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On Error-Spectrum Shaping in State-Space 
Digital Filters 

P. P. VAIDYANATHAN 

Abstract -A new scheme for shaping the error spectrum in state-space 
digital filter structures is proposed. The scheme is based on the application 
of diagonal second-order error feedback, and can be used in any arbitrary 
state-space structure having arbitrary order. A method to obtain noise-opti- 
mal state-space structures for fixed error feedback coefficients, starting 
from noise optimal structures in absence of error feedback (the Mullis and 
Roberts Structures), is also outlined. This optimization is based on the 
theory of continuous equivalence for state-space structures. 

I. INTRODUCTION 

The use of error spectrum shaping (ESS) for roundoff noise 
reduction in (narrow band) recursive digital filters is well known, 
and a number of interesting research contributions in this area 
have appeared [l]-[5] in the last few years. The application of 
this idea to state-space structures is mentioned in [2], and some 
studies in this connection have already been rep-orted in [5]. In 
[7], Mullis and Roberts clarify the relation between error feed- 
back (EFB) techniques and double precision implementations in 
state-space structures, among others. 

The purpose of this paper is to outline a new procedure for 
choice of EFB coefficients in state-space structures. Specifically, 
we extend the feedback scheme proposed in [2] and [5] by 
incorporating an additional higher order matrix term. We do not 
consider error feedforward in this paper. We choose the EFB 
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coefficients such that each noise source is “shaped” independent 
of others. In the resulting structures, each noise source is essen- 
tially replaced by an equivalent source which is no more white, 
but has zeros on the unit circle of the z-plane, at suitable 
locations. Consequently the major portion of noise power moves 
into the stopband. The overall noise is thus reduced, by the time 
it reaches the filter output. (It should be noticed that the idea of 
introducing zeros into the noise spectrum is itself not new, and is 
indeed the basis in [l].) 

In such a structure, we essentially have “colored” noise sources, 
and the optimal state space structure for a given noise-spectral 
shaping is in general different from that for white noise sources. 
Based on the fundamental results on minimum-noise state-space 
structures [6] for uncorrelated white noise sources, we outline an 
iterative procedure for arriving at the minimum-noise structure 
with fixed EFB. The procedure is based on applying a sequence 
of similarity transformations in such a way that at each iteration 
there is an improvement in the objective function. 

In Section II we deal with the shaping of error spectrum for a 
given state-space structure. In Section III, we outline the state- 
space optimization for a given ESS shaping. 

II. NOISE SHAPING 

Consider the standard state-space representation: 

x(n+l)=Ax(n)+Bu(n) 

y(n)=Cx(n)+Du(n). 

(14 

(lb) 

Here A is an N X N matrix, B is N xl, C is 1X N, and D is 
1 X 1. We assume that the only quantization involved is in the 
implementation of Ax(n), as this is the only error that propa- 
gates through the feedback path. Fig. 1 shows the conventional 
EFB scheme, where the error vector due to the vector quantizer is 
fedback through a delay (to avoid delay free loops). The matrix 
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Fig. 1. Error feedback in a state-space structure 

Ai, is typically chosen to have integer elements, so that there is 
no additional roundoff error. Even if this restriction is partially 
relaxed, ESS schemes still lead to considerable noise-reduction, as 
the additional roundoff error is only at a secondary level. 

Let us now consider the roundoff noise propagation under zero 
input conditions. If we regard the quantizer output v(n) to be the 
state vector, we obtain the following equations: 

x(n+l)=Ax(n)+A,e(n)-e(n+1) (24 

An) =Wn) (2b) 

whereas, if the quantizer input is regarded as the state vector, we 
get 

x(n-tl)=A[x(n)-e(n)]+A,e(n) 

y(n)=Cx(n). 
(34 

(3b) 

Applying z-transformation, (2a) and (3a) yield, respectively, 

X(z)=(zz-A)-l(Ai-zz)E(z) (4) 

X(z)=(zz-A)-‘(Ai-A)E(z). (5) 

The difference between the quantities u(n) and w(n) is negligi- 
ble, being just equal to the basic quantizer error. However, (4) 
reveals explicitly the “shaping” of error spectrum, whereas (5) 
does not. The former is, therefore, more useful in judging the 
choice of EFB coefficients. 

The conventional method for choice of Ai is to make each of 
its elements equal to an integer that is nearest to the correspond- 
ing element of A. In this way, no secondary roundoff error is 
introduced, but the EFB circuit can get complicated, particularly 
with general full matrices, and the complexity is proportional to 
N*. From (5), it appears that the choice A, = A leads to zero 
roundoff noise, but this is essentially equivalent to double preci- 
sion arithmetic, in which case, the “secondary” error is the only 
source of error. The usefulness of EFB techniques stems from the 
fact that a tradeoff between single and double precisions can be 
achieved which considerably improves performance, and if the 
EFB network is chosen carefully, is simpler to implement than 
the double precision schemes. 

