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Introduction

Let D be a Siegel domain of the second kind. If Aut (D) is so “small”
that Aut (D) = AfF(D), the domain D can be equivariantly imbedded as an
open set of complex projective space. In the case where Autz (D) is the “lar-
gest”, i.e., the domain D is symmetric, D can be also equivariantly imbedded
as an open set of the hermitian symmetric space of compact type dual to D.
Therefore it is natural to ask whether there exists an equivariant open imbedd-
ing of a Siegel domain D to a compact complex homogeneous space M. In
this paper, we shall prove the following:

(@) If there exists an open equivariant imbedding of D to M, then
M must be a hermitian symmetric space of compact type (Theorem 8).

(0) D can be equivariantly imbedded as an open set of P"(C) if and
only if Aut(D) =Aff (D) or D is holomorphically equivalent to a disk
(Theorem 9).

(¢) There exists a Siegel domain which does not admit open equiva-
riant imbeddings to compact complex homogeneous spaces (§6).

Throughout this paper, we use the following notations: Auwut (M) means
the group of all holomorphic transformations of a complex manifold M. For
a real vector space or a real Lie algebra V, V° denotes its complexification.
We denote by Gr(W,r) the complex grassmann manifold consisting of all
r-dimensional subspaces of a complex vector space W.

§ 1. Homogeneous spaces associated with complex graded Lie
algebras of certain type

Let /4 be a totally ordered abelian group which satisfies the following
conditions;

* Partially supported by The Sakkokai Foundation.
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a>f if and only if a—3>0.
a>0 if and only if —a<<0

Let g be a finite dimensional complex Lie algebra and let {g,}.cu be a
family of subspaces of g satisfying

g= D §. (direct sum)
=

[gm gBJ c ga+ﬂ .
We further assume that there exists a,<0 such that

For Xeg., a<a,, the condition “[X, g,] =0 implies X=0;
1
M b= g is a subalgebra of g.

a>a,

Under these conditions we shall prove the following

Theorem 1. Let G be a connected Lie group with the Lie algebra g
and let B be any Lie subgroup of G with the Lie algebra b. Then

(i) B is closed and connected.

(i) The homogeneous space G/B is simply connected.

Proof. We set B¥={aeG; Adab=0}. Then B* is a closed subgroup
of G containing B. From the condition (1), we can show that the Lie algebra
of B* coincides with b. Therefore the group B is closed in B* and hence

closed in G. We put n= 3 g, Clearly 1 is a nilpotent subalgebra. We
aga,
assert that the mapping moexp is an imbedding of n into G/ B, where 7 denotes

the natural projection of G onto G/B. Let N be a connected subgroup of G
corresponding to the subalgebra n. It is sufficiant to prove that NN B= {e},
¢ denoting the unit element in G. Let a& NN B. Since N is nilpotent, there

exists X&n such that exp X=a. We can write X= Y] X,. Forany Yeg,,
aSa,

Ad(exp X) YED. Suppose that X,=0 for a>a’ and X,.0. Then the g,
part of Ad(exp X)Y is equal to [X,., Y]. Hence [X,., Y] =0 for any Yeg,.
It follows that X, =0 by (1), contradicting the assumption X,.<0. Thus we
get X =0, proving our assertion.

We set N'=moexptt. N’ is an open orbite of N through the origin o of
G/B. Let C be the union of all singular orbites of N and let (Xf, ---, X¥)
be a family of holomorphic vector fields on G/B corresponding to a base
(X, -+, X;) of n. Then the subset C of G/B is defined by the equation
XFEN---ANXF=0. Therefore G/B—C is connected and hence coincides with N’.
Let B, be the identity component of B. Then G/B, is a covering space of
G/B. We denote by p the covering map of G/B, to G/B. It is clear that the
open (resp. a singular) orbite of N in G/B, is mapped by p to the open (resp.
to a singular) orbite in G/B. On the other hand p is a homomorphism on
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the open orbite because moexp is an imbedding on n. Therefore G/B,=G/B
and hence B,= B.

Let G be the universal covering group of G and let @ be the covering
map of G to G. We now know that @ !(B) is closed and connected. There-
fore G/B=G/w*(B) is simply connected. g.e.d.

