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On Equivalence of Data Informativity for
Identification and Data-Driven Control of

Partially Observable Systems
Tomonori Sadamoto, Member, IEEE

Abstract— This study shows that the informativity for the
identification of partially observable systems is equivalent
to that for designing dynamical measurement-feedback sta-
bilizers. This finding is entirely different from the input-state
case, where the direct data-driven design of state-feedback
stabilizers requires less informativity than system identifi-
cation. We derive the equivalence between the two types of
informativity based on a newly introduced vector autore-
gressive with exogenous input (VARX) framework, which
is suitable for time-domain analyses such as state-space
models while directly representing input–output charac-
teristics such as transfer functions. Moreover, we show a
duality between the characterization of all VARX models
explaining data and that of all VARX controllers stabilizing
such VARX models.

Index Terms— Data Informativity, Data-Driven Control,
System Identification, Partially Observable Systems

I. INTRODUCTION

Data-driven methodologies for control can be classified into
indirect and direct approaches. Indirect approaches have a two-
step design consisting of system identification [1] from data
and the application of model-based controller design methods
such as optimal control [2], whereas direct approaches [3],
[4] aim to design controllers directly from data without the
identification process.

Many studies have compared these two approaches from
several perspectives. For example, [5] bridges them through
a multi-criteria formulation with a trade-off between system
identification and control objectives when sufficient data are
available. From a different perspective, several studies have
investigated the sample complexity [6] of system identification
[7], [8] and data-driven linear quadratic regulator (LQR)
design [9]. Furthermore, [10] compares direct and indirect
model predictive control (MPC) in terms of sample complexity
and control performance. These sample complexity analyses
derive the upper bounds of identification error and control per-
formance; however, they do not reveal the necessary amount
(i.e., the lower bounds) of data for achieving the desired
performance.

Of relevant to this article, we note a paper [11] that
reveals the informativity of input-state data for performing
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direct and indirect approaches. Their findings are two-fold: the
informativity (i.e., the amount of data) for direct LQR designs
must be equivalent to that for identifying the true system,
however, the informativity for the direct design of stabilizers
can be less. Based on these findings, extensions to suboptimal
control [12] and multiple-dataset-driven design [13] have been
proposed. However, the informativity framework is limited to
input-state systems.

In this study, we investigate the informativity for the identi-
fication of partially observable systems and that for designing
dynamical measurement-feedback stabilizers. We show that
these two must be equivalent. This finding is completely differ-
ent from the input-state case in [11] and provides a theoretical
justification for imposing the strong persistency of excitation
conditions [14] in both direct and indirect approaches to par-
tially observable systems. In the derivation of the equivalence,
a newly developed vector autoregressive with exogenous input
(VARX) framework plays a central role. The VARX model,
which is an alternative description of a discrete-time system
as a linear combination of finite-length input–output histories,
has been proposed in the context of system identification.
Because the VARX model of multiple-input multiple-output
(MIMO) systems must be redundant in general, it has been
thought that the representation is not entirely suitable for
identification. On the contrary, we show that any minimal
state-space model can be equivalently described as a VARX
model obtained by projecting the redundant history dynam-
ics onto their reachable subspace. Moreover, we show that
the problem of designing dynamical measurement-feedback
controllers for partially observable systems is equivalent to
that of designing state-feedback (in other words, input-output
history-feedback) controllers for VARX models. Based on
these findings, we provide a necessary and sufficient condition
for data by which the true system can be uniquely identified.
Furthermore, incorporating the informativity framework of [1]
with the VARX framework shows that the above two types
of informativity are equivalent. Interestingly, we discover a
duality between the characterization of all VARX models
explaining data and that of all VARX controllers that stabilize
such VARX models.

The remainder of this paper is organized as follows. Section
II describes the problem settings and our main claim as a
theorem. Section III introduces the VARX framework. Section
IV presents a characterization of informativity for system
identification. Section V presents the proof of the theorem

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3202082

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2 TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2022

stated in Section II. Moreover, we show a dual relation
between the characterization of all VARX models explaining
data and that of all VARX controllers that stabilize such VARX
models. Section VI concludes this paper.

Notation: We denote the set of n-dimensional real vectors
as Rn, the set of n-dimensional complex vectors as Cn, the
set of natural numbers as N, the range space spanned by the
column vectors of P as imP , the rank of the matrix P as
rankP , the Moore–Penrose inverse of P as P †, the set of
eigenvalues of P as λ(P ), the dimension of a vector space
X as dim(X), the n-dimensional identity matrix as In, and
the n-by-m zero matrix as 0n×m. The subscript n (resp.
n × m) of In (resp. 0n×m) is omitted if obvious. Given a
matrix, entries having a value of zero are left blank, unless this

causes confusion. For example, M =

[
M11 M12

M21 M22

]
, where

M11 ̸= 0, M22 ̸= 0, M12 ̸= 0, and M21 = 0, is described as

M =

[
M11 M12

M22

]
. Given a full-column rank matrix P ∈

Rn×m satisfying PTP = I , P ∈ Rn×(n−m) is defined such
that [P P ] is unitary. An n-dimensional state-space model Σ :
xt+1 = Axt+But and yt = Cxt+Dut is said to be stable if
all absolute values of the eigenvalues of A are less than 1. Fur-
ther, given L ∈ N, we define RL(Σ) := [AL−1B, . . . , AB,B],
OL(Σ) := [CT, (CA)T, . . . , (CAL−1)T]T, and

HL(Σ):=


D

CB
. . .