A different guideline for the choice of EFB coefficients is to 
make the Ai matrix diagonal: 

A,=diag[afi]. (6) 

Fig. 2. Extension of scheme of Fig. 1. 

Then the k th state equation becomes, from (2a): 

x,(n+l)= 5 u,jx,(~)+a~~e’ek(n)-e,(n+l). (7) 
J=1 

Thus the k th noise source is shaped by a transfer function with a 
real zero at z = a;,. For low-pass filters, if ~$2 are chosen to be 
unity, this places zeros in the noise spectra at the passband 
frequency o = 0. Thus for narrow-band lowpass filters the choice 
Ai = Z and similarly, for narrow-band highpass filters the choice 
A, = - I, has the effect of reducing the overall noise. For band 
elimination filters, we could choose 

For filters that are not particularly narrow band, and for 
bandpass filters, it is more advantageous to introduce complex 
transmission zeros into the error spectrum. In order to do this, let 
us consider the EFB configuration of Fig. 2. If we regard the 
quantizer output u(n) to be the state vector, we obtain the 
following equations: 

x(n+l)=Ax(n)+A,,e(n)+A,,e(n-l)-e(n+l) (9) 

whereas, if the quantizer input w(n) is regarded as the state 
vector, we get 

x(n+l)=A[x(n)-e(n)]+A,,e(n)+A,,e(n-1). (10) 

Applying z-transformation, (9) and (10) yield, respectively, 

X(z)=(zz-A)-l(AiZZ-l+Ail-Zz)E(Z) (11) 

X(z)=(zz-A)-1[(A,1-A)+z-?4i2]E(Z). (12) 
From (11) it is clear that if we choose 

A,,=-Z and Ail=diag[a,] (13) 

then the effective “spectrally shaped” error source at the k th 
state is 

In order to introduce a transmission zero at z = e* Jwk, ak 
should be chosen as ak = 2cos( wk). 

The ok’s should be chosen at suitable points in the passband, 
such that the binary representations of ak’s are simple. We 
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consider the number of nonzero bits in the code to be the 
complexity of a multiplier. (See Section V). We also assume SD 
code representation for EFB coefficients, so that, for example, 
“101111” has a complexity of 3, as it can be implemented as 
“11000-1”. With two-bit complexities, a satisfactory zero-posi- 
tioning can generally be achieved. A constrained optimization 
scheme for this purpose can be adopted, but the details are 
beyond the scope of this paper. 

Note that, the implementation of Aiz does not require multi- 
pliers. For filters with passband centered around r/x/2 or L- 7r/3, 
the entire EFB network is free from multipliers. 

An obvious extension of the above scheme is the use of still 
higher order EFB. For example, the noise sources can be shaped 
by a transversal filter as follows: 

E;“(z)=E,(z)[l+z-1+2-s+ ... +zpL+i]. (15) 

Such an EFB network introduces zeros at frequencies wk = 
2ak/L, except at k = 0. However, we do not always continue to 
get improvements in this fashion, because even though the EFB 
circuit introduces zeros at certain points, it begins to have a 
“gain” exceeding unity over a considerable region of the pass- 
band. 

III. PERFORMANCE MEASURE AND NUMERICAL EXAMPLES 

Even though (9) gives us a guideline for choice of the EFB 
circuit, we find it more convenient to use (10) for deriving a 
performance measure. (Recall that, there is hardly any difference 
between u(n) and w(n) anyway). From (10) we get 

x(n+l)=Ax(n)+(Ail-A)e(n)+A,,e(n-1). (16) 

In (16), e(n) is the quantizer error vector. We assume that each 
component is zero-mean white, and that the components are 
uncorrelated. We can then derive the covariance of the state 
vector in response to the quantizer error to be 

E[x(n)xyn)] =u,‘[vl,+v,,+~1+V~2]=u~e2 (17) 

where 

v,,= E Ak(A;l-A)(A;l-A)‘(At)k (184 
k=O 

(18b) 
k=O 

v,, = : Ak(A)(Ail -A)A:2(At)k (184 
k=O 

v,, = q2. (184 

The quantity CVC’, which is proportional to the output noise 
power, will be taken as the performance measure, in the numeri- 
cal example to follow. Clearly, smaller this quantity, the better 
the performance. 

Examples 
Consider implementing a state-space structure with 

-6.24 
A = -6.76 

[ 

5.76 5.2 
6.24 4.8 

-1.483 1.282 1.97 1 
c = [0.0577 - 0.0578 0.07931. 