§ 2. Siegel domains and equivariant holomorphic mappings

Let D be a Siegel domain of the second kind due to Pyatetski-Shapiro
[6] and let G(D) be the identity component of Auz(D). Denote by g(D)
the Lie algebra of G(D). For each Xeqg(D), X* means the vector field
on D generated by {exp tX},cxg. Then the correspondence: X—X* can be
extended to an injective linear mapping of g(D)° to the space of all vector
fields on D by putting ( —1X)*=JX* for Xeg (D), where J denotes the
complex structure on D. It is easy to see that for any point z2€ D, T,(D)
={X}; Xeg(D)}.

We set

) b, ={Xeg(D)*; X¥=0}.

Then b, is a complex subalgebra of g(D)° and dim b, is constant for any z& D.
Therefore the assignment: z—b, gives a holomorphic mapping @ of D into
Gr(g(D)¢,r), where r=dim b,.** The group G(D) acts on Gr(g(D)%,7)
by its adjoint representation. Clearly

3 O(az) =Ada®(z) for aeG(D) and 2z D.

Let M be a complex manifold such that Awut(M) is a Lie group. A
holomorphic mapping f of D to M will be called equivariant if there exists
a homomorphism t of G(D) to Aut(M) such that

) flap) =t(@)f@) for acG(D) and pD.

By (3) the mapping @ is equivariant.

Let f be a equivariant holomorphic mapping of D into M with a homomor-
phism t: G(D)—Aut(M). We now assume that Auwut (M) is a complex Lie
group and denote by g (M) the Lie algebra of Aut(M). Let r, be the homo-
morphism of g(D) to g (M) induced by r. The mapping r, can be extended
to a homomorphism of g (D)° to g(M) complex linearly, which is denoted by
the same letter r,. It follows that

®) FaX¥=(r  X)* for Xeg(D),

where (74,X)* denotes the vector field on M corresponding to r,Xeg(M).

*#) J. Hano [1] constructed the mapping @ for an effective homogeneous space G/K with an
invariant complex structure and the non-degenerate canonical hermitian form.
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Lemma 2. The equation (5) holds for Xeg(D)".
Proof. We set X=X +v/—-1X(X,, X,eq(D)). Then f,X*=f, (XF

+JX¥) =fo XF+ T £ X¥, where J' denotes the complex structure on M. On
the other hand (7, X) * = (7, X)) *+ (V =17, Xp) * = (0. X) ¥+ J (r,. Xp) *. q.e.d.

Proposition 3. Let z&D and let B’ be the isotropy subgroup of
Aut (M) at f(z). Then f(D)C Aut(M)/B'.

Proof. For any 2’€ D, there exist py p,, =+, puED, ¢, -+, t,ER and
X, -, XneEg(D)° such that

p():z’ szz/,
pi=exp t,XF () 1<i<m,

{exp tX}} denoting the one parameter group of local transformations of D
generated by the vector field X¥. It follows by Lemma 2

f (&) =f(exp taX3 (Pr-1))

=exp tmf*Xm of (Pr-1)
=eXp £, Ty Xpno - 0exp £ T4 X;0f (%) q.e.d.

§ 3. The mapping @ and Tanaka’s imbeddings
The Lie algebra g(D) has a graded structure such that (cf. [2])
g(D) =g-2+g-1+go+Gi+g ¥
Let E and I are elements in g, as in §1 of [3]. We set
0_1=95+{X—v—-1[1 X]; Xeg_,}

Oo=A{X++—1[L X]; XEg_} +gi+ {Y—+/—1[L Y]; Yeg}
0,={Y++/—-1[L Y]; Yeg.} +a

(6)

Ho=%(E+¢——11).

Then
g(D)°=0_,40,+0, (direct sum)
) [0, 0.] € 6s4
0,={Xeg (D) [Hy, X] =X} 1=—1,0,1.

Let G° be the adjoint group of g(D)°. Since G(D) is centerless ([2]),

*#¥) Our suspace @i corresponds to gz in [2].



Equivariant holomorphic imbeddings 475

G (D) is identified with a subgroup of G°. Define a closed subgroup B of G°
by

®) B={acG  a(0,+06,) =0,+0,}.

The Lie algebra of B coincides with 6,40, as is easily observed (cf. [8]).
Hence B is connected by Theorem 1. According to [3], we identify the domain
D with an open subset of 6_; and define a holomorphic mapping A of D onto
an open set of G°/B by putting

©) h(z) =moexpz z€D,

where 7 denotes the projection of G° onto G°/B. The map % is equivariant
(Lemma 2.4 in [3]) and called Tanaka’s imbedding. We now fix a point
z€D. Let B, be the isotropy subgroup of G° at A(2). Then from (9) we
obtain

10) B,=exp z-B- (exp 2) .