...
. . . . . .

CAL−2B · · · CB D

 .

In particular, we denote the reachability matrix of Σ as
R(A,B) := Rn(Σ). Given two systems Σ and K, the closed-
loop system composed of these is denoted as (Σ,K). The
set of given data {xt1 , . . . , xt2} is denoted by {x}t1t2 , and the
stack of xk for k ∈ [t1, t2] is given by [x]t1t2 := [xT

t1 , . . . , x
T
t2 ]

T.
The set of the infinite sequence xT , xT+1, · · · is denoted by
{x}t≥T .

II. PROBLEM SETTINGS AND MAIN RESULT

Let D := {u⋆, y⋆s }0N be a given dataset, where y⋆s is the
output of

Σs :

{
xs,t+1 = Asxs,t +Bsut

ys,t = Csxs,t
, xs ∈ Rn, ys ∈ Rr, u ∈ Rm

(1)
when u = u⋆. We assume that Σs is minimal. Further, we
assume N ≥ n. The case where a feedthrough term exists,
i.e., ys,t = Csxs,t +Dsut, will be discussed in Remark 4. In
this paper, the system Σs is referred to as the true system.

Data-driven designs of a controller stabilizing Σs can be
classified into two types: the indirect method, in which a model
explaining the dataset D is identified and model-based designs
are then applied, and the direct method, in which a controller is
designed directly from the dataset. However, the necessary and
sufficient conditions of D for identifying the true system and
for designing a stabilizing controller have not yet been studied.
Therefore, the present study aims to compare the conditions.

As a model explaining the dataset, let us consider

Σ :

{
xt+1 = Axt +But

yt = Cxt
, x ∈ Rn, y ∈ Rr, u ∈ Rm,

(2)
which is assumed to be minimal without loss of generality.
The set of Σ, i.e., the set of minimal n-dimensional systems
explaining D, can be defined as

Σi/o :=
{
Σ in (2) | ∃{x}0N s.t. {u, y}0N = D

}
. (3)

Under this setting, we define the informativity for system
identification as follows.

Definition 1. We state that D is informative for system iden-
tification if Σi/o = {Σs} up to the similarity transformation.

If D is informative for system identification, we can con-
struct a model Σ with input–output behavior that exactly
matches Σs, based on which we can design a measurement-
feedback minimally realized controller,

K :

{
ξt+1 = AKξt +BKyt
ut = CKξt

, ξ ∈ Rκ (4)

that stabilizes Σs. We assume κ ≤ n. However, it may be
possible to design a stabilizing controller K from D without
identifying the true system. To investigate this possibility, we
introduce the following informativity.

Definition 2. We state that D is informative for stabilization
by measurement feedback if there exists K in (4) such that
Σi/o ⊆ ΣK , where

ΣK := {Σ in (2) | (Σ,K) is stable} . (5)

If D is informative for stabilization by measurement
feedback, the controller K can stabilize any minimal n-
dimensional system explaining D. Hence, if there exists a
situation where D is informative for measurement feedback
but not for system identification, the amount of data required
for the aforementioned direct approach can be less than that
required for the indirect approach. However, the following
theorem shows that such situations do not exist.

Theorem 1. A given D is informative for stabilization by
measurement feedback if and only if it is informative for
system identification.

This theorem implies that the direct and indirect approaches
are equivalent in terms of the amount of data. This result is
different from the case for state-feedback control [11], where
the informativity for stabilization by state feedback was shown
to be less than that for system identification by using the
input-state data. To prove Theorem 1, in the next section, we
introduce a new mathematical tool called the VARX framework.

Remark 1. Any state-feedback controller cannot be repre-
sented as K in (4) because it does not have a feedthrough
term. Thus, even if Cs = I in (1), Theorem 1 does not include
the result in [11] as a special case.

Remark 2. The work [11] shows the necessity of Theorem 1:
if D is informative for system identification, then it is infor-
mative for stabilization by measurement feedback. In contrast,
our major contribution is to demonstrate its sufficiency.
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III. VARX FRAMEWORK

VARX models [15], especially for ARX models of single-
input single-output (SISO) systems [16], are alternative repre-
sentations of dynamical systems. We newly define the VARX
models with a slight modification as follows.

Definition 3. Given L ∈ N, consider

Σ̂ : yt = Σvt, vt :=

[
[u]t−L

t−1

[y]
t−L
t−1

]
, t ≥ L (6)

such that

vL ∈ V, V := {vt, t > L|∀{u}t>L, vL = 0}, (7)

where u ∈ Rm is the input, y ∈ Rr is the output, and
Σ ∈ Rr×L(m+r) is a parameter. We call Σ̂ and v an L-length
VARX model and L-length input-output history, respectively,
or simply a VARX model and history1, respectively.

In general, the pair {u, y} in (6) is not related to the input–
output pair of Σ in (2). However, these pairs can be identical
in a certain situation, as will be shown later. The set V in (7)
represents a reachable subspace of v for u under the condition
that the initial history is zero. Later we will show this as (14).
The condition (7) means that the initial history lies in the
reachable subspace. This condition is needed to relate VARX
and state-space models.

We note that Σ̂ is a dynamical system in the sense that the
output yt in (6) is used to define vt+1, and subsequently, vt+1

is used to generate yt+1. To express this recursive relation
explicitly, we show an equivalent state-space realization of (6)
as follows.

