linear time except step 5. This
step is quadratic and does neither preserve stratification nor the number of
variable occurrences. All steps preserve uniformity except step 1. But we can
slightly modify step 1 in order to preserve uniformity. It is sufficient to always
replace equal subterms by the same variable. This needs a quadratic number of
equality tests that can be done in cubic time. m|

Corollary 18. The satisfiability problem of equality up-to constraints is equiva-
lent to context unification.

Proof. From Propositions 15 and 17. O

6 One-Step Rewriting

Context unification is closely related to the first-order theory of one-step rewrit-
ing. The theory of one-step rewriting is a set of theories rather than a single
theory. Each of these theories is a subset of the same first-order language, which
contains all so called one-step rewriting formulae that can be built from ex-
pressions X — X' and the usual first-order connectives. Let X be a signature of
function symbols. A rewrite system R (over X) is a finite set of rules s—s’, which
are pairs of terms s and s’ over the signature ¥. For every rewrite system R, the
structure Ag is an extension of the structure of finite trees with an additional
binary relation. A formula X —X' is interpreted in Ag with respect to the bi-
nary relation 0— go’ on trees ¢ and o', which holds iff o rewrites in one step to
¢’ by using a rule in R.

The theory of one-step rewriting with respect to R is the set of valid formulae
interpreted over the structure Ag. Treinen has shown in [26] that it is undecid-
able if a one-step rewriting formula belongs to the 3*V* fragment of the theory



of one-step rewriting with respect to R. As proved recently, Treinen’s result still
holds if the considered rewrite systems are restricted to be linear, right ground
rewrite [14] or linear, Noetherian [29].

For our purpose, we prefer to use one-step rewriting constraints rather than
one-step rewriting formula. A one-step rewriting constraint is a conjunction of
expressions X —X’ with s—s’, which holds in the structure of finite trees (and
its extensions Apg) if the tree denotation of X rewrites in a one step to the tree
denotation of X' by using the rewrite rule s—s’.

Lemma19. In the structure Ag, every one-step rewriting formula of the form
N (X = X)) is equivalent to a disjunction of one-step rewriting constraints.

Proof. Let R = {s;—s’; | 1 < j <m}. The following equivalence holds over Ag:

/n\(Xl-eX{) © /n\ \7(X—>X’ with s;—s')
i=17=1

=1
It is sufficient to compute the disjunctive normal form of the right hand side.

Lemma 20. FEvery one-step rewriting constraint is satisfaction equivalent to a
disjunction of stratified equality up-to constraints.

Proof. Consider the one-step rewriting constraint A_, (X;—X! with s;—s!).
Let {V!,..., Yim(i)} be the set of variables occuring in s; and s;. We can assume
UL { X, Xj} n U {Yv), . .,Y;m(j)} = by renaming the variable in s;—s!
appropriately. The following equivalence holds for all 1 <i < n:

X,— X! with s;—s, ¢ 3. 370 (X/s,=X"/s))
Thus Al_, (X;—X| with s;—s}) and A\, (X/s;=X"/s}) are satisfaction equiv-

alent. The latter equality up-to constraint is stratified because of the above
variable disjointness condition.

Theorem 21. The positive existential fragment of the first-order theory of one-
step rewriting is decidable.

Proof. This follows from Lemma 19, Lemma 20, and Theorem 8.

7 Examples for Solving Context Constraints

We present two simple examples that show how to solve context constraints
according to an algorithm given in Appendix B available in the full version of
the paper. We give two examples, one example for ellipses in natural languages
and one for one-step rewriting.



For the analysis of the elliptic sentence Peter likes Riesling, Chardonnay too in
Section 2 we have derived the following equality up-to constraint:

X,=@(@(likes Riesling) Peter)) A X;/Riesling=X,/Chardonnay

This constraint is equivalent to the constraint g given by the following equa-

tions:
0o = 3C(p1 A X1=C(Riesling) A Xo=C(Chardonnay))
p1 = @(Q(likes Riesling) Peter))=C(Riesling)

In the computation below, it is shown that there is unique solution for ¢; that
maps C' to the context function v with (o) = Q(Q(likes o) Peter)). This context
function represents the semantics of too in the given elliptic sentence.