For any Xe&g(D)*, the vector field on G°/B generated by {exp tX},cp is
equal to X* on DCG°/B. Therefore from (2), the Lie algebra of B, coincides
with b,. Thus we get from (10),

11) b,= Ad exp 2(0,+0,).

The group G° acts on Gr(g(D)¢ r) in a natural manner. By (8), (10) and
(11), the isotropy subgroup of G° at @(2) is B,. It follows from Proposition
3 that @(D) is contained in the homogeneous space G°/B,. We define a
holomorphic diffeomorphism ¢ of G°/B onto G°/B, by

@(aB) =a(expz) 'B, acG"
Then the following equality holds;
(12) ¢(aq) =ap(q) for a€G’, q€G°/B.

Lemma 4. 0=goh.

Proof. Let ac€G(D). By (12), 0(az) =ad(2) =apoh(2) =¢oh(az).
Therefore @®=g¢oh on the orbite of G(D) through z. Since both ¢ and
@oh are holomorphic, we can conclude that @=g¢oh on D (cf. Lemma 2.5 in
[3h. q.e.d.

Corollary 5. @ is an imbedding of D.
We can now verify the following

Theorem 6. Let f be an equivariant holomorphic mapping of D into
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a complex manifold M. Assume that Aut(M) is a complex Lie group.
Then there exists a unique holomorphic mapping ¢: G°/B,—>M such that
SF=od.

Proof. The uniqueness follows from the fact that @ (D) is open in G°/B,.
Let G° be the universal covering group of G°and let r be the homomorphism
of G(D) to Aut (M) attaches to f. We denote by % the homomorphism of
G° to Aut (M) corresponding to the homomorphism 7, of g(D)® to g(M).
Let B, be the connected subgroup of G° with the Lie algebra b,. By Lemma
2, we see that for any XEb, (14 X)¥s =fxX*=0. Therefore #(B,) is contained
in the isotropy subgroup of Aut (M) at f(z). Hence 7 induces a holomorphic
mapping ¢ of G°/B, to M. We now set

H= Ad (exp 2) H,
a;=Ad(exp2)l, Ai=-1,0,1.

13)

It follows from (7)

g(D)*=a_;+a,+a, (direct sum)
(14) [ala all] CG/H-/I
w={Xegqg(D): [H. X] =21X}.

By (14) the graded Lie algebra g(D)°=a-,4+a,+a and the subalgebra b,
=q,+a; satisfy the condition (1). Hence applying Theorem 1, we have G°/B,
=G°/B.. The equation f= Jo® follows from Proposition 3. q.e.d.

§ 4. Equivariant open imbeddings of Siegel domains to compact
complex homogeneous spaces

Let f be an equivariant holomorphic immersion of a Siegel domain D to
a compact complex homogeneous space M with a homomorphism 7: G(D)—
Aut (M). Note that Aut (M) is a complex Lie group. We further assume
that f(D) is open in M. Let t, be the homomorphism of g(D)¢ to g(M)
defined in §2. Suppose that 7,X=0, Xeg(D)’. By Lemma 2, f X*
=(74X)*=0. Since fis an immersion, we have X*=0. Therefore r, is injec-
tive. In what follows, we consider g(D)° as a complex subalgebra of g(M).
Let ¢ be the holomorphic mapping of G*/B,(=G¢/B,) to M given by Theorem
6 and let B’ be the isotropy subgroup of Aut (M) at f(2). Since f is an
immersion, the Lie algebra of ¢™'(B’) is b,. Therefore by Theorem 1,
B,=%"'(B’) and hence ¢ is an imbedding.

Lemma 7. Let 2 be an cigenvalue of ad H on q(M), where H is
an element of §(D)° defined by (13). Then A is an integer and Az=—1.
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Proof. Let b’ be the Lie algebra of B’. Since f(D) is open, we know
dim g (D) /b, =dim g (M) /b’. Define subspaces {bn}nz-1 of g(M) by setting
b, =q(M), by=0"
br=A{Xebn_i: [X,g(M)]Cb,} (m=D).

Let Xebl,. Then all m'-th derivatives of X* at f(2) must be zeros where

m’<m. Therefore N b, =0. As a consequence, there exists 72,220 such that

m=-1

b, =0 for m>m, and b, 0. Thus we get a sequence b, 20 2 207,
b, =0. It is easy to see the following equality holds

adH X=mX (modb,,) for Xeb, . q.e.d.

