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On Equivalence and Efficiency of Certain Stability Criteria
for Time-Delay Systems

Shengyuan Xu and James Lam

Abstract—In recent years, there have been a number of new delay-de-
pendent stability criteria based on linear matrix inequalities published in
the literature. This note aims to theoretically establish the equivalence of
seven of these stability criteria. Moreover, the efficiency of these stability
criteria is assessed based on the number of unknowns in the linear matrix
inequalities.

Index Terms—Delay-dependent condition, stability, time-delay systems.

I. INTRODUCTION

The problem of stability analysis of time-delay systems has been
extensively studied in recent years due to their implications on the sta-
bility and performance of many practical control systems [3]. Many
stability results for time-delay systems have been proposed in the liter-
ature; see [2], [3], [7] and the references therein. Stability results can
be generally classified into two types: delay-dependent stability results,
which take the size of the delay into account, and delay-independent
stability results, which can be applied to delays with arbitrary size.
Usually, delay-dependent stability results are less conservative than the
delay-independent ones. Therefore, considerable attention has been fo-
cused on the derivation of delay-dependent stability results and, in re-
cent years, various approaches have been proposed. For example, a “de-
scriptor system approach” was proposed in [1] and delay-dependent
stability conditions were obtained in terms of linear matrix inequalities
(LMIs). These stability results were further improved in [2] by incor-
porating the descriptor system approach with the bounding technique
in [6]; such a bounding technique has been extensively used in the
derivation of delay-dependent results. However, it is found that there
are redundant variables in the delay-dependent stability results in [2]
and equivalent conditions with fewer variables were obtained in [11].
It was shown in [11] that these equivalent delay-dependent stability re-
sults can be obtained without resorting to the bounding technique in
[6]. On the other hand, via different Lyapunov–Krasovskii functionals,
delay-dependent stability conditions were established in [4] and [5], re-
spectively. Very recently, by introducing slack variables, some delay-
dependent stability conditions were reported in [9] and [10], while in
[8], a delay-dependent stability condition was obtained by using Lya-
punov–Krasovskii functionals and the Finsler’s approach. These results
are obtained via different techniques and with different appearances.
One important question to raise is therefore whether these results are
intrinsically different? If the results are mathematically equivalent, then
one would also like to compare their complexity. In this note, we will
theoretically establish the mathematical equivalence of the delay-de-
pendent stability results in [2], [4], [5], and [8]–[11]. It will also be
shown that the result in [10] involves the least number of unknown vari-
ables to be determined; hence it is mathematically least complex and
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computationally most efficient compared with those in [2], [4], [5], [8],
[9], and [11].

Notation: Throughout this note, for real symmetric matrices X and
Y , the notation X � Y (respectively, X > Y ) means that the matrix
X � Y is positive semidefinite (respectively, positive definite). I is
an identity matrix with appropriate dimension. The superscript “T ”
represents the transpose. Matrices, if not explicitly stated, are assumed
to have compatible dimensions.

II. MAIN RESULTS

Consider the following time-delay system:

(�) : _x(t) =Ax(t) + Ahx(t� h) (1)

x(t) =�(t) 8t 2 [�h; 0] (2)

where x(t) 2 n is the state, and �(t) is the initial condition. The
scalar h > 0 is the constant delay of the system, A and Ah are known
real constant matrices.

By the so-called “descriptor system approach” [1] together with the
bounding technique in [6], a delay-dependent stability condition for
system (�) was presented in [2], which is less conservative than that
in [1]; we rewrite this as follows.

Lemma 1: [2] (�) is asymptotically stable for any delay h satisfying
0 < h � �h if there exist matrices P1 > 0, P2, P3, R1 > 0, S1, Y11,
Y12, Z11, Z12, and Z13, such that the following LMIs hold:


 + �hZ1 P T
0

Ah
� Y T

1

0 ATh P � Y1 �S1

< 0 (3)

and

R1 Y1

Y T

1 Z1

� 0 (4)

where


 =P
T 0 I

A �I
+

0 I

A �I

T

P +
S1 0

0 �hR1

+
Y1

0
+

Y1

0

T

(5)

P =
P1 0

P2 P3
(6)

Y1 = [Y11 Y12] (7)

Z1 =
Z11 Z12

ZT12 Z13

: (8)

It was shown in [11] that Lemma 1 can be simplified by using fewer
variables, and an equivalent delay-dependent stability condition can be
stated as follows.

