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ON EQUIVARIANT VECTOR BUNDLES ON AN ALMOST
HOMOGENEOUS VARIETY

TAMAFUMI KANEYAMA

§1. Introduction

Let & be an algebraically closed field of arbitrary characteristic.
Let T be an n-dimensional algebraic torus, ie. T=G, X -+ X G, (n-
times), where G, = Spec (k[t,¢']) is the multiplicative group.

An almost homogeneous variety under an action of T is analgebraic
variety X over k& endowed with an action of T and which has a dense
orbit. Normal effective almost homogeneous varieties under torus action
have been classified in [2,4]. We review the results briefly in §2.

Let E be a vector bundle on an almost homogeneous variety X with
an action of T. For every k-rational point ¢ in T, the action of ¢ on
X is denoted by t: X — X (x — tx). We say that E is equivariant if

there exists an isomorphism ¢,: t*E ——> E for every k-rational point ¢
of T. Furthermore we say that an equivariant vector bundle E is T-
linearized if, for every pair of k-rational points ¢, ¢’ of T, ¢ = ¢, 1'%,
holds where

3% ,
b -t%g,: GV E = B 2% il 25 B

In this paper we study equivariant vector bundles on a smooth complete
almost homogeneous variety. In §3 we show that an equivariant vector
bundle £ on X always has a T-linearization. Thus we study 7-linear-
ized vector bundles on X. Let {U;} be a covering of X by T-stable affine
open sets. We show that the restriction of F to U; has a semi-invariant
base with respect to the action of T, where a section e E(U,) is semi-
invariant if for some character &

&, (u) = e(§)Du
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holds for every k-rational point ¢ in T. e(§)(t) is the value at ¢ of the
function £: T — G,. Then in §4 we describe a T-linearized vector bundle
E on X in terms of these semi-invariant, i.e.

Theorem 4.2 Let (X,T) be a smooth complete almost homogeneous
variety defined by a cone complex (I',%). The set of T-linearized vector
bundles of rank » up to T-isomorphism corresponds bijectively to the set of
(m, P) up to equivalence. A detailed description of (m,P) is in §4.

Finally, we give examples of equivariant vector bundle of rank 2
on P? which are indecomposable.

The auther wishes to thank Professor T.Oda for his advise during
the preparation of this paper.

§2. Almost homogeneous varieties

Let (X, T) be an n-dimensional almost homogeneous variety where T
is an n-dimensional algebraic torus. Let & = 5(T) = Hom,_,, (T, G,) be
the additive group of characters of 7. £ is a free Z-module of rank
n = dim (T). Let the exponential map e: & — k(T)* be the homomorphism
which sends £ in & to the corresponding rational function e(¢) on T.
Let I' = Homy,_,, (G, T) be the additive group of one-parameter subgroup
of T. I is a free Z-module of rank # = dim (T) and is the dual Z-
module of 5.

We call a non-empty subset C of 'y =1 ®;Q a strongly convex
polyhedral econe with apex at 0, or simply a cone, if CN(—C) = {0} and
if there exists a finite subset {¢,, - -+, ¢n} of I' such that C = Q\¢, + - --
+ Oy¢, where Q, denotes the set of non-negative rational numbers. If
{$1s -5 ¢} is irredundant and each ¢; is primitive, i.e. is an integral
multiple of no element of I”, we call ¢, - -, ¢, verticial elements of the
cone C. Let the dimension of C be the dimension of the Q-vector space
C + (—0C). A non-empty subset ¢’ of a cone C is called a facial cone
of C if there exists an element & of 5 such that ¢() = 0 for all ¢ in C
and that C’' = {ge C|§(&) = 0}.

A cone complex (I',%), or simyly ¥, in Iy is a finite collection of
cones of I'y with properties:

(i) if C is a facial cone of C in ¥ then C’ is in ¥,

(ii) if C and C’ are in % then the intersection C N ¢’ is a facial
cone of C as well as of C'.
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THEOREM 2.1. The category of normal effective almost homogeneous
varieties under torus action and equivariant morphisms is equivalent to
the category of pairs (I',%) consisting of a free Z-module I' of finite
rank ond o cone complex € in I'q and maps which are defined as fol-
lows:

A map from a pair (I', €) to another pair (I",%’) is & homomorphism
of finite cokernel from I’ to IV whose scalar extension to Q sends any
cone of € into some cone of ¥’.