Lemma 1. The VARX model (6) is equivalent to

Σ̂ :

{
vt+1 = Φvt + Γut

yt = Σvt
(8)

where Φ := Ψ+ΘΣ, Θ = [0r×(Lm+Lr−r), Ir]
T,

Ψ=


I(L−1)m

0m×m

I(L−1)r

0r×r

 , Γ=

 Im

 .

(9)
By abuse of notation, we call (8) as a VARX model.

In addition, we introduce the notion of the essential dimen-
sion into the VARX model from the perspective of reachability.
Owing to the structure of Φ and Γ, it follows from a simple
calculation that

Lm ≤ rankR(Φ,Γ) ≤ Lm+ Lr. (10)

Based on this relation, we define the essential dimension of
the VARX model (8) as

ess.dim(Σ̂) := rankR(Φ,Γ)− Lm. (11)

It can be seen that the VARX model given by (8) can be
reduced to a lower-dimensional system, unless the essential
dimension is Lr. The following lemma summarizes this fact.

1Because the parameter and history depend on L, their symbols should be
Σ̂L and vt,L, respectively. However, to simplify the notation, we omit the
subscript L.

Lemma 2. Given a VARX model Σ̂ in (8), let n :=
ess.dim(Σ̂), where ess.dim(·) is defined as (11). Then, v
follows{

wt+1 = PTΦPwt + PTΓut

vt = Pwt
, wL := PTvL (12)

for any u, t ≥ L, and vL satisfying (7), where P ∈
R(Lm+Lr)×(Lm+n) satisfies

imP = imR(Φ,Γ), PTP = I. (13)

Moreover, V in (7) is described as

V = imR(Φ,Γ). (14)

Proof: From the definition of the essential dimension, P
satisfies (13). Let

w := PTv, w := P
T
v. (15)

Then, (8) can be written as[
wt+1

wt+1

]
=

[
PTΦP PTΦP

P
T
ΦP P

T
ΦP

] [
wt

wt

]
+

[
PTΓ

P
T
Γ

]
ut.

The equivalence between (7) and (14) is clear. From (13) and
(14), we have P

T
ΦP = 0, P

T
Γ = 0, and wL = 0. Hence,

wt ≡ 0 for t ≥ L. Thus, the lemma follows. □
Under these settings, we introduce the notion of consistency

as follows.

Definition 4. We state that Σ in (2) (resp. Σ̂ in (6)) is
consistent with Σ̂ (resp. Σ) if

∃{x}t≥0,
∀{u, y}t≥0 s.t. (6) and (7) hold. (16)

A pair {Σ, Σ̂} satisfying (16) is called a consistent pair.
Moreover, a consistent pair {Σ, Σ̂} such that dim(Σ) =
ess.dim(Σ̂) = n is an n-dimensional consistent pair.

The relation in (16) implies that the output of Σ̂ is identical
to that of Σ for any common input u. In other words, a
consistent pair {Σ, Σ̂} represents the same dynamical system.
Next, we present characterizations of consistency.

Lemma 3. Given a L-length VARX model Σ̂ in (8), let n :=
ess.dim(Σ̂), where ess.dim(·) is defined as (11). Then, any
minimal Σ that is consistent with Σ̂ can be written in the form
of (2) with

A = P ′†A′P ′, B = P ′†B′, C = C ′P ′, x0 = P ′†x′
0. (17)

Here, P ′ ∈ RLr×n is a full-column rank matrix such that
imP ′ = imR(A′, B′),

A′ :=


AL

I AL−1

. . .
...

I A1

, B′ :=


BL

...
B2

B1

, C ′ :=


0r×r

...
0r×r

I


T

x′
0 := V ′†[y]0L−1 − V ′†H ′[u]0L−1,

(18)
where Ai ∈ Rr×r and Bi ∈ Rr×m are partitions of Σ such that
Σ = [BL, · · · , B1, AL · · · , A1]. Additionally, V ′ := OL(Σ

′)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3202082

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4 TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2022

and H ′ := HL(Σ
′) with Σ′ : x′

t+1 = A′x′
t + B′u′

t, y′t =
C ′x′

t. Moreover, any such Σ satisfies

rankOL(Σ) = n. (19)

Proof: Note that V ′ is invertible. Hence, it follows from
the dynamics of Σ′ that

[y′]0L−1 = V ′x′
0 +H ′[u′]0L−1 = [y]0L−1 +H ′[u′ − u]0L−1

and

y′t = Σv′t, v′t :=

[
[u′]t−L

t−1

[y′]
t−L
t−1

]
, t ≥ L.

Hence, y′t ≡ yt if u′
t ≡ ut for any t ≥ 0. This implies that

there exists {x′}t≥0 for any {u, y}t≥0 following (6). In the
following, we assume that u′ ≡ u, without loss of generality.