Lemma 2: [11] (�) is asymptotically stable for any delay h satis-
fying 0 < h � �h if there exist matrices P1 > 0, P2, P3, R1 > 0, S1,
Y11, and Y12 such that the following LMI holds:


 P T
0

Ah
� Y T

1 ��hY T

1

0 ATh P � Y1 �S1 0

��hY1 0 ��hR1

< 0 (9)

where 
, P and Y1 are given in (5)–(7), respectively.
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Based on the Lyapunov–Krasovskii approach and the Finsler’s ap-
proach, a delay-dependent stability condition was developed in [8],
which can be rewritten as follows.

Lemma 3: [8] (�) is asymptotically stable for any delay h satisfying
0 < h � �h if there exist matrices P1 > 0, S > 0, P2, P3, P4, Y1, Y2,
Z1, Z2, Z3, and R > 0 such that the LMIs shown in (10) and (11) at
the bottom of the page hold.

On the other hand, via different Lyapunov–Krasovskii functionals,
conditions for delay-dependent stability were also reported in [4] and
[5], respectively, which are given as follows.

Lemma 4: [4] The time-delay system (�) is asymptotically stable
for any delay h satisfying 0 < h � �h if there exist matrices P > 0,
Q > 0, P1, P2, Xij (i � j; i; j = 1; 2; 3) such that the following
LMIs hold:

X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

> 0 (12)

as well as (13), as shown at the bottom of the page.
Lemma 5: [5] (�) is asymptotically stable for any delay h satisfying

0 < h � �h if there exist matrices P1 > 0, P2, P3, Q, X11, X12,X22,

Y1, Y2, and Z > 0 such that the following LMIs hold:

X11 X12 Y1

XT
12 X22 Y2

Y T
1 Y T

2 Z

� 0 (14)

as well as (15), as shown at the bottom of the page.
Very recently, by introducing some slack variables, delay-dependent

stability conditions for system (�) were proposed in [9] and [10], re-
spectively, which are restated as follows.

Lemma 6: [9] (�) is asymptotically stable for any delay h satisfying
0 < h � �h if there exist matrices P > 0, Q > 0, Z > 0, X11, X12,
X22,Y , andW such that the LMIs shown in (16) and (17) at the bottom
of the page, hold.

Lemma 7: [10] (�) is asymptotically stable for any delay h satis-
fying 0 < h � �h if there exist matrices P > 0, Q > 0, Z > 0, Y and
W such that the LMI shown in (18) at the bottom of the page holds.

Although the aforementioned LMI-based delay-dependent stability
conditions are obtained via different methods and with different appear-
ances, they turned out to be equivalent. To show this, we first establish
that Lemma 2 is equivalent to Lemma 7, which is given in the following
theorem.

P T
2 A+ ATP2 + Y1 + Y T

1 + S + �hZ1 P1 � P
T
2 + ATP3 + Y2 + �hZ2 P T

2 Ah � Y
T
1 +ATP4

P1 � P2 + P T
3 A + Y T

2 + �hZT
2

�h(R+ Z3)� P
T
3 � P3 P T

3 Ah � Y
T
2 � P4

AT
hP2 � Y1 + P T

4 A AT
hP3 � Y2 � P

T
4 AT

hP4 + P T
4 Ah � S

< 0 (10)

R Y1 Y2

Y T
1 Z1 Z2

Y T
2 ZT

2 Z3

� 0 (11)

ATP1 + P T
1 A+ �hX11 +X13 +XT

13 +Q P � P T
1 + ATP2 P T

1 Ah + �hX12 �X13 +XT
23

P � P1 + P T
2 A �hX33 � P2 � P

T
2 P T

2 Ah

AT
hP1 + �hXT

12 �X
T
13 +X23 AT

hP2
�hX22 �X23 �X

T
23 �Q

< 0 (13)