Moreover, X 1is complete if and only if the associated pair satisfies
I =Ucee C. X s smooth if and only if every cone (resp. every max-
wmal cone) in € is regular, i.e. the set of its wvarticial elements can be
extended to a Z-base of I'.

See [4].

PrROPOSITION 2.2. Let (X, T) be a smooth almost homogeneous variety
and let x in X be a T-fixed closed point. Let V be the union of T-orbits
whose closure contains x. Then there exists a base {ay, - - -, a,} of 5 such
that V is T-equivariantly isomorphic to the affine space Spec (kle(a), - -,
ela,)]) which has the canonical diagonal T-action e(§) — e(&) @ e(€).

See [4].

§ 3. [Equivariant vector bundles

From now on (X,T) is a complete smooth almost homogeneous
variety unless otherwise stated. Hence X is covered by 7T-stable open
sets isomorphic to the n-dimensional affine space with a diagonal action
of T by proposition 2.2. For every k-rational point ¢ of T, the action
on X of t is denoted by ¢: X — X sending x to tx.

DEFINITION 3.1. An equivariant vector bundle E on (X,T) is the
vector bundle on X such that, for every k-rational point ¢ in 7, there

exists an isomorphism ¢,: t*E > E.

DEFINITION 3.2. An equivariant vector bundle (E,4,) is called 7-
linearized if, for every pair of k-rational points ¢,¢ of T, = 4, -t'*4,
holds where

s ,
ot (VE = B L% g 2 B
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Let F be an equivariant vector bundie on (X, T). Let G(E) be the
set of pairs (¢,¢,) where ¢ is a k-rational point of 7 and ¢, is an iso-
morphism ¢,: t*E — E. G(E) is an algebraic group whose multiplication
is given by

&, ¢) = (', ¢'-t'*9) .

Then G(E) is an extension of T by the bundle automorphism group
Aut (E)

0 — Aut (B) —> GE) 2> T — 0

7 sends ¢ to (1,4) and p sends (¢,¢) to £. Note that a T-linearization
for E corresponds to giving a group section s: T — G(E).

PROPOSITION 3.3. The above exact sequence has a group section
s: T— G(E). Hence equivariant vector bundle con always be T-linearized.

Proof. Since T and Aut(¥) are linear algebraic group, so is G(E).
Let TV be a maximal torus of G(E). Since p(TV) = T and a surjective
homomorphism from a torus to a torus always has a section (see Borel
1D, there is a section

s:T->T Cc GE). Q.E.D.

Let E be a T-linearized vector bundle on an X which is defined by
a cone complex (I',%). Let C in ¥* be a maximal cone and let U be
the corresponding T-stable affine open set in X, i.e. U = Spec (4) where
A = kfe(D)] is a polynomial ring with D=C* N 5. A is a S-graded
ring since there is a T-action on A. Namely
A= @ Ae

fES

where A, congists of element a of A with
a’ = e€))a .

a' is the translation of a induced by the automorphism {: U —- U. We
note that A, = ke(8) if €D and A, =0 if &€¢ D.

PROPOSITION 3.4. Let D be a subsemi-group of & such that A =
kle(D)] is a polynomial ring. Let M be an A-module. Then o T-
linearization on the sheaf M on Spec(4) coincides with ¢ S-graded A-
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module structure on M.
Proof. Let M be a F-graded A-module, i.e.
M=9M,.

§€8

Then there is a k-isomorphism
t*:M—->M

sending m to mé = Y .. e@®m, if m = > ,..m, where e(§)(f) is a value
at ¢ of a function e(¢). Since A is a S-graded module there exists a
k-isomorphism

t*: A —- A

sending a to a’. We denote t*4 = A’. Let A’ be an A-module through
t*, A @, M is A-module. Furthermore A’'®, M ~ M by trivial iso-
morphism A’ ~ A. So we have t-semi-linear A-isomorphism

tF T AQM->A QM
sending a' @ m to o' ® m*. Thus we have
go: t* 0 — M .
By counstruction, for every pair (¢, t), ((t')* = t'*.t* means the relation

¢w = ¢t"t,*¢t .