Let n′ := dim(imR(A′, [B′, x′
0])). Then, there exists a full-

column rank matrix P ′ ∈ RLr×n′
and ζt ∈ Rn′

such that
x′
t = P ′ζt for any u and t. Because x′

0 depends on {u, y}0L−1,
the value of n′ can vary depending on {u, y}0L−1. We show
that n′ = n for any {u, y}0L−1 satisfying (7). It follows from
the dynamics of Σ′ that

vt = v′t = Ξ′
[

[u]t−L
t−1

ζt−L

]
, Ξ′ :=

[
I
H ′ V ′P ′

]
(20)

for any u, ζ, and t ≥ L. Because of the reachability of ζ, the
history vt can be any element of imΞ′ for any t ≥ L. On the
other hand, from (8), vt can be any element of imR(Φ, [Γ, vL])
for any t ≥ L. Thus, we have

imΞ′ = imR(Φ, [Γ, vL]) = imR(Φ,Γ)

because vL ∈ imR(Φ,Γ). This relation implies that the
reachable subspace of the VARX model Σ̂ in (8) is imΞ′.
Additionally, rankΞ′ = Lm + n′. Hence, rankR(Φ,Γ) =
Lm + n′. Therefore, it follows from (11) that n′ = n. Note
that this holds even for x′

0 = 0. Hence, from the definition,
P ′ satisfies imP ′ = imR(A′, B′).

Moreover, Σ′ is observable because V ′ is invertible. There-
fore, a minimal realization of Σ′ can be written in the form
of a (2). Because any n-dimensional minimal realizations of a
given system are equivalent up to the similarity transformation
[17], the lemma follows. □

Lemma 3 shows that Σ is consistent with a given VARX
model Σ̂. The next lemma shows the opposite characteristic.

Lemma 4. Given Σ in (2), let L be given such that (19) holds.
Then, any L-length VARX model Σ̂ that is consistent with Σ
can be written in the form of (6) with

Σ = Σ0 + Σ̄, (21)

where

Σ0 :=
[
C(RL(Σ)−ALO†

L(Σ)HL(Σ)), CALO†
L(Σ)

]
(22)

and Σ̄ ∈ Rr×L(m+r) satisfies kerΣ̄ = imR(Ψ+ΘΣ0,Γ) with
Ψ, Θ, and Γ in (9). Moreover, any Σ̂ satisfies

n = ess.dim(Σ̂). (23)

Proof: We first show that Σ̂ with Σ = Σ0 satisfies (16).
It follows from (2) that

xt = ALxt−L +RL(Σ)[u]t−L
t−1 , (24)

[y]
t−L
t−1 = OL(Σ)xt−L +HL(Σ)[u]t−L

t−1 . (25)

From (19), note that there exists O†
L(Σ) such that

O†
L(Σ)OL(Σ) = I . Hence, from a simple calculation, any

{u, y}t≥0 satisfying (2) follows (6) with Σ = Σ0. Using the
same procedure as in the proof of Lemma 3, we can see that
vt in (8) satisfies

vt ∈ imΞ, t ≥ L, Ξ :=

[
I

HL(Σ) OL(Σ)

]
. (26)

In addition, vt can be any element of imΞ because of the
reachability of x. This implies that

imΞ = imR(Ψ + ΘΣ0,Γ).

Thus, Σ̂ with Σ = Σ0 satisfies (16). Because Σ̄vt ≡ 0 for any
vt, any Σ̂ with Σ in (21) satisfies (16). Conversely, if there
exists a Σ that cannot be written as (21), the corresponding
Σ̂ does not satisfy (6). Therefore, the parameter Σ of any Σ̂
that is consistent with Σ has the form of (21). Finally, because
rankΞ = Lm+n, the relation (23) holds. This completes the
proof. □

Because the outputs of Σ and Σ̂ are identical if they are
consistent, the eigenvalues of A in (2) and of Φ in (8) should
be related. The following lemma demonstrates this fact.

Lemma 5. Consider an n-dimensional consistent pair {Σ, Σ̂}
in Definition 4. Then,

λ(PTΦP ) = λ(A) ∪ {0, . . . , 0}, (27)

where P is defined in (13).

Proof: For i ∈ {1, . . . , n}, let λi ∈ C and νi ∈ Cn be
the i-th eigenvalue and eigenvector of A. Suppose ut ≡ 0 for
t ≥ 0, and x0 = νi. Then, yt = λt

iCνi. Thus, it follows that

vt =

[
[u]t−L

t−1

[y]
t−L
t−1

]
= λt−L

i πi, t ≥ L

where πi := [01×Lm, (Cνi)
T, · · · , λL−1

i (Cνi)
T]T. Then, w in

(15) can be described as wt = λt−L
i PTπi for t ≥ L. Because

(12) holds, we have

λiP
Tπi = wL+1 = PTΦPwL = (PTΦP )PTπi,

which implies that λi is an eigenvalue of PTΦP .
Next, we show that the eigenvalues of PTΦP other than

λ(A) are all zero. Let µi be such an eigenvalue, i.e., µi ∈
λ(PTΦP )\λ(A), and let ωi be the corresponding eigenvector.
When wL = ωi and ut ≡ 0, it follows that

wt = µt−L
i ωi, t ≥ L. (28)

Because {Σ, Σ̂} is an n-dimensional consistent pair, (19)
follows. Hence, xt = Υvt holds, where

Υ := [RL(Σ)−ALO†
L(Σ)HL(Σ), ALO†

L(Σ)].