C' = AZ.Q(C"(Z), 1)

Q(l,r)=r I=C"(r) r=C"(r)
l C" /\X.Xl C" /\X.Xl
false false true

We now give an example for solving a one-step rewriting constraint. We consider
a signature of two unary function constant @ and b and the following constraint:

X—=Y with a(Z)—=b(Z) A Y—=X with b(U)—>U
This constraint is equivalent to the context unification constraint o with
wa = X=C(a(Z)) N Y=C(b(Z)) AN Y=D(BU)) A X=D(U)
Below, we solve the following constraint @3 that is logically implied by of ¢s:
s = C(a(2))=D(U) A C(b(Z))=D(b(U))
In the single non failed alternative, we obtain a cycle (up to renaming C"" to C')

without any exit to a solution. This shows that 3 and thereby - are unsatis-
fiable.



b(Z) = D' (b(U))
D' v AZ.a(D"(Z))
U C'(a(7)) D'~ AZ.Z/ \

C'(b(Z)) = b(C'(a(Z))) «— false false

false O = AY.H(C(Y))

C"(b(2)) = b(C"(a(2)))
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A  Proof of the Coherence Lemma

We present the proof of the Coherence Lemma, which is omitted in the confer-
ence version of the present paper.

Lemma 16 [Coherence] The following equivalence holds in the structure of
finite trees for allm > 1:

s1/81=...=sn/s, < /\ si/s;=s;/5)
i,j€{1,...,n}

Proof. The cases n = 1 and n = 2 are trivial. The implication from the left
to the right is also trivial. We show the implication from the right to the left
for n > 3. We assume trees o; and context functions 7;; such that the pairwise
equations

oi = %ij(0}) and o; = i;(0%)

hold for 7, j € {1,...,n} and i < j. If there exists i # j such that o} = ¢’ then
0; = 0;. By induction on n there exists a context function v with o = v(o7},)
for all k # i. Thus, 0; = 0; = y(0%;) = y(0}). It remains the case where all o}
are pairwise distinct. In this case, we have ~;; = vy for all i < j and i’ < j' as
proved in Lemma 22.

Lemma22. Let n > 3, 0;,0, be trees and 7;; context functions where i,j €
{1,...,n}. If all o} are pairwise distinct and o; = v;j(0}) and o; = vi;(0}) for
all 1 < j then vij = viry for alli < j and i’ < j'.

Proof. The case n = 3 is solved in Lemma 23 and the case n > 3 trivially reduces
to the case n = 3. |

Lemma 23. Let 01,09,03,071,0%,0% be trees and y12, Va3, and Y13 context func-
tions. If 01,05, 03 are pairwise distinct and o; = v;;(0;) and 0; = v;j(0%) for all
i < j then y12 = Y23 = V13-

Proof. A path p is a sequence of integers. A path p; is called a prefiz of po if
there exists a path p) such that ps = p1ph. A proper prefiz of p is a prefix of p
that is distinct from p. Two path p; and ps diverge if p; is a not a prefix of po
and py is not a prefix of p;. Given a tree o we write o|p for the subtree of o at
path p and assume that such a subtree exists.

Let p;; be the path that leads to the unique variable occurrence in the term defin-
ing the context function +;;. The paths p12, p13, and pe3 cannot be proper prefixes
of each other. Otherwise, for the case p15 and py3 for example, o1|p12 = o] and
o1|p13 = o}, so that o] would be a proper subtree of itself, which is not possible
over finite trees. The other cases are analogous.

We prove 12 = 713. The proof of the remaining equalities is symmetric. If pio =
p13 then y12 = 13 since v12(0}) = 01 = m3(0]). Otherwise (i.e. p12 # p13), the



path pi2 and p;3 must diverge (they cannot be proper prefixes of each other as
shown above and they cannot be equal by assumption). If p15 = pa3 then we get

! !
oy = 01\1?12 = 03|p12 = 03|p23 =03,
which contradicts o} # o%. Thus p1» and pa3 must also be disjoint. This implies
1 3
! !
oy = 01\1?12 = 03|p12 = 02|p12 =09,

which contradicts of # ob such that p1o # p13 is not possible in any case. O

B An Algorithm for Context Unification

In this section, we present an algorithm that adapts Plotkin’s string unification
algorithm [21] for context unification. This algorithm is correct and complete
but does not terminate in the all cases we are interested in. However, it justifies
the examples in Section 7.