So M has a T-linearization. Conversely if M has a 7T-linearization we
can reverse the above order so M is a Z-graded module. Q.E.D.

E|U is associated to a projective A-module M. Since M has a T-
linearization we see that M is a Z-graded A-module. Let D be a sub-
semi-group of 5 generated by a Z-base {p, ---,7.} of &, i.e. D= Zy, +
<+« + Zgm,, where Z, is the set of non-negative integers. Let A = k[e(D)],
i.e. A =k[u, ---,u,] is a polynomial ring of n-variables u, = e(y;) (¢ =1,
.- -,n) with the Z-gradation given by deg(u;) = ;. For £¢ 5 we denote
by A(%) the H-graded A-free module of rank one defined by

A(g)q = A€+ﬂ M

THEOREM 3.5. Let A = kfe(D)] be as above. If M is a finitely
generated E-graded A-projective module of rank r, then there exist &,
coo, & in B such that
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M~A(-£)® - @ AE)
as H-graded A-module, in particular M is a free A-module.

Proof. Let {x,,---,2,} be a minimal set of generators of M as an
A-module. We may assume z,, ---, %, are homogeneous with characters
&, -+, &p respectively. Let

F=§AG@

and let e; be the element of A(—§&;) corresponding to 1. We define a
degree preserving A-homomorphism

fTF->M
by fle)=u; @=1,---,p). f is a surjective homomorphism of Z-
graded A-modules. Let N be the kernel of f, hence we have an exact
sequence
0o—>N—_>rLl.m_o0.

By renumbering if necessary, we may assume that
§i= .- =&, ¢85+ D if 7>q.
In fact put
P={&¢cé + D).

If £, ¢ P and &, + &, then there is non-zero » in D such that & =§, + ».
Put

P ={§lé¢eé + D}

Since D is a semi-group with zero and with no subgroup we see that
P'CP and & ¢ P. Thus we replace & by &. We do the same for this
new &, and keep on doing the same. The process terminates since the
original P is finite.

We may assume ¢ < p. In fact suppose & = --- =§, and let

y
Z aQ;X; = 0
i=

be a homogeneous relation satisfied by «; = f(e;) with a; homogeneous
in A. Since deg(x;) = ¢, for all 7, there exists an » in D such that
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deg (a;) = » for all i. Hence we can write a; = k,e(y) where k; are in k.
Therefore our relation becomes

o) > Kty = 0
=1

Since M is A-flat we have > 7, k;x; = 0. If there is ¢ such that %, + 0,

then «;, = —3> ;. ki'k;e;. This is a contradiction to the minimality of
the set of generators {z,,.-..,x,}. If k;, = 0 for all ¢ then a, = 0 for all
i. Hence {®;, - - -, z,} forms an A-free base of M, thus M is free. There-

fore we may assume that q < p.

We prove proposition 3.4 by induction on rank (F) = p. If rank (F)
=1 we are done. Thus suppose rank (F) > 1 and ¢ < rank (F). Since
M is A-projective there is an A-module section s: M — F such that f-s
= 1. This means

F = N®s()

as A-module. We want to show that FF = N ® s(M) as H-graded A-
module by replacing s. Since Hom (M, F) is T-linearized vector bundle
Hom (M, F) is Z-graded A-module. So we take s, as a section where s,
is the degree 0 part of s. Since S-graded homomorphism

Hom (M, F) — Hom (M, M)

is surjective and sending s to identity, so s, is not zero. So this s,
satisfies the assertion.

We continue the proof of proposition 3.4. We may assume that
F=N®s(M) as F-graded A-module. Since

F oA =A(-§)D - A&
by the choice of &, and
(N @ s(M)),, & A = (N, ®; A) @ (s(M),, ¥ 4)
we have

A(—E(I+1) D @A(_EP) = F/Ffl X A
= (N @ s(M))/{(N,, ®, A) ® (s(M),, ®, A)}
= (N/N., ®; A) ® (s(M)/s(M),, @y A) .