P T
2 A+ ATP2 + �hX11 +Q+ Y1 + Y T

1 P1 � P
T
2 + ATP3 + �hX12 + Y T

2 P T
2 Ah � Y1

P1 � P2 + P T
3 A + �hXT

12 + Y2 �PT
3 � P3 + �hX22 + �hZ P T

3 Ah � Y2

AT
hP2 � Y

T
1 AT

hP3 � Y
T
2 �Q

< 0 (15)

PA+ ATP + Y + Y T +Q+ �hX11 PAh � Y +W T + �hX12
�hATZ

AT
hP � Y

T +W + �hXT
12 �Q�W �W T + �hX22

�hAT
hZ

�hZA �hZAh ��hZ

< 0 (16)

X11 X12 Y

XT
12 X22 W

Y T W T Z

� 0 (17)

PA +ATP + Y + Y T +Q PAh � Y +W T
��hY �hATZ

AT
hP � Y

T +W �Q�W �W T
��hW �hAT

hZ

��hY T
��hWT

��hZ 0
�hZA �hZAh 0 ��hZ

< 0 (18)
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Theorem 1: There exist matrices P1 > 0, P2, P3, R1 > 0, S1, Y11
and Y12 such that (9) holds if and only if there exist matrices P > 0,
Q > 0, Z > 0, Y and W such that (18) holds.

Proof: (Necessity) Suppose that there exist matrices P1 > 0,
P2, P3, R1 > 0, S1, Y11, and Y12 such that (9) holds, then by the
definitions in (5)–(7), LMI (9) can be rewritten as shown in (19) at the
bottom of the page. Pre- and postmultiplying (19) by

I AT
0 0

0 I 0 0

0 0 I 0

0 0 0 I

and its transpose, respectively, provide

� �1 �2 �

�h~Y

�
T

1
�hR1 � P T

3 � P3 P T

3 Ah � Y T

12 �

�hY T

12

�
T

2 AThP3 � Y12 �S1 0

�

�h ~Y T
�

�hY12 0 �

�hR1

< 0 (20)

where
� =P1A + A

T
P1 + ~Y + ~Y

T
+ �hA

T
R1A+ S1

�1 =P1 � P
T

2 � A
T
P
T

3 + Y12 + �hA
T
R1

�2 =P
T

2 Ah + A
T
P
T

3 Ah � ~Y ; ~Y = Y
T

11 + A
T
Y
T

12:

By (20), it is easy to see that there exists a scalar a > 0 such that

� + aI 0 �1 �2 �

�h~Y

0 �aI 0 0 0

�
T

1 0 �hR1 � P T

3 � P3 P T

3 Ah � Y T

12 �

�hY T

12

�
T

2 0 AThP3 � Y12 �S1 0

�

�h~Y T
0 �

�hY12 0 �

�hR1

<0:

(21)

Set ~W = AThY
T

12. Then, pre- and postmultiplying (21) by

I 0 0 0 0

0 I ATh I 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I

and its transpose, respectively, we have (22), as shown at the bottom of
the page, where

�3 =�hA
T

hR1 �A
T

hP
T

3 � Y12; �4 = A
T

hP
T

3 Ah + ~W � S1

�5 =P
T

3 Ah � Y
T

12; � = �hR1 � P
T

3 � P3:

Pre- and postmultiplying (22) by

I 0 0 0 0

0 I 0 0 0

0 0 0 0 I

and its transpose, respectively, and then using Schur complement, we
have (23) at the bottom of the page. Now, choose

P = P1 Q = S1 + aI Z = R1 Y = ~Y W = ~W: (24)

Then, by (23), it is easy to see that P , Q, Z , Y and W given in (24)
satisfy (18).

(Sufficiency) Suppose that there exist matrices P > 0, Q > 0,
Z > 0, Y , and W such that (18) holds. Then, by Schur complement,
it follows from (18) that (25), as shown at the bottom of the next page,

P T

2 A+ ATP2 + Y11 + Y T

11 + S1 P1 � P T

2 + ATP3 + Y12 P T

2 Ah � Y T

11 �

�hY T

11

P1 � P2 + P T

3 A+ Y T

12
�hR1 � P T

3 � P3 P T

3 Ah � Y T

12 �

�hY T

12

AThP2 � Y11 AThP3 � Y12 �S1 0

�

�hY11 �

�hY12 0 �

�hR1

< 0 (19)