The algorithm operates on sets I' of symmetric equations t=t'. In other words,
we identify context constraints up to the following equality relation:

t=t' =t'=t PAP =P A
(AP Ap=pAWAY)  ohp=p

Our algorithm operates as a state transformer. A state is a pair (I, p) where I"
is the set of equations and p is a substitution. The intuition is that I" contains
those constraints that have still to be solved and that p represents a partial
solution of the initial context constraint. A unifier for a set I' is a substitution
p such that p(t) is syntactically identical to p(¢') for each equation t=¢t' in I.
For a given context constraint I" the starting state is (I', Id). The constraint is
solved if a final state of the form (@, p) can be reached by (indeterministically)
applying transformation rules. A transformation rule is of the form

t=t' — I' | p

which applied to the state ({t=t'}UI", p') yields the new state (p(I'"UI"), pop').
Here, we use a notation for describing context functions by means of (linear
second order) A-terms. These are of the form AX.t where ¢ is a second-order
term such that the (first order) variable X occurs exactly once in ¢. If such a
A-term contains no free variables it uniquely specifies a context function. We
implicitly assume that in performing a substitution p(I") we also normalize the
terms, i.e. we S-convert any subterms of the form (AX.t)(¢') that can occur when
a context variable is replaced by a A-term. We note that a context constraint I
has a solution if and only if I" has a unifier.

The state transformation rules of our algorithm are given in Table 1. We call
the path of a context that leads to it’s hole the context’s exception path. Notice
that the rule Flex-Flex1 assumes that the exception path of the context C is a
prefix of the exception path of C’, so that ¢ must be a subtree of ¢. For context



(Subst) X=t —true f X g V(t) | X =t

(Decomp) alty, .. tn)=a(th, .., tn) — \,_, , ti=t; | Id

(Proj) a(ti,.otn)=C{t") — a(ts,...,.ta)=t' |C — AX.X

(Tmit) a(ty,...tn)=C{t') — t;=C"(t') | C = AX.a(t1,..,ti—1,C"(X), tit1, .., tn)
(Simpl) Ct)=C(t') — t=t'| Id

(Flex-Flex1) Ct)=C"(t") — t=C"(t') | C" = AX.C(C" (X))

(Flex-Flex2) Ct)=C'(t'") —> true | C — AY.Cy1(a( (X, Ca(Y), Ca(t)) ),

O — AZ,Cl(a(ﬂ'(Y, Ca(t),C3(Z)) )

where 7 is a permutation

Table 1. A Correct and Complete Algorithm for Context Unification

unification with constants of arity > 2 this rule does not suffice, as two subtrees
of some tree can live on diverging branches. The rule Flex-Flex2 covers these
cases by containing for each constant a of arity n and each permutation 7 of
n-ary sequences an instance with n — 2 fresh variables X.

The algorithm is sound and complete (which we will not prove here) but has
certain disadvantages. Besides introducing a potentially very large search space,
the Flex- Flex2 rule increases the size of a constraint even within the fragment
of context unification where every variable occurs at most twice.

The size of a context constraint (seen as a set) I" is defined as follows (where &
ranges over constants and variables of appropriate arity):

size(E(t1, ... tn)) =n+ > size(t;)
size({ti=t], ... . t,=th}) = D1, size(t;) + size(t})

Under this definition of the size of a context constraint, the above algorithm
would not yield a termination result for the 2-occurrence fragment. We therefore
present a different algorithm in Appendix C, that uses n-ary context variables.

C Lévy’s Algorithm

We modify our algorithm of the previous section such that it terminates for
several decidable fragments of context unification including the restrictions to
uniform context constraints (Theorem 11) and to the two occurence case (The-
orem 12). The algorithm we present here can also be seen as a reformulation of
Lévy’s linear second-order unification algorithm for context unification. We omit
proofs of correctness, completeness, and termination, since these can be found



n [12]. There, it is also claimed that Lévy’s algorithm terminates for stratified
context constraints (Theorem 14). But up to the time point of writing this paper,
it has not become clear wether the proof sketch given in [12] can be completed.
We now consider context variables C' and D with arities n > 1 but possibly differ-
ent from 1. An (extended) second-order term ¢ additionally admits applications
of the form C(t1,...,t,) where C is a context variable of arity n. An (extended)
context constraint is a conjunction of equations t=t' between extended second-
order terms.

A tree o is as before a ground first-order term. An (n-ary) context function vy is
a function from sequences of trees to trees that is described by an equation of
the form

V(o1 oy 0n) = s[oi/ X3y for all trees o1, ..., 0

where s is a first-order term that contains a single occurrence of each variable
X1, ..., X, and no occurrences of any other variables. A solution to a context
constraint is defined as before as an assignment a that satisfies all equations
of the constraint. We now use linear A-terms of the more general form A\X.t
in the substitutions of the algorithm, which as before are normalized when the
substitution is carried out.