Therefore,
xt = µt−L

i ΥPωi, t ≥ L (29)
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holds. If ΥPωi ̸= 0, the relation (29) implies that µi and
ΥPωi are the eigenvalue and the corresponding right eigen-
vector of A. This is a contradiction to µi ∈ λ(PTΦP )\λ(A).
Thus, by reductio ad absurdum, ΥPωi = 0. Because Φ =
Ψ + (ΘCΥ + Σ̄), where Ψ, Γ, and Θ are defined in (8) and
Σ̄ is given by (21), we have

µiωi = PTΦPωi = PT(Ψ + Θ(CΥ+ Σ̄))Pωi = PTΨPωi,

where the property kerΣ̄ = imP is used to derive the last
equation. Hence, µi is an eigenvalue of Ψ. Because Ψ is
nilpotent, µi = 0. This completes the proof. □

A relation similar to Lemma 5 also holds for closed-loop
systems. Consider a κ-dimensional consistent pair {K, K̂},
where K has the form of (4), while

K̂ : ut = Kvt, t ≥ L. (30)

We call the control (30) an input–output–history (IOH) feed-
back. Note that (12) holds for n-dimensional consistent pairs
{Σ, Σ̂}. Thus, the closed-loop (Σ̂, K̂) is described as

(Σ̂, K̂) :

{
wt+1 = PT(Φ + ΓK)Pwt

vt = Pwt
, wL := PTvL

(31)
for t ≥ L. On the other hand, the closed loop (Σ,K) is
described as:

(Σ,K) : xcl,t+1 = Aclxcl,t, yt = Cy
clxcl,t, ut = Cu

clxcl,t,

where

Acl :=

[
A BCK

BKC AK

]
, Cy

cl := [C 0], Cu
cl := [0 CK ].

(32)
From the definition of consistency, L satisfies rankOL(Σ) =
n and rankOL(K) = κ. Because of the consistency of {Σ, Σ̂}
and {K, K̂}, the history vt defined by (6), where u and y
follow (32), is identical to the output of (31). Therefore, we
have the following corollary of Lemma 5.

Corollary 1. Consider an n-dimensional consistent pair
{Σ, Σ̂} in Definition 4 and an κ-dimensional consistent pair
{K, K̂}, where K and K̂ are defined by in (4) and (30),
respectively, and Acl is defined by (32). Then, it follows that

λ(PT(Φ + ΓK)P ) = λ(Acl) ∪ {0, . . . , 0}. (33)

This corollary implies that the problem of designing
measurement-feedback dynamical controllers for state-space
models is equivalent to the problem of designing state-
feedback controllers for VARX models. An interesting exam-
ple is the case where κ ̸= n, which is described below.

Example 1. Consider a three-dimensional, single-input, two-
output system Σ in (2) with

A=

 0.5 0.3 0.3
0.1 0.6 −0.4
0.5 −0.2 0.2

, B=

−1.2
0

−1.4

, C=

 0 −0.6
2.2 1.1
−2.5 0.4

T

.

Let L = 2. Then, the condition (19) holds. Based on Lemma
4, we choose an L-length VARX model that is consistent with
the Σ in (6) with Σ = Σ0, where Σ0 is defined as (22).
Based on Lemma 1, we construct Φ ∈ R6×6 and Γ ∈ R6;
subsequently, we choose a matrix P ∈ R6×5 satisfying (13)

with the Gram–Schmidt process. Then, we design K ∈ R1×6

in (30) such that PT(Φ+ΓK)P has desirable poles as follows.
Let the poles be chosen as {0.2, 0.4, 0.6, 0.7, 0.9}. Using the
pole placement method, we can find a matrix KP ∈ R1×5

such that PTΦP +PTΓKP has the chosen poles. When K =
KPP

T, which in our case is

K = [0.1727 − 0.4115 − 0.0989 0.0276 − 0.4383 1.5],

it follows that

λ(PT(Φ + ΓK)P )=λ(PTΦ+ PTΓKP )={0.2, 0.4, 0.6, 0.7, 0.9}.

A state-space model K in (4) that is consistent with K̂ having
this K can be given as (17). In this example, the system
matrices are

AK =

[
0 −0.4383
1 1.5

]
, BK =

[
0.1727 −0.4115
0.09889 0.0276

]
, CK =

[
0
1

]T
,

where P ′ = I2 in (17). Then, we have

λ(Acl) = {0.2, 0.4, 0.6, 0.7, 0.9},

where Acl is defined in (32). This example shows that
for an n-dimensional dynamical system, we can construct
a lower-dimensional measurement-feedback dynamical con-
troller based on the standard pole placement method via the
VARX framework.

IV. INFORMATIVITY FOR SYSTEM IDENTIFICATION

The VARX framework is useful for system identification
because the VARX model Σ̂ in (6) has

• only one parameter Σ to be identified and
• a direct relation with input–output data.

Furthermore, we can see from Lemma 3 that identifying a
VARX model is equivalent to specifying a consistent state-
space model. Based on these observations, we characterize the
informativity for system identification in Definition 1. In the
following, we assume that D, i.e., the input–output data of the
true system Σs in (1), is given. Let n denote the dimensionality
of Σs. For L ∈ N, we define

V :=
[
v⋆s,L, . . . , v

⋆
s,N

]
, v⋆s,t :=

[
[u⋆]t−L

t−1

[y⋆s ]
t−L
t−1

]
. (34)

In addition, we define P as a full-column rank matrix such
that

imP = imV, PTP = I. (35)

Under these settings, we first introduce the following lemma.