� + aI P1Ah � ~Y + ~W T
+ �hATR1Ah �1 �2 �

�h~Y

AThP1 �
~Y T

+ ~W + �hAThR1A �hAThR1Ah � ~W �

~W T
� S1 � aI �3 �4 �

�h ~W

�
T

1 �
T

3 � �5 �

�hY T

12

�
T

2 �
T

4 �
T

5 �S1 0

�

�h~Y T
�

�h ~W T
�

�hY12 0 �

�hR1

< 0 (22)

P1A +ATP1 + ~Y + ~Y T
+ S1 + aI P T

1 Ah � ~Y + ~W T
�

�h~Y �hATR1

AThP1 �
~Y T

+ ~W �

~W �

~W T
� S1 � aI �

�h ~W �hAThR1

�

�h~Y T
�

�h ~W T
�

�hR1 0

�hR1A �hR1Ah 0 �

�hR1

< 0: (23)
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holds, which implies that there exist scalars � > 0 and � > 0 such
that both ~A = A + �I and ~Ah = Ah + �I are nonsingular and the
two inequalities, shown in (26) and (27) at the bottom of the page, hold
simultaneously, where

V =P ~A + ~AT
P + Y + Y

T +Q+ �h ~ATZ ~A

V1 =P ~Ah � Y +W
T + �h ~ATZ ~Ah + � ~AT ~Ah:

Let

~P3 = ~A�T
h

(WT +Q) ~A�11
~P2 = ~A�T

h
Y
T
�

~P3 ~A:

Then, (26) can be rewritten as shown in the third inequality at the
bottom of the page. Pre- and postmultiplying this inequality by

I 0 0 0

0 ~A�T
h

�

~A�T
h

0

0 0 I 0

0 0 0 I

and its transpose, respectively, we obtain (28), as shown at the bottom
of the page, where

~Y12 =W
T ~A�1

h
G = �h ~ATZ � ~AT ~P T

3 + P � ~P T

2 + ~Y12 + � ~AT :

Set

~Y11 = Y
T
�

~Y12 ~A:

Then, pre- and postmultiplying (28) by

I �

~AT 0 0

0 I 0 0

0 0 I 0

0 0 0 I

and its transpose, respectively, we have the first inequality shown at the
bottom of the next page. This, together with (27), gives (29), as shown
at the bottom of the next page. Now, choose

P1 =P P2 = ~P2 P3 = ~P3 R1 = Z S1 = Q

Y11 = ~Y11 Y12 = ~Y12: (30)

Then, by (29), it is easy to see that P1, P2, P3, R1, S1, Y11, and Y12
given in (30) satisfy (9). This completes the proof.

Following a similar line as in the proof of Theorem 1, we can estab-
lish that Lemma 3 is also equivalent to Lemma 7. This is given in the
following theorem.

Theorem 2: There exist matrices P1 > 0, S > 0, P2, P3, P4, Y1,
Y2, Z1, Z2, Z3, and R > 0 such that both (10) and (11) hold if and

PA + ATP + Y + Y T +Q+ �hATZA PAh � Y +W T + �hATZAh �

�hY

AThP � Y T +W + �hAThZA �hAThZAh �Q�W �W T
�

�hW

�

�hY T
�

�hWT
�

�hZ

< 0 (25)

V + 2� ~AT ~A V1 0 �

�hY

V T

1
�h ~AThZ ~Ah �Q�W �W T + � ~ATh ~Ah + �I �I �

�hW

0 �I �I �Q 0

�

�hY T
�

�hWT 0 �

�hZ

< 0 (26)

� ~P T

2 + ~P2 + � ~AT ~A � ~P3 � ~P T

2

� ~P T

3 �I � ~P T

3

� ~P2 � ~P3 �I

> 0 (27)