The “all pole filter” corresponding to the matrix A is 

(19) 

(20) 

H(z) = 
1 

1-1.972-l +1.56z-‘-0.454~-~ 
(21) 

and a plot of magnitude of H(ej“‘) is shown in Fig. 3. It is clear, 

7.36 

5.57- 

iH(eiW)i 

3.70- 

I .99- 

0.0 0.2 0.4 0.6 

Fig. 3. Plot of magnitude of H(e)“) of (21). 

therefore, that if the EFB path introduces zeros in the range (0, 
0.25m), we can expect a considerable noise-reduction. For exam- 
ple, let us choose 

A,l=[8’ i.875 Hj A,,=-I. (22) 

Thus the noise sources e,(n), e2 (n), e3 (n), face transmission 
zeros at o = 0.23m, 0.113~, and 0.0, respectively. The quantity 
CVC’ is calculated to be 0.10261 for this EFB scheme. With no 
error fedback at all, (i.e., with A,, and A;, = 0) the performance 
measure is 0.5905. Conventional EFB technique would suggest 
the use of 

-6 6 5 
A,,= -7 6 5 

[ I 
A,, = 0 (23) 

-1 1 2 

which leads to a performance measure of 0.155. Note also that 
(23) is considerably more complex to implement, though it has 
the advantage of generating no secondary roundoff noise. If the 
total number of bits required to represent the EFB matrices in 
cannon&l SD code is taken to be a complexity measure, the 
complexity of the new scheme (22) is 5 bits, whereas that of the 
conventional scheme (23) is 15 bits. Thus the performance mea- 
sure is improved, at the same time reducing the complexity. In 
addition, note that in (23), most of the feedback gains are greater 
than unity, whereas in (22), this is not so, and this is an added 
advantage. 

Next, the following EFB network was considered: 

A,, =1.6251 A,,=-Z (24) 

The resulting performance measure is about 0.0805, which is 
nearly half as much as the conventional first-order EFB scheme. 
Each of the multipliers of value 1.625 introduces zeros at w = 
0.198106n for the corresponding noise source, and the complex- 
ity is only 9 bits (3 per multiplier). 

Next, a third-order EFB scheme was tried. Three matrices: 

Ail = 2.6251 Ai, = - 2.6251 A,,=Z (25) 

were used, introducing zeros at w = 0.198106~ and w = 0.0. The 
resulting performance measure however was larger compared to 
the- scheme of (24), indicating that we begin to get decreasing 
returns, as the EFB network has an overall gain exceeding unity, 
for a considerable region in the passband. 

From (12) it appears that, if Ail and Ai, are chosen, respec- 
tively, to be as close to A + Z and -A as possible, the perfor- 
mance measure would improve dramatically. This is indeed true, 
but leads to complicated EFB networks. 
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IV. NOISE OPTIMAL STATE-SPACE STRUCTURJB,WITH 
FIXEDERRORFEEDBACK 

Given a EFB circuit for a state-space configuration, such that 
the noise generated at the k th state is shaped by the function: 

l-2cos(w,)z-‘+z-2 (26) 
we wish to find the optimal state-space structure. When the noise 
sources are white, i.e., when the function of (26) is replaced by 
unity, this leads to the well-known Mullis and Roberts structure 
[6]. In this section we outline an iterative procedure for arriving 
at the optimal structure, starting from a suitable initial configura- 
tion, such as the Mullis and Roberts form. Our method is based 
on the continuous equivalence approach, as adopted to state-space 
structures [8]. 

Given a state-space realization, let h(n) denote the impulse 
response from the input to the i th register, and define K as in 
[6]: 

K= F (AkR)(AkB)‘. (27) 
k=O 

The diagonal elements Kii represent the I2 norm of f,(n). Next, 
let g,(n) denote the impulse response from the i th register to the 
filter output, with G,(e@) denoting its Fourier transform. Let 
G( ej”) denote the vector: 

G(e’“)= [Gl(eiw),G2(ei”);~~,GN(eJ”)]‘. (28) 

Let us define 

Pii=~2Gp[G(eiu)Gi(e-ju)] jjSi(w)$. (29) 
0 

Here [ G( e’“)G’( e-J“‘],, denotes the i th diagonal element of the 
N X N matrix [ G( eJ”)G’( e-@)I and S,(w) is given by 

S,(0)=4[~os*(~)+cos~(q-~~os(w)cos(o,)]. (30) 

Clearly the quantity E;“=i ci represents a measure of the total 
output noise variance, assuming that each noise component of the 
vector quantizer has same variance. Now consider a similarity 
transformation of the form 

A*=T-1AT, B*=T-‘B, C*=CT, K*=T-‘KT-‘. 