Since s(M)/s(M),, ®; A is a direct summand of A-free module
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A(—£4) @ - - DA(=EY
it is A-projective. Thus, by induction assumption, we have
s(M)/s(M),, ®r A = A(—ED D --- @ A(—=E))
is a free A-module for some &,. Since s(M),, @, A is A free we have
M=sM)=A(-)D . ®A(—§,) D (s(M),, ®; A)
is a free module of rank 7. Q.E.D.

Let (M, #;) be a T-linearized vector bundle on U = Spec (4) with
A = Ekle(D)] for some subsemi-group D of 5. We say that meM =
I'(U, M) is semi-invariant if there exists a character & ¢ 5 such that

de(m) = e(€)(Hym
is satisfied for every ¢,i.e. m is homogeneous element of degree & of M.

COROLLARY 3.6. Let (M, $,) be as above. Then M has o semi-invari-
ant base.

Proof. By the theorem there exist characters &, -..,&, so that
M=A(-§)D - - - ®DA-E).

Let e¢; be the element of A(—¢,) corresponding to 1. We denote by the
same letter the element of M corresponding to e;. Then we can easily
see that e, is semi-invariant. Furthermore {e;} is a base of M as A-
module. Q.E.D.

§ 4. Construction of an equivariant vector bundle

Let (X, T) be a smooth complete almost homogeneous variety defined
by the cone complex (I',%). Let EF be a T-linearized vector bundle of
rank r on X. We have shown that £'|U has a semi-invariant base where
U is a T-stable affine open subset of X. Let U and U’ be T-stable affine
open subsets corresponding to C and €’ in €™ respectively where %* is
the set of n-dimensional (maximal) cones of ¥. Let (u;) and (u}) be
semi-invariant bases on E(U) and E(U’) respectively and let (£,) and (&)
be corresponding characters respectively. There is a natural pairing
{s>18 XTI —2Z It can naturally be extended to H¢ X I'q— Q. We
denote 4(§) = <§,¢> for £c &, and $c I,
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PROPOSITION 4.1. In the above situation there is a permutation o
such that ¢(&;) = ¢(&,:,) for every ¢ in C N C'.

Proof. We note T C X. Since U DT and U’ O T we have
E|UT=FE|U|T.
We denote

M=EU) =Au,® .- DAuU, ~ A(-&)D .- DA(-¢,)
M =EU)=AU®D . - ®AY = A(—E)D ... DA(—¢&)

where A = E[e(C* N 5)] and A’ = k[e(C’'* N &)] are affine rings corre-
sponding to U and U’ respectively. The above isomorphism restricted to
T induces the isomorphism

FTI1®s M =~ ETI @4 M’

s E;graded Ek[T]-modules. Since

KT ®4 M =~ KT] ®, (éa Fo(— si)ui)

KITI @ M =~ KIT] ®, (éa ke(— &) )

we have k-isomorphism
) ke(—&)u; — @1 ke(—&)u;
iz P

i.e. there is a matrix P = P(C, ") in GL,(k) such that

e(— &, e(— &)
=2
6( - Er)ur e("- E{,)u;.
Then
U, e(—§) -1 fe(—&) ,
( : ) - | . 0 P | . 0 ( : )
Y 0 e(—£,) 0 e(— &)\,
w
= (ps;e(5; — 83))
(A
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where p;; is the (i, j)-entry of P. Since, on U N U’, pe§, — &) are
regular functions

(&) = (&)
for every ¢ in C N C’ if p;; = 0. Since

det P = 3 sgn(o)py,ay -+ * Dryery + 0

dECYy

there exists a permutation ¢ such that p,,,, #* 0 for every i. Thus
$E) = ¢(5l)
for every ¢ and every ¢ in C N C’. Furthermore since
det (py;e(§; — &) =det (Pe6; + -+ + &, — & — - — &)

is a unit on U N U’, we have

BE+ o FE G — o —E)=0
for every ¢ in C N C’. Compairing this equality with the above inequality,
we have
#(§) = $(€0))
for every 7 and every ¢ in C N C'. Q.E.D.