V + 2� ~AT ~A V1 ~AT ~P T

3
~Ah + ~P T

2
~Ah � Y �

�hY

V T

1
�h ~AThZ ~Ah �Q�W �W T + � ~ATh ~Ah + �I ~ATh ~P T

3
~Ah �W �Q+ �I �

�hW

~ATh ~P3 ~A+ ~ATh ~P2 � Y
T ~ATh ~P3 ~Ah �W T

�Q+ �I �I �Q 0

�

�hY T
�

�hWT 0 �

�hZ

< 0

V + 2� ~AT ~A G ~AT ~P T

3
~Ah + ~P T

2
~Ah � Y �

�hY

GT �hZ � ~P T

3 �
~P3 + �I ~P T

3
~Ah � ~Y T

12 �

�h~Y T

12

~ATh ~P3 ~A+ ~ATh ~P2 � Y
T ~ATh ~P3 � ~Y12 �I �Q 0

�

�hY T
�

�h~Y12 0 �

�hZ

< 0 (28)
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only if there exist matrices P > 0, Q > 0, Z > 0, Y and W such that
(18) holds.

We now show that Lemma 4 is equivalent to Lemma 7.
Theorem 3: There exist matrices P > 0, Q > 0, P1, P2, Xij

(i; j = 1; 2; 3) such that both (12) and (13) hold if and only if there
exist matrices P > 0, Q > 0, Z > 0, Y , and W such that (18) holds.

Proof: Similar to the proof of [11, Th. 2], we can show that there
exist matrices P > 0, Q > 0, P1, P2, Xij , (i; j = 1; 2; 3) such
that both (12) and (13) hold if and only if there exist matrices P > 0,
Q > 0, P1, P2, Xij , (i; j = 1; 2; 3) such that (31), as shown at the
bottom of the page, holds. Then, by following a similar line as in the
proof of the necessity part in Theorem 1, we can show that (31) implies
(18). In the next, we prove that (18) implies (31). To this end, we note
that applying Schur complement to (18) gives (25); that is, (32), as
shown at the bottom of the page, holds. With this, we can choose two

scalars � > 0 and � > 0 such that ~Ah = Ah + �I is nonsingular and
the two inequalities shown in (33) and (34) at the bottom of the page
hold simultaneously, where

Q1 = Q+ �I Q2 = Q� �I ~Z = Z + �I: (35)

By (33), it is easy to see that (36), as shown at the bottom of the page,
holds. Then, pre- and postmultiplying (36) by

I 0 0 �AT ~A�Th

0 0 0 �

~A�Th

0 I 0 I

0 0 I 0

~P T
2
~A+ ~AT ~P2 + ~Y11 + ~Y T

11 +Q+ � ~AT ~A P � ~P T
2 + ~AT ~P3 + ~Y12 ~P T

2
~Ah �

~Y T
11 �

�h~Y T
11

P � ~P2 + ~P T
3
~A+ ~Y T

12
�hZ � ~P T

3 �
~P3 + �I ~P T

3
~Ah �

~Y T
12 �

�h ~Y T
12

~AT
h
~P2 � ~Y11 ~AT

h
~P3 � ~Y12 �I �Q 0

�

�h~Y11 �

�h~Y12 0 �

�hZ

< 0

~P T
2 A+ AT ~P2 + ~Y11 + ~Y T

11 +Q P � ~P T
2 + AT ~P3 + ~Y12 ~P T

2 Ah �
~Y T
11 �

�h~Y T
11

P � ~P2 + ~P T
3 A+ ~Y T

12
�hZ � ~P T

3 �
~P3 ~P T

3 A
T
h �

~Y T
12 �

�h~Y T
12

AT
h
~P2 � ~Y11 AT

h
~P3 � ~Y12 �Q 0

�

�h~Y11 �

�h~Y12 0 �

�hZ

< 0 (29)

ATP1 + P T
1 A+X13 +XT

13 +Q P � P T
1 + ATP2 P T

1 Ah �X13 +XT
23

�hX13

P � P1 + P T
2 A �hX33 � P2 � P T

2 P T
2 Ah 0

AT
hP1 �XT

13 +X23 AT
hP2 �X23 �XT

23 �Q �hX23

�hXT
13 0 �hXT

23 �

�hX33

< 0 (31)

PA +ATP + Y + Y T +Q+ �hATZA PAh � Y +W T + �hATZAh
�hY

AT
hP � Y T +W + �hAT

hZA
�hAT

hZAh �Q�W �W T �hW
�hY T �hWT

�

�hZ

< 0 (32)