Lemma 6. Consider V in (34) and Σi/o in (3). Then,

rankV ≤ Lm+ n, ∀N ∈ N, ∀ut ∈ Rm. (36)

Moreover, if there exists L ∈ N such that

rankV = Lm+ n, (37)

then it follows that

rankOL(Σ) = n, ∀Σ ∈ Σi/o. (38)
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Proof: It follows from (1) that

v⋆s,t = Ξs

[
[u⋆]t−L

t−1

x⋆
s,t−L

]
, Ξs :=

[
I

HL(Σs) OL(Σs)

]
(39)

holds for t ≥ L, where x⋆
s denotes the state of Σs when u⋆ is

applied. Because rankΞs ≤ Lm + n, (36) follows. Next, we
show (38). Similarly to (39), we have

vt = Ξ

[
[u]t−L

t−1

xt−L

]
, (40)

where Ξ is defined in (26). Because Σ ∈ Σi/o, it follows that

vt = v⋆s,t, t ∈ {L, . . . , N}

when {u}0N−1 = {u⋆}0N−1. Thus, it follows from (40) that

V = ΞW, W :=

[
[u⋆]0L−1 · · · [u⋆]N−L

N−1

x⋆
s,0 · · · x⋆

s,N−L,

]
. (41)

Because (37) holds, we have rankΞ = Lm+ n. This implies
(38) and completes the proof. □

We can see from (38) and Lemma 4 that for any Σ
explaining the data (as well as for Σs because Σs ∈ Σi/o),
there exists a consistent L-length VARX model. Moreover,
(36) implies that rankV cannot be larger than Lm+ n, even
for sufficiently large data samples N . Hence, the condition
(37) implies that all information of the true system’s behavior
is included in the dataset D. Hence, it can be seen that (37)
is a necessary and sufficient condition of informativity for
system identification. The following theorem shows that this
conjecture is true.

Theorem 2. Let vs := [([u]t−L
t−1 )

T, ([ys]
t−L
t−1 )

T]T, where ys is
defined in (1). Consider V in (34). The following are equiva-
lent:

i) There exists L ∈ N such that (37) holds.
ii) For any vs satisfying Σs, it follows that vs ∈ imV for L

such that rankOL(Σs) = n.
iii) D is informative for system identification.

Proof: We first show i) ⇒ ii). Let L be chosen such that
(37) holds. From Lemma 6, L satisfies rankOL(Σs) = n. It
follows from (39) that V = ΞsW , where W is defined in (41).
Thus, imV ⊆ imΞs. On the other hand, rankΞs = rankV =
Lm + n. Thus, imV = imΞs. Because vs ∈ imΞs follows
from (39), Property ii) follows.

Next, we show ii) ⇒ i). Let L be chosen such that
rankOL(Σs) = n. Property ii) is equivalent to stating that
there always exists θt such that vs,t = Vθt for any vs,t
satisfying Σs. As Σs is reachable, there exists {u}0N ′−1 such
that the response of Σs satisfies rankΞsW ′ = Lm+n, where

W ′ :=

[
[u′]0L−1 · · · [u′]N−L

N−1

xs,0 · · · xs,N−L

]
. (42)

Then, we have

ΞsW ′ = [vs,L, . . . , vs,N ′−1] = V[θL, . . . , θN ′−1].

As rankΞsW ′ = Lm+ n, Property i) follows.

In the remainder of this proof, we show the equivalence
between ii) and iii). To this end, we first show that if (38)
holds, then the error ỹ := y − ys follows

[ỹ]t−L+1
t =

[
[0, I(L−1)r]

Σy

]
[ỹ]t−L

t−1 +

[
(Σ− Σs)PPT

]
vs,t

(43)
for t ≥ L, where P is defined in (35) and Σy ∈ Rr×Lr

is defined such that Σ = [Σu,Σy]. It follows from (38) and
Lemma 4 that there exists a consistent L-length VARX model
Σ̂ in (6) for any Σ ∈ Σi/o. In the following, we denote an
L-length VARX model that is consistent with Σs as

Σ̂s : ys = Σsvs,

the output of Σ when u = u⋆ as y⋆, and

v⋆t :=

[
[u⋆]t−L

t−1

[y⋆]
t−L
t−1

]
, ṽt :=

[
0Lm×1

[ỹ]
t−L
t−1

]
.

Because Σsv
⋆
s,t = y⋆s,t = y⋆t = Σv⋆t holds for t ∈ {L, . . . , N},

we have
ΣsV = ΣV, (44)

or equivalently,

Σ = Σs + (Σ− Σs)PPT
. (45)

Using the relation vt = vs,t + ṽt, we have

ỹt = Σ(vs,t + ṽt)− Σsvs,t = (Σ− Σs)PPT
vs,t +Σṽt.

Then, we have Σṽt = Σy[ỹ]
t−L
t−1 . Using this representation, the

dynamics of ỹ can be written as (43).
We now show ii) ⇒ iii). Let L be chosen such that

rankOL(Σs) = n. Because ii) ⇔ i), (38) holds. Thus, ỹ
satisfies (43). Moreover, Property ii) is equivalent to

PT
vs,t = 0, ∀ut ∈ Rm, ∀t ≥ L. (46)

Thus, (43) is an autonomous system driven by [ỹ]0L−1. If
[ỹ]0L−1 = 0 holds, then it follows from (43) that

ỹt ≡ 0, ∀ut ∈ Rm, ∀t ≥ 0, (47)

which shows Property iii). Hence, we show that [ỹ]0L−1 = 0.
Note that (25) holds for t = L and u = u⋆. Thus, we have
OL(Σ)x0 = [y⋆s ]

0
L−1 −HL(Σ)[u⋆]0L−1. Therefore,

[y]0L−1 = OL(Σ)x0 +HL(Σ)[u]0L−1

= [y⋆s ]
0
L−1 +HL(Σ)([u]0L−1 − [u⋆]0L−1).