Notice that the different exception paths of an n-ary context cannot be prefixes
of one-another. Thus the Flex-Flex2 case of the first algorithm, with monadic
context variables whose exception paths stand in no prefix relation, can be neatly
rephrased so that the size of the problem can be better controlled, by writing

C(t)=C'(t') — true | C = \Y.C"(,Y), C' = NZ.C"(Z,1)

In Table 2, our simple algorithm is reformulated for the more general problem
of n-ary context unification, following closely Lévy’s [12] algorithm for linear
second order unification. In particular, the Flex-Flex rule has to account for all
possible prefix relations between the holes of two contexts of arbitrary arity.
To state the Flex-Flex rule correctly, we need a few auxiliary definitions. Let P
and @ run over sets of indices which are linearly ordered, so that we may write
them as P = {p1,...,pn} and Q = {qi,...,qm} respectively. These ordered
index sets correspond to the exception paths of two contexts. The expression #p
stands for the sequence t,,,...,t, . For any P’ C P, the expression ¢p stands
for the sequence t,,,...,t,, , where t,, occurs in the sequence iff p; € P’, and
tp, occurs before ¢, iff j < [. If the form of the members of such a sequence
depends on the index p via some function ¢ we also use the notation @pep,,
presuming again that the order of P is preserved.

For two sets of indices P, @ we need to define admissible functions # that encode
a possible prefix relation between the two sets of exception paths of two contexts.
We say that a function 6 : P U Q — o(P) U p(Q) is admissible if

1. 8(p) CQ for all p € P,
2. 6(q) CPforallqgeq@,
3. 0(r)NB(u) =0 for r # u,



4. ueb(r)=0(u)=0.
We need the following subsets of indices:

P =y {pePl|O(p)#0} P'=4{peP|0(p)=0A-Tqpecb)}
Q =4 {0€Q|0(q) #0} Q" =4 {q€Q10(q) =0A-TIp(q€bp)}

The imitation rule is also more complex than before. We need to guess a 9 :
P — o(Q) such that

1. 9(r) N (u) =0 for r # u,
2. Upepﬂ(p) =Q.

We define P’ =4 {p € P|J(p) # 0} for the Imitation rule, and let ((p) =
C,(Xy(p)) if p € P', otherwise ((p) =4 t,. All variables introduced in the rules
are assumed to be fresh.

(Subst) X=t — true if X € V() | X —t

(Decomp) a(tp) =a(t’p) — Neptr =1, | Id

(Proj) a(tp) = C(t') — altp) = t' | C— AX.X

(Tmit) a(tp) =C(tg) — /\peP, ty =Ch(tgp)) | C /\YQ.a(@pep)
(Simpl) C(tp)=C({t'p) — /\Peptp =1, | Id

(FleXFleX) C(ZP) = C’(t_’Q) — /\p€P’ tp = D;,(t_lg(p)) A /\qu, t; = Dq({g(q))

| C— A?p.C”(Dq(?g(q)) Vpr,t_’Qu,Vpu),

quI7

C, — A?Q.C”(?Q!, D;(?g(p))pe}w,?@u,{pu)

Table 2. Lévy’s Algorithm for Context Unification

The following properties of the algorithm were originally formulated by Lévy [12]
for linear second order unification. We state them here for Context Unification
without proof. The transfer of the results is based on a simple, but tedious,
translation of Context Unification into his framework.

Proposition 24 Lévy. Soundness. If (I',Id) can be transformed into (D, p),
then p is a unifier for I'.

Completeness. If p is a minimal unifier for I' then there exists a derivation of
(D, p) from the the starting state (I, Id).



Termination. If I' is either uniform or no variable occurs more than twice, then
there exists no infinite, cycle free derivation of (I',Id) (where cycle freeness is
defined up to renaming of second-order variables).

The proofs are carried out by Lévy [12] in some detail. Termination for the two
occurrence case can be seen by inspection of the rules, which shows that the size
of the constraint does not increase in that fragment. Notice that the rules do not
introduce new constants. Thus, there are only finitely many context constraints
of a given size to be considered. We can therefore avoid running into loops.



This article was processed using the ITEX macro package with LLNCS style