By virtue of Proposition 4.1, a T-linearized vector bundle of rank r
on X gives rise to the following data:
(i) m:SE(®) =F" = {¢1, -+, Pa} — Z°
sending ¢ to m(g) = (m(g),, - - -, m(¢$),) where Sk'(¥) is a set of
1-dimensional cones of ¢, and for every C in %”

mg: C N SE(E) — Z®
80 that there is a permutation = such that

m0(¢) = (m0(¢)1, Tty m0(¢)1—)
= (m(¢)r(l)’ vty m(¢)r(7’))

for every ¢ in C N SEN¥).
Suppose the data (i) are given, then for C in ¥ we have charac-
ters £(C); by solving equations

HE) = me(P):
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for every ¢ in C N Sk'(¥). For maximal cones C and C’ there exists a
permutation ¢ such that
#E(C)e) = $(6(C). i)

for every ¢ and every ¢ in C N C’ by the condition on m, and m, in
(i). Conversely if we have these £(C); then the data (i) is obtained. So
() is equivalent to
(") &:¢~— 59
sending C to &(C) = (0, - - -,&(C),) such that for every pair
of cones C,C’ in %" there exists a permutation r so that

H(E(C)y) = ¢(E(C). ) for every ¢ and every ¢ in C N C'.

(i) P:%¥" X ¥* — GL(k)
sending (C, ") to P(C,C") = (P(C, (");;) such that P(C,C");; #0
only if m(¢); = me.(@); for every ¢ in (C N C) N SE(¥) and
such that
PC,CHPIC,C") = P(C,C")

for every C,C’,C” in €~.
(iii) For two pairs (m,P) and (m/, P’), we say that they are equiv-
alent if there exists a permutation ¢ = ¢(C) in &, such that

(Me(@ys -+ -y Me(P)r) = (Me(Poys * + s Me(B) o)
for every C in %" and ¢ in C N Sk'(¥) and if there exists
%" — GL,(k)
such that
P(C,C) = p(CY'P(C, CYp(C")
for every C and C’ in %™

THEOREM 4.2. Let (X,T) be a smooth complete almost homogeneous
variety defined by a cone complex (I',%). The set of T-linearized vector
bundles of rank r up to T-isomorphism corresponds bijectively to the
set of data (i) and (ii) up to equivalence (iii).

Proof. Let (F,¢,) be a T-linearized vector bundle of rank » on X.
Let U be an affine open subset of X corresponding to C in #*. Let (u,)
be semi-invariant base of E|U on U and let (§) be characters corre-
sponding to (u;). We define m, by
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mc(¢)i = ¢(§i) = <E1‘,, ¢> 1= 1, s, T

for every ¢ in C N SK(¥). Then the condition of (i) are satisfied. P is
obtained in Proposition 4.1. Let (F,+,) be a T-linearized vector bundle
of rank r on X. Let (v;) be semi-invariant base of F|U on U and let
(7;) be characters corresponding to (v;). Suppose E and F are T-iso-
morphic. We denote

M=FEU) =Au,® -.-- ® Au,
N=FU) =Avy,® ... ®Av,

where A = A, is a polynomial ring corresponding to the cone C. Since
FE|U =~ F|U we have H-graded A-isomorphism

M=AQ® (éa ke(—&)ui) LN=A® (é ke(—r;,)v,) .
i=1 j=1
So we have k-isomorphism
& ke(—Eius — @ kee(—7;)v,

i.e. there exists a matrix p = p(C) in GL,(k) such that

e(—&Ju, e(—n)v,
L=
6(—51)% e("‘ﬂr)vr
Then
U, v,
= (Pije(Si — 771))
", v,

where p;; is the (1, 7)-entry of p. Since, on U,p;;e(§; — ;) are regular
functions we have

#(&:) = ¢(n))
for every ¢ in C if p;; + 0. Since

det (P) = GZG sgn (0') X Ottty *** Prory F 0

there exists a permutation ¢ = ¢(C) such that p;,,, # 0 for every i. Thus

$&) = ¢(,a)
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for every ¢ and every ¢ in C. Furthermore since
det (p;je(&; — 7)) = det (pe(€, + -+ + & —p— -+ —p,)
is a unit on U, we have
) + -+ + 9D = $pw) + o+ )
for every ¢ in C. So
P& = ¢(7o)

for every ¢ in C. So this ¢ satisfies the condition of ¢(C) of (iii). Let U’
be an affine open subset of X corresponding to C’ in ¥*. Consider the
diagram on U N U’

E|U — F|U
| =
E\U — F|U .