Similarly, it follows from (1) that [y⋆s ]
0
L−1 = OL(Σs)xs,0 +

HL(Σs)[u
⋆]0L−1. Thus, we have

[ys]
0
L−1 = OL(Σs)xs,0 +HL(Σs)[u]

0
L−1

= [y⋆s ]
0
L−1 +HL(Σs)([u]

0
L−1 − [u⋆]0L−1).

Hence, [ỹ]0L−1 = (HL(Σ)−HL(Σs))([u]
0
L−1− [u⋆]0L−1). The

relation (43) with (46) implies that the transfer function from
u to ỹ is exactly zero. Hence, HL(Σ) = HL(Σs). Thus,
[ỹ]0L−1 = 0, and Property iii) follows.
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Finally, we show iii) ⇒ ii). Let L satisfy rankOL(Σs) =
n. Then, Property iii) implies (38). Hence, ỹ satisfies (43).
Moreover, because (47) follows from Property iii), we have

(Σ− Σs)PPT
vs,t ≡ 0, ∀ut ∈ Rm, ∀t ≥ L,

which is equivalent to

(Σ− Σs)PPT
= 0, or (46).

Because (45) holds, the first condition becomes Σ = Σs.
However, because of Lemma 4, this does not hold in general.
Hence, (46) holds, implying Property ii). This completes the
proof. □

Theorem 2 shows the necessary and sufficient condition
for the data by which the true system is identifiable. One
may consider that Property i) is the same as the well-known
sufficient condition for subspace identification [1], i.e., the
existence of an even number L satisfying (37) and

rankOL/2(Σs) = n. (48)

However, Property i) is more relaxed than this condition. For
comparison, we consider a situation where Σs is a SISO
system. Let LSYSID := 2n, which is the minimum L that
satisfies (48). Because V ∈ R2L×(N−L+1) and m = 1, to
satisfy (37), we need N − LSYSID + 1 ≥ LSYSID + n, or
equivalently, N ≥ 5n + 1. On the other hand, let Ls := n,
which is the smallest L that satisfies rankOL(Σs) = n. In this
case, N − Ls + 1 ≥ Ls + n, or equivalently, N ≥ 3n + 1 is
required to satisfy (37). Therefore, the number of data samples
for Property i) is less than that required to satisfy the well-
known sufficient condition.

Remark 3. Property ii) has been shown in some studies
on data-driven control such as [11], [14]. In contrast to
these studies, we connect it to the informativity for system
identification.

Remark 4. A generalization of Theorem 2 to the case where
Σs has a feedthrough term (i.e., ys,t = Csxs,t + Dsut) can
be described as follows. Let vs := [([u]t−L

t )T, ([ys]
t−L
t−1 )

T]T.
Then, Properties ii)–iii) presented above and the existence
of L ∈ N satisfying rankV = (L + 1)m + n are equiva-
lent. This claim follows by replacing v in Theorem 2 with
[([u]t−L

t )T, ([y]t−L
t−1 )

T]T.

Remark 5. The characterization shown in Remark 4 is the
same as the result of [18], where the derivation is described
in the language of behavioral theory. In contrast, we present
an alternative proof based on state-space realizations. Conse-
quently, we will find a duality between the characterization
of all VARX models explaining data and that of all VARX
controllers that stabilize such VARX models; please see the
end of Section V.

V. PROOF OF THEOREM 1
This section proves Theorem 1 through the VARX frame-

work introduced in Section III. Similar to the previous section,
we assume that D is given, and we let n := dim(Σs). For
L ∈ N, we consider a VARX model K̂ in (30), the essential
dimensionality of which is denoted by κ. From Lemma 3,

there exists a consistent κ-dimensional model K in the form
of (4). Let

V+ := [v⋆s,L+1, . . . , v
⋆
s,N+1], U := [u⋆

L, . . . , u
⋆
N ]. (49)

Following [11], we define

Σ̂u/v := {(Φ,Γ) | V+ = ΦV + ΓU , rankR(Φ,Γ)− Lm = n}

Σ̂K̂ :=
{
(Φ,Γ) | PT(Φ + ΓK)P is stable,

where P is in (13), rankR(Φ,Γ)− Lm = n} . (50)

Note that Σ̂K̂ is independent of P because the eigenvalues of
PT(Φ+ΓK)P are invariant with respect to P satisfying (13).
In addition, because Φ ∈ R(Lm+Lr)×(Lm+Lr), when L ≤ n/r,
the sets Σ̂u/v and Σ̂K̂ are empty. Using these notations, we
define the following type of informativity.

Definition 5. Given L ∈ N, we state that D is informative for
stabilization by L-length IOH feedback if there exists K̂ in
(30) such that Σ̂u/v ⊆ Σ̂K̂ .

Similar to the discussion in [11], a necessary condition of
the informativity for stabilization by L-length IOH feedback
can be summarized as follows.

Lemma 7. Given L ∈ N, we assume that D is informative for
stabilization by L-length IOH feedback. Let K̂ be a controller
such that Σ̂u/v ⊆ Σ̂K̂ . Then, (37) holds.