PA + ATP + Y + Y T +Q1 + �hAT ~ZA P ~Ah � Y +W T + �hAT ~Z ~Ah
�hY

~AT
hP � Y T +W + �h ~AT

h
~ZA �h ~AT

h
~Z ~Ah �Q2 �W �W T �hW

�hY T �hWT
�

�hZ

< 0 (33)

�I 0 �P T
1

0 �h�I �P T
2

�P1 �P2 �I

� 0 (34)

PA + ATP + Y + Y T +Q1 + �hAT ~ZA P ~Ah � Y +W T + �hAT ~Z ~Ah
�hY 0

~AT
hP � Y T +W + �h ~AT

h
~ZA �h ~AT

h
~Z ~Ah �Q2 �W �W T �hW 0

�hY T �hWT
��hZ 0

0 0 0 ��h ~AT
h
~Z ~Ah

< 0 (36)
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TABLE I
COMPARISON OF THE NUMBERS OF THE VARIABLES INVOLVED IN LEMMAS 1–7

and its transpose, respectively, we obtain (37), as shown at the bottom
of the page. Set

~P = ~P1 = P ~P2 = �h ~Z ~Q = Q: (38)

Then, (37) can be rewritten as shown in the second inequality at the
bottom of the page. This together with (34) gives (39), as shown at the
bottom of the page. Now, choose

P = ~P Q = ~Q P1 = ~P1 P2 = ~P2

X13 =Y X23 =W X33 = ~Z: (40)

Then, by (39), it is easy to see that P1, P2, X13, S1, X23, and X33

given in (40) satisfy (31). This completes the proof.
The following theorem shows that Lemma 5 is equivalent to Lemma

2.
Theorem 4: There exist matrices P1 > 0, P2, P3, Q, X11, X12,

X22, Y1, Y2, and Z > 0 such that both (14) and (15) hold if and only

if there exist matrices P1 > 0, P2, P3, R1 > 0, S1, Y11, and Y12 such
that (9) holds.

Proof: Along a similar line as in the proof of [11, Th. 2], it is easy
to show that there exist matrices P1 > 0, P2, P3, Q, X11, X12, X22,
Y1, Y2, and Z > 0 such that (14) and (15) hold if and only if there
exist matrices P1 > 0, P2, P3,Q, Y1, Y2 and Z > 0 such that the LMI
shown in the last inequality at the bottom of the page holds. Noting this
and (9), we have the desired result immediately.

Similarly, we can show that Lemma 6 is equivalent to Lemma 7. By
this and Theorems 1–4, we have the following result.

Theorem 5: The delay-dependent conditions in Lemmas 1–7 are
equivalent.

Remark 1: By Theorem 5, it is now clear that the “descriptor system
approach” in [2] and the methods in [4], [5], [8], [9], and [11] will in-
troduce some redundant variables. From a mathematical point of view,
the condition in [10] is more efficient than those in [2], [4], [5], [8], [9],
and [11] since it involves the least number of variables while providing
an equivalent stability condition. Table I provides a comparison of the
numbers of the variables involved in Lemmas 1–7.

PA+ATP + Y + Y T
+Q1

�hAT ~Z P ~Ah � Y +W T �hY
�h ~ZA �

�h ~Z �h ~Z ~Ah 0

~AThP � Y
T
+W �h ~ATh

~Z �Q2 �W �W T �hW
�hY T

0 �hWT
�

�hZ

< 0 (37)

AT ~P1 + ~P T

1 A + Y + Y T
+ ~Q ~P � ~P T

1 + AT ~P T

2
~P T

1 Ah � Y +W T �hY

~P � ~P1 + ~P T

2 A �hZ � ~P2 � ~P T

2
~P T

2 Ah 0

ATh
~P1 � Y

T
+W ATh

~P2 �

~Q�W �W T �hW

�hY T
0 �hWT

�

�hZ

+

�I 0 � ~P T

1 0

0 �h�I � ~P T

2 0

� ~P1 � ~P2 �I 0

0 0 0 0

< 0

AT ~P1 + ~P T

1 A + Y + Y T
+ ~Q ~P � ~P T

1 +AT ~P T

2
~P T

1 Ah � Y +W T �hY
~P � ~P1 + ~P T

2 A �hZ � ~P2 � ~P T

2
~P T

2 Ah 0

ATh
~P1 � Y

T
+W ATh

~P2 �

~Q�W �W T �hW
�hY T

0 �hWT
�

�hZ

< 0 (39)