Let P = P(C, () be defined in Proposition 4.1 for £ and let Q@ = Q(C, ')
for F. Then by virtue of above commutative diagram we have

oOP(C, C') = Q(C, C)p(C?)

where p is defined above. This means the second part of (iii).

Conversely if we have the data (i) and (ii), then the T-linearized
vector bundle F of rank # can be constructed as follows. For C in =,
we write by Ug; = A® = Spec(4,) a T-stable affine open subset of X
corresponding to C. Suppose m and P are given. Let

EUg) = A(—8(0)) D - -+ @ A(—E(0))

for each C in %*. The F-graded A,-module structure on E(U,) gives
rise to a T-linearized vector bundle E|U,; = E‘(\ffo) on U,. Let

Jo.00t Acner ®us BUe) — Agrne ®up EWUs:)
be Z-graded A;,¢-module isomorphism defined by
diag (e(§(C)y), - - -, e(§(C)IP(C, ') diag (e(—E&(C)y), - - -, e(—&(0),)) .
This f¢,¢ gives rise to an isomorphism

Jeo E|Uc|Ug N Ug: — EUg | Ug. N Ug
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compatible with the action of T. By the condition of (ii) we can patch
E|U; and E|U, along U, N Ug.. So we obtain a T-linearized vector
bundle ¥ = E(m,P) on X. The data (m,P) is equivalent to the data
(m’/, P') then by the construction E(m, P) and E(m/,P’) are T-isomorphic
T-linearized vector bundles. Q.E.D.

Remark 4.3. Two T-linearized vector bundles E(m, P) of rank » and
E(m’,P) of rank ' are given. Then the 7T-linearized vector bundle
Em,PYQEm',P) is E(m @ m’, P ® P’) where

m @ m')(g) = (- -+, Mg + M (B, - )

and P ® P’ means the Kronecker product. The T-linearized vector bundle
det E(m, P) is E(det m, det P) where

(det m)(p) = z: M)
and
(det PX(C, C") = det (P(C,C")) .

Remark 4.4. The case of rank = 1. For ¢, e Sk'(¥) we denote by
m; the value m(¢;). Let D, be the divisor corresponding to ¢; i.e.
D, = div (e(&;)) on T-stable affine open U, where &; is a character so that
$,(&;) = 8, for ¢, SE(¥)NC,. Then the data m = (m,) corresponds to
the line bundle Ox(—~3> ] m.D,).

§ 5. Examples on P?

In this section, we consider X = P? = Proj (k[X,, X,, X,]) with the
standard action of T =G, X G,. Let E(a,b,¢) be a vector bundle
defined by the exact sequence

0 — Oz — 0x(2) @ Ox(b) @ Ox(c) — E(a,b,0)* -0
1 — (X7, X3, X9

where a,b,c are positive integers. It is easy to see that E(a, b, c)* is
an equivariant vector bundle for positive integers a, b, c.

THEOREM 5.1. Let T be a 2-dimenstonal torus. T acts naturally on
P? and it becomes an almost homogeneous variety. An indecomposable
equivariant vector bundle of rank 2 on P? is isomorphic to E(a,b,c) ®
Op(n) for some integer n and some positive integers a, b, c.
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We now compute the data (m, P) for F(a, b,¢c). Put S = k[X,, X, X,]
and let M be the kernel of

Se, ® Se, © Se, — S
€ — X¢
e, X?
e, X5 .

The generators of M are

Xte, — Xge,, Xle, — Xie,, Xfe, — Xie,.
Put 2 = X,/ X,,y = X,/ X, and let U,,U,, U, be affine spaces defined by
X, #0,X, # 0,X, # 0 respectively, i.e.,

U, = Spec (k[z,y]) , U, = Spec (k[}-,ﬂ]) , U, = Spec (lc[% %D .

xr X
Put
'Iflzze_l-—(£1.>be2 ’l)=e°— &aez
T xp \X,/ X’ X \X,/ Xy’
=& _ i) € —_ & (_) 2
%=X (Xo Xz’ =zt R ) 3
& (Xo>“ e _ e (Xz ) e
Uy = S ; V; = == .
? Xa+ X/ x? ? X°+ X,/ Xt

Let t = (4, ) in T be acts by tX, = 1X,,tX, = pX,,tX, = X,. Then
te, = 2%, , te, = ple;, te;=e;,
and
tx = Az, ty = py .