Proof: Let (Φ,Γ) be an entry of Σ̂u/v, and let P be
chosen such that (13) is satisfied. From this assumption, F :=
PT(Φ + ΓK)P is stable. We define

Π̂u/v := {(Φ0,Γ0) | 0 = Φ0V + Γ0U} (51)

and F0 := PT(Φ0 + Γ0K)P . For any α ≥ 0, we have F +
αF0 = PT(Φ̃ + Γ̃K)P , where Φ̃ := Φ + αΦ0 and Γ̃ := Γ +
αΓ0. Because Φ̃V + Γ̃U = V+, it follows that (Φ̃, Γ̃) ∈ Σ̂u/v.
Hence, from the definition of K̂, F + αF0 is stable for any
α ≥ 0. Dividing by α, it follows that for all α ≥ 1, the spectral
radius of the matrix Mα := F/α + F0 is smaller than 1/α.
From the continuity of the spectral radius by taking the limit as
α → ∞, we see that F0 is nilpotent for any (Φ0,Γ0) ∈ Π̂u/v.
Note that

(QΦ0, QΓ0) ∈ Π̂u/v (52)

for any (Φ0,Γ0) ∈ Π̂u/v and Q. It follows that (QΦ0, QΓ0) ∈
Π̂u/v, and thus, PT(QΦ0 + QΓ0K)P is also nilpotent. Let
Q = (Φ0 + Γ0K)TPPT. Then, it follows that PT(QΦ0 +
QΓ0K)P = FT

0 F0 is nilpotent. Because the only symmetric
nilpotent matrix is the zero matrix, F0 = 0, or equivalently,

PT[Φ0 Γ0]

[
P
KP

]
= 0, ∀(Φ0,Γ0) ∈ Π̂u/v. (53)

We will show that this is equivalent to

im

[
P
KP

]
⊆ im

[
V
U

]
. (54)

The necessity is clear. To demonstrate the sufficiency, we
assume (53). Because (52) holds even when Q = P , (53)
yields

[Φ̌0 Γ̌0]

[
P
KP

]
= 0, ∀(Φ̌0, Γ̌0) ∈ Π̂u/v
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where Φ̌0 := PTΦ0 and Γ̌0 := PTΓ0. This yields (54).
Finally, (54) yields

imP ⊆ imV. (55)

Because rankP = Lm+ n and (36) holds, (55) is equivalent
to (37). This completes the proof. □

Based on this lemma, we show the proof of Theorem 1 as
follows.

Proof of Theorem 1: Suppose that D is informative for
system identification. Because Σs is reachable, there exists
K such that (Σs,K) is stable. From Definition 1, D is
informative for measurement feedback.

In the following, we show the sufficiency. Suppose that D
is informative for measurement feedback. Let L be chosen as
the smallest value such that

rankOL(Σ) = n ∀Σ ∈ Σi/o ∪ΣK , ∧ rankOL(K) = κ.
(56)

Since κ ≤ n, L satisfies L ≤ n. Hence, V , V+ and U in (50)
are not empty because N ≥ n. Then, from Lemma 4, there
exists Σ̂ in (8) (resp. K̂ in (30)) that is consistent with Σ for
any Σ ∈ Σi/o ∪ΣK (resp. K). Thus, from Corollary 1,∪

Σ∈ΣK

{n-dim. Σ̂ being consistent with Σ} = Σ̂K̂ (57)

holds. Similarly, we have∪
Σ∈Σi/o

{n-dim. Σ̂ being consistent with Σ} = Σ̂u/v. (58)

Therefore, D is informative for stabilization by L-length IOH
feedback, and K̂ is such a controller. Thus, from Lemma
7, we have (37). This implies that Property i) in Theorem 2
holds. Hence, D is informative for system identification. This
completes the proof. □

Theorem 1 implies that finding a system that explains D
is equivalent to finding a controller that stabilizes all systems
explaining D in terms of data informativity.

We conclude this section by showing a duality between the
former model and the latter controller in the VARX framework.
Suppose that D is informative for stabilization by L-length
IOH feedback. From Lemma 7, (37) and (54) hold. Because
(35) holds, we have imP ⊆ imP . Because rankP = Lm+n
and (36) holds, the equality holds, i.e.,

imP = imP. (59)

Therefore, we assume that P = P without loss of generality.
Then, (54) can be written as

im

[
P
KP

]
= im

[
PPT

KPPT

]
⊆ im

[
V
U

]
. (60)

Therefore, any controller K̂ in (30) that stabilizes all systems
explaining D satisfies

KPPT = UVR, (61)

where VR is a full-column rank matrix that satisfies VVR =
PPT. On the other hand, because D is informative for system
identification, any VARX model Σ̂ in (6) satisfies (44). By
postmultiplying (44) with VR, we obtain

ΣPPT = YVR, (62)

where Y := [y⋆L, . . . , y
⋆
N ]. Equations (61) and (62) show a dual

relationship between models that explain D and controllers
that stabilize all systems explaining D.

VI. CONCLUSION

In this study, we showed that the informativity for the
identification of partially observable systems must be equiv-
alent to that for designing dynamical measurement-feedback
stabilizers. This finding is entirely different from the input-
state case in [11] and provides theoretical justification for
imposing the strong persistency of excitation conditions [14]
in both direct and indirect approaches to partially observable
systems. Moreover, we showed a duality between the charac-
terization of all VARX models explaining data and that of all
VARX controllers that stabilize such VARX models. Future
works include the extension of the results to nonlinear (and/or
stochastic) systems based on the developed VARX framework.
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