We now set
(15) a; ={Xeg(M); (adH—2)"=0 for some m}.
Then
g (M) 2122_10" b= AZZﬂaA
[ai, a.] Cates-

By (14) and (15) we have a;Caj. Therefore a”,=a_, because dim a”,=dim
a-,. From (15), we see that the pair (g(M),b’) satisfies (1) and hence
the homogeneous space M is simply connected. As a result A is a C-space

due to Wang [9] and hence g (M) is reductive ([9]). Let X be an element
in the center of g(M). We can write X= %XA (X;€aqa;). Since [H, X]
Pl

=0, we have X;=0 for 2#0. Then [gq(M),X,] =[g(M),X] =0. Thus we
know X,Eb{ and hence X,=0. Consequently the Lie algebra g (M) is semi-
simple and a; =0 for A>>1. We now know from [7] that M is a hermitian
symmetric space of compact type. We have thereby prove the following

Theorem 8. If there exists an open immersion f of a Siegel domain
D to a compact complex homogeneous space M, then M must be a hermi-
tian symmetric space of compact type and f is an imbedding.

Remark. Note that the following equility hold: a;={Xeg(M);
[H,X]=2X} A= -1,0,1. Indeed, an endomorphism 7% defined by 7(X) =1X
for Xeq} is a derivation of the semi-simple Lie algebra q(M). Therefore
there exists H' g (M) such that adH' =7. It is easy to see that H €aj.
Both H and H’ are in a, and adH=adH’ on a’,. Hence we get H=I.

§ 5. Siegel domains which can be equivariantly imbedded as an

open subset of P"(C)



478 Kazufumi Nakajima

In this section, we shall determine Siegel domains which admit equiva-
riant open imbeddings to the complex projective space P"(C). We prove the
following

Theorem 9. Let D be a Siegel domain of the second kind. Then D
can be equivariantly imbedded as an open set of P"(C) if and only if D
is one of the following two type;

Q) D is holomorphically equivalent to the disk, i.c.,

D= {(21, R zn) ecn; iZl Izi|2<1}9

(i) Aut(D) = Aut (D), where Aff(D) denotes the affine transforma-
tion group of D.

It is well known that if D satisfies (i) or (ii), then D can be imbedded
equivariantly as an open set of P*(C). We verify the converse.

Let f be an open equivariant imbedding of D to P"(C) with a homomor-
phism 7: G(D)—>SL(n+1,C). Let 2D and let (w,, ***, w,y;) be a homo-
geneous coordinate system of P"(C). We may assume f(2)= (1,0, .-, 0).
As in § 4, we identify g (D)° with a subalgebra of $l(z+1, C) by 7. Let
a; (A= —1,0,1) be the subspaces of ¢[(n+1, C) defined by (15).

Lemma 10. Let Yeq|. If YO0, the linear mapping adY is injective
on a’,.

Proof. Let b’ be the isotropy subalgebra at f(z). Then b’ =qf +a} and

—-TrA ¢

b’={Xe§I(n+1,C); X=< e

); £eC" and Aeg{(n,C)}.
We set

o= {xestnr1,005 x=(2 0)i 9ecr
7 0
—TrA O

o ={Xezl<n+1,6); x=( R

); Aegt(n,C)}

O = {Xe@[(n-l—l, C); X=<8 i); 550"}.
Since a] = {Xeb’;[8l(n+1,C), X]Cb’}. We can show ai =aj. There ex-
ists a unique element H¥ of ai such that ad H¥X=1X for Xeai A=-1,0,1),
because 8[(n+1, C) is semi-simple. Both H and H¥ are in b’ and adHX
=adH*X=—X(mod b’) for any Xegl(n+1, C). Therefore we can write
Hé—H=2Z7, 6 Zeq|. Then H= Ad(exp Z) H¥ and hence aj=Ad(exp Z)a;.
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By direct calculations, we know that for any Ye&€al (Y=£0), adY is injective
on a’,. q.e.d.