In this case we take semi-invariant basis (u;,v,) on U; and we have
(5 @G =6 D)% )G
0 x¢/\v, 0 1 0 wx°/\v,/’
7 WG =G 0T )
0  y/\v, 11 0 z/\v,/’
(o a)Go) = (2 DT )
0 z%/\vy -1 1 0 y/\wv,

Let ¢,,¢,€ " be such that
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¢1(2) = ¢z(,u) =1, ¢1(/J) = ¢2(2) =0

where 2, ¢ are characters of T. Then the decomposition of I'y by
(@1 &y s = —¢, — &) defines a cone complex corresponding to P? (see [4])
i.e. put

Cl = {p¢1 + Q¢2Ip,qe Qo}
C, = {p$, + 9¢:| D, q € @y}
C; = {pgs + a4:1p, q € Qj}

then Iy = C, U C, U C,, and C; corresponds to an affine space U;. Let
&;, n; be the characters corresponding to u;, v; respectively i.e.

El(zs ﬂ) = #b ’ 771(2! ‘Lt) = 2%,
62(2, #) = Z_bﬂb y 7]2(2, ﬂ) =21 ’
53(2’ /“) = Za#—a, s 773(2; ﬂ) = #—c .

Then

$(§) = ¢1(773) =0, ¢1(7]1) =¢E)=a,
952(52) == ¢2(§1) =b, ¢z(772) = ¢z(7]1) =0,
¢a($3) = 953(82) =0, ¢3(7]3) = ¢3(772) =C.

These integers mean the data m in §4, i.e.
m(g) = (0,a) , mlg) = (b,0), mlg) = (0,0 .

To prove Theorem 5.1 we have only to show that the data in §4
define a vector bundle

E(a, b, c) ® Opy(m)

for some integer n and some positive integers a,b,c. Let D; be the
divisor corresponding to ¢,. By Remarks 4.8 and 4.4, the data m for

E® opz(i miDi>

t=1

are

m(¢1) == (m(¢x)1 - m,, m(¢1)z —_ ml)
m(g,) = (m(gy), — m, , mPy), — My)
’n_’b(¢3) = ('m(¢3)1 - m;, m(gs), — Ms)

where m(d,) = (m($,),, m(4;),) are the data m for T-linearized vector bundle
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E. Thus by tensoring
3
Opi(m, + m, + my) = Om(;l miDi>
with the T-linearized vector bundle F, if necessary, we may assume that
the data m for E are
mg) = (a;, 0) or m(h) = (0, ;)

for non-negative integers «;. Furthermore by changing the base if
necessary, we may assume that

Mo ($) = Me,(h) = (a, 0)

and one of

a) mo,(¢3) = m03(¢3) = (a3, 0)
b) m05(¢3) = mcs(¢3) = (0, as)

and one of

1) me(d) = me(¢) = (a;,0)

2) mg(P) = Mme,($) = (0, )

3)  me,(p) = (o, 0), Mg ($) = (0, )
4) me() = (0, ), me(9) = (;,0) .

We note that if the data P are of the form

G %)

i.e. P(C,C),P(C,,Cy),P(C,,C) are of the above form, then the vector
bundle E(m, P) is decomposable.
If one of «; is zero, we may assume «, = 0, then

a) P(Cl, Cz) = (g 2) s P(Cz’ C3) = (g Z,) ’ P(C3’ Cl) = ((01’” Z//)

or

b PC.C=( D), PC.oo=(% %), Pe,o)=(% T

In the equivalence data, we take
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8) oC)=| d|, oC)= , o) = 7
(0 1 (0 1 0 1)
or
b 1 0
1 — 10
b) P(C1) = a i, P(Cz) = ’ P(Cs) = _ci
(0 1) (0 1) (a’ 1)
then
P'(C,, C) = p(C)~P(C,, Co(Cy) = (g g)
PGy, C) = p(C)P(C,, Cop(C = (§ 9) -

Consequently we get

oo/t 0
PGy Cl)z( 0 d"d"‘)

from the relation

P'(Cy, C)P'(Cyy CYP'(Cy, C) = ((1> (1)) :

So E is decomposable thus we may assume that «; are positive integers.
Case a,1) In the above argument, we may take ¢’ = 0. So the
vector bundle E is decomposable.
Case a,2) This case means that

P(C,, C) = (“ b)

. P(cz,cz):(“ b), P(CS,CI)=(“' 0).