P T

2 A +ATP2 +Q+ Y1 + Y T

1 P1 � P
T

2 + ATP3 + Y T

2 P T

2 Ah � Y1 �

�hY1

P1 � P2 + P T

3 A+ Y2 �PT

3 � P3 + �hZ P T

3 Ah � Y2 �

�hY2

AThP2 � Y
T

1 AThP3 � Y
T

2 �Q 0

�

�hY T

1 �

�hY T

2 0 �

�hZ

< 0
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PA+ ATP + Y + Y T +Q PAh � Y +W T
�

�hY �hATZ

AT
hP � Y T +W �(1� � )Q�W �W T

�

�hW �hAT
hZ

�

�hY T
�

�hWT
�

�hZ 0
�hZA �hZAh 0 �

�hZ

< 0 (43)

Remark 2: It was theoretically established in [10] that the stability
condition in Lemma 7 contains that in [6, Th. 1] as a special case.
Therefore, by Theorem 5, it is easy to see that [6, Th. 1] is also a special
case of Lemmas 1–6. It is also worth noting that the bounding technique
in [6] used in many papers is not resorted to when deriving the stability
condition in Lemma 7.

Remark 3: In the case when time-varying delays appear, that is,
system (�) becomes

(�1) : _x(t) = Ax(t) + Ahx (t� h(t)) (41)

where h(t) is the time-varying delay of the system, which is assumed
to be a differentiable function satisfying for all t � 0

0 < h(t) � �h _h(t) � � (42)

then, by using the Lyapunov–Krasovskii functional candidate

V (xt) = x(t)TPx(t) +

t

t�h(t)

x(�)TQx(�)d�

+

0

�

�h

t

t+�

_x(�)TZ _x(�)d�d�

and following a similar line as in the derivation of Lemma 7, we have
that (�1) is asymptotically stable for any delay h(t) satisfying (42) if
there exist matrices P > 0, Q > 0, Z > 0, Y and W such that the
LMI shown in (43) at the top of the page holds. Similar to Theorem 5, it
can be verified that (43) is equivalent to the stability conditions in [2],
[4], and [8]–[10]. However, the condition in (43) requires the fewest
number of variables for computation. Therefore, (43) is more efficient
than those in [2], [4], and [8]–[10]. Also, it should be pointed out that,
due to the possible negative definiteness of �W �W T , (43) need not
require � < 1 while in [2] and [10] such a requirement is needed when
(42) is satisfied.

Remark 4: When the time-varying delay h(t) is a continuous func-
tion satisfying for all t � 0

0 < h(t) � �h (44)

then, by using the Lyapunov–Krasovskii functional candidate

V (xt) = x(t)TPx(t) +

0

�

�h

t

t+�

_x(�)TZ _x(�)d�d�

we can deduce that (�1) is asymptotically stable for any delay h(t)
satisfying (44) if there exist matrices P > 0, Z > 0, Y and W such

that the following LMI holds:

PA+ATP+Y +Y T PAh�Y +WT
��hY �hATZ

AT
hP�Y

T+W �W�WT
��hW �hAT

hZ

��hY T
��hWT

��hZ 0
�hZA �hZAh 0 ��hZ

<0:

(45)

It is easy to show that the corresponding stability conditions in [2] and
[11] are special cases of (45). Therefore, they are more complicated
than (45). Also, when the time-delay is differentiable and satisfies (42),
it is easy to see that (43) is less conservative than (45). When the time-
varying delay is continuous and (44) is satisfied, it is easy to see that
we can only resort to (45) to check its stability.

III. CONCLUSION

This note has theoretically established that a number of LMI-based
delay-dependent stability criteria obtained in recent years are equiva-
lent. It has been shown that there are redundant variables in some of
these stability criteria which can be removed while maintaining the ef-
fectiveness of the stability condition. The additional variables in LMIs
sometimes improve the robust stability results for the case of time-
delay systems with parameter uncertainties.
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