We assume that Aut (D)=£AfF (D), which is equivalent to g,0 ([3]).
Suppose that g (D) is not semi-simple. Then there exists a non-zero element
X in a_, such that [X, g,] =0 (Remark 1 in [4]), which contradicts to Lemma
10 because Ad (exp2)X is in a’, and Ad(exp 2)g,Ca;. Therefore g(D) is
semi-simple and the domain D is symmetric. When D is symmetric, it is well
known that G°/B is the compact hermitian symmetric space dual to non-com-
pact D and that A is the Borel imbedding (cf. [6]). Since ¢(G°/B,) is a
compact open subset of P"(C), we get G°//B=G°’/B,= P"(C), completing the
proof of Theorem 9.

§ 6. An example
Let D be a 4-dimensional homogeneous Siegel domain defined by
D= {(z, 25, 25, 2,) €EC*; Im 2,>0 and Im 2,(Im z,— |2,/*) — (Im 2,) >>0}.

The domain D is not symmetric. In this section we prove that D does not
admit open equivariant imbeddings to compact complex homogeneous spaces.
We first calculate g (D). Let t denote the radical of g(D). Then t is of
the form: r=1_,+1_,+ 1, ;C@: ([2]). By using results in [4], we have

dimg_,=3, dimg.;=2, dimg,=4,
dimg,=0, dimg,=1.

By (6) we can decompose t° into the form: t°=1",+1;, where t;=1°N0,
By Theorem 1.1 in [4], there exists a semi-simple subalgebra 8 of g(D)°® such
that

g:g—1+§o+§1, glzgnaly
g(D)*=1°+8 (direct sum).

Since 8,=0,=g¢3, dimg 8,=1 and hence dimg §_,=1. Because 8 is semi-simple,
there exists a unique H,E8, such that [H,, X]| =X for Xe&3g,.

Suppose that there exists an equivariant imbedding of DD onto an open
set of a compact complex homogeneous space M. By Theorem 8, M must be
a hermitian symmetric space of compact type. We also know that g(D)° is
identified with a subalgebra of g(M). We set 0 = Ad (exp 2) "'a; where qj
isasin § 4. Then g(M) =0_,+0; +0; and 0,C0;. We assert that M must be
irreducible. If A/ is a product of two hetmitian symmetric spaces M, and
M,, then g(M) =g (M,) +q(M,;). Being an ideal of (M), g(M,;) is decom-
posed as follows (i=1, 2);

g (M) =0L,+0i+0i, Oi=g (M) N0; .
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Note that 6°,50. Let X&0',. Since 0_,=0",, we can write X=X, + X, (X,
€8, and X,e17,)). If X540, then 8, is contained in 0] because 8,=[3,,
[8.8-,]] and dim, 8,=1. Hence 8_, is contained in 0., because 8_,=[8_,,
[8-.1.8:]]. As a result g_, is contained in 0., or (*,, We may assume that
8_,C0.,. It follows that 8,C6). For the domain D, we know from [4] that
g-2=[g-s. [g-2,9:]]. Therefore g_,C0,. Now let Y0>,. We can write
Y=Y ,+Y_ ,—v/—1[L Y_,], where Y_,eq%, and Y_,eq.,. Since [E, Y,]
=Y, A=—-2,—1), we have Y_,€0*, and Y_,—+/—1[1, Y_]€0*,. Hence
Y.,=0 and [Y.,—v/—1[L Y. ], Y +v—-1[L Y. ]]=2v/-1[Y_, [] Y_,]]
eg’,NE,=0. Consequently Y_,=0 and hence 6°,=0. This is a contradic-
tion. We have thus proved that M is irreducible.

A 4-dimensional irreducible hermitian symmetric space of compact type is
SUB) /SWU,x U,) or SUME)/S(U,xU,). Hence M must be SU4)/S(U,x U,)
by Theorem 9. Then dimg g (M) =dimy, SU4) =15. Let t,={Xeq(M);
(adE—2)"X=0 for some m}. Then ‘g(]\/[):xezch' Since g (M) is semi-

simple, dimg t; =dimg t-;. By using the fact g;Ct,, we have dimg t_,=dimg t,
=3, dimg t_;=dimg t,==2 and dimg t,>4. Since dimgg (M) =15, the only
possible case is the following: g(M) =t_,+t_;+t,+1t,+1, dimgt_,=dimg 1,
=3, dimgt_;=dimg ;=2 and dim¢ t,=5. In this case t_,=¢°, and toi=g%
Therefore t_,%[t-,,t-,]. On the other hand, t,=[t_;,t-,] because g (M)
is a simple Lie algebra (Lemma 1.3 in [4]). Thus we have a contradiction.
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