0 d ¢ d’
From the relation

P(C,, C)P(C,, C)P(C;, C,) = (3 ‘1’)

we have
¢’"=0 and ab' 4+ bd =0.

We take
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b
(0 =oC=(1 7). HC =( a)
0

0 1 1
then
P/(C,, C) = po(C)'P(Cy, Co(Cy) = (g 2)
a b 4+ Ed/ @ 0
P'(C,, Cy) = p(C))'P(C,, Cy)p(Cy) = a = (0 b’>
0 b

I

PGy, G) = p(C) PG, Co(C) = (4, 1)

a’ 0
(0 d")'
So F is decomposable.

Case a,3) In this case

). re=(5 ). reo=( %)

P(C, C) = (g Z

Then

P(C,, CIP(Cyy CIP(Cy, C) = (444" F (40 0™ anb)

This contradicts the relation

P(C., CIP(C, CIP(C € = (1) -

So this case cannot happen.

Case a,4) This case cannot happen for the same reason as in the
case a, 3).

Case b, 1) 'This case determine the decomposable vector bundle for
the same reason of the case a,2).

Case b,2) This case cannot happen for the same reason of the case
a,3).

Case b,3) In this case

P(C,, C) = (“ b)

). reo=(08). rao= ()

d ¢’ 0

By taking
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=3 9 wa= (3 Y. wer= (5 2)

we may assume that

a:d:a’:d’:l, ¢’ = —1.

Since
P(C,y CP(Cyy CIP(C,, C) = ({1 F 20" ¥ b {1+ Db
ca’ + ¢ ¢’b
we have
1+ bcha” + b =¢'b" =1
A+ =ca’ +¢"=0.
Then

¥'=—b, ¢ =b", ¢=—b", =L

Furthermore we take

p(C) = p(C) = p(Cy) = (’5 ‘1’) ,

then we may assume that

) re=(%, Y. reo=( )

1 1

PG, G = (0 1

We note that transition matrices in the example are

P(C,, C) = P(C,,C) ™" = ((1) _11)

P(C,,C,) = P(C,,Cy)~ = (i (1))

P(C,, C)) = P(C,, C)' = (—(—)1 1) .

So this case determines the vector bundle of the type of the example.
Case b,4) For the same reason as in the case b, 3), we may assume
that

reico= (). o= )
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0 b ,
PC,0) = (5, %), wer=-1.

Then

__(bd” (A + beHb” + bd”
P(C,, COP(C,, COP(C O = (°, A )
So ¢’ must be zero, then be¢” = 0. This is a contradiction. This case
cannot happen.

Thus every indecomposable vector bundle of rank 2 on P? is of the
form

E(a, b, c) @ Opi(n)
for some integer n and some positive integers a, b, c. Q.E.D.

Remark 5.2. If ¢« = b =c¢ =1, then the vector bundle F1,1,1)®
Op.(n) is homogeneous, i.e. equivariant with respect to the standard
action of PGL(2) on P2 Conversely every homogeneous indecomposable
vector bundle of rank 2 on P? is necessarily of the form F(1,1,1) ® Op.(n)
(chk =0). [See 5] :

The following problems can be posed about equivariant vector bundles
on almost homogeneous varieties.

PrROBLEM 5.8. Classification of equivariant vector bundles of rank
greater than 2.

PROBLEM 5.4. Is there any indecomposable equivariant vector bundle
of 2<rank<n—1on P* (n =387 We can construct those of rank »n
as in the case of 2.

PROBLEM 5.5. Classification of equivariant vector bundles on X,
when X is an almost homogeneous variety of dimension 2.
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