(31) 
In particular, as the K matrix is transformed as shown above, the 
output noise variance of the scaled filter in terms of unscaled 
parameters is measured by 

@= 5 Pi,Ki,. (32) 
i=l 

Now Pii can be rewritten as 

Pii=4[M+Cos2(q)R-2cos(w,)S];i (33) 

where the N x N symmetric matrices M, R, S, are defined by 

M=&/,‘TG( eJw) G( e-la)’ cos* w dw (344 

R=~~2”G(e~~)G(e~j”)rdo (34b) 

S = & k2=G( e’“) G( e-l”) ’ cos w dw (34c) 

Note that R is the W-matrix defined in [6]. Note also that all 
these matrices are symmetric. It is easily verified that the similar- 
ity transformation affects the matrices as follows: 

M* = T’MT, R* = T’RT, S* = T’ST. (35) 

The proposed iterative scheme applies a transformation of the 
form 

T=Z+AxQ (36) 

at each stage of the iteration. Here x is a dummy continuous 
variable of iteration, and Q is to be chosen such that the 
objective function @ decreases in a “steepest descent fashion.” 
The gradient of the objective function is 

(37) 

This can be evaluated by noting that the derivatives involved can 
be found in the following manner: from (33), 

@ii dM 
dx 

-4 -y +cos2(w;)~ -2cos(wi)~ . 1 (38) 
Next, 

M(~+A~)=T~M(x)T=(z+AxQ)~M(x)(z+AxQ). 

(39) 

This leads to 

T=Q~M+MQ (40) 

whence 

(41) 

The derivatives of R and S take similar forms. Eventually we get 

dP- N N N 
L=8 
dx 

c Qj,Mj,+cos2w, c Qi,R,,-2cosw, c Q,,S,; 
j=l j=l j=l 1 

(42) 
Similarly, we can show 

(43) 

whence 

(44) 

where O,i is given by 

@ij=M,,Ki,-Mi,Kj,+(RirKij-RijKjj)cos2(~i) 

-2(SiiKij-Sijs,)cos(q). (45) 

The quantity Q is chosen at each iteration according to the 
following rule: 

Qij = sign [ @,,I. (46) 

This ensures that the derivative of the objective function (44) is as 
negative as possible, for a given Ax. 

Summarizing, given an initial state-space realization, we calcu- 1 
late the matrices K and R. As these matrices satisfy the Lyapunov 
matrix equation, they can be obtained by efficient algorithms as 
described in [6]. It can be shown that the matrices M and S 
satisfy the following equations which look essentially like the 
Lyapunov equation: 

M = A’MA +0.5[ C’C+O.SC’CA* +0.5(A2)‘CfC] (47) 

S = A’SA + 0.5[ C’CA + A’C’C] (48) 
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Once these matrices are calculated for an initial state-space 
realization, we can then evaluate the objective function @, and 
the quantity Oij. This then determines the right choice of Q 
according to (46), and the transformation is now made. This 
corresponds to updating the matrices A, B, C, K according to 
(31), and updating M according to 

M( x + Ax) 

=M(x)+Ax[Q’M(x)+M’Q(x)]+(Ax)~Q~MQ. (49) 

R and S can be updated in a similar fashion as M. The process 
can be repeated until there is negligible change in the objective 
function. Note that local minima are possible, but if the initial 
configuration is chosen as the optimal structure for “white noise” 
[6], the iteration definitely improves the performance because @ 
decreases at each iteration if Ax is sufficiently small. The choice 
of Ax can be made according to standard intuitive guidelines. 

V. CONCLUDING REMARKS 

Certain implementations of digital filters involve an architec- 
ture, where the number of bits per multiplier (and signal) prim- 
arily determines the complexity. This is so, for example if the 
multiplier is implemented by coding shift/add operations; as 
done in a typical INTEL 2920 type of filter implementation. For 
such applications, EFB techniques are much easier to incorporate 
than incorporating double precision, and the techniques de- 
scribed in this paper are most relevant. In addition, the number 
of nonzero bits in an EFB coefficient can be taken as a reason- 
able complexity measure for the EFB network, and, therefore, the 
use of cannonic SD code seems appropriate. On the other hand, 
if the filter architecture is such that a number of parallel multi- 
pliers (16-bit standard multipliers, for example) form the major 
building blocks, the incorporation of EFB might increase the 
overall architectural complexity, unless the EFB coefficients are 
very simple, as in [l]. For such an architecture, it might even be 
better to go for a double precision scheme. 

It should be noted that the performance measure introduced in 
Section III ignores the secondary quantization errors, and can be 
misleading if the EFB network is highly complex. However, we 
trust that the choice of simple diagonal matrices as indicated in 
the examples, makes the measure reasonably accurate. The use of 
diagonal EFB networks introduced in this paper can be attractive 
in case of state matrices that are not sparse. The noise minimiza- 
tion scheme outlined in Section IV can be easily extended to 
arbitrary noise source spectra, that may arise by using still higher 
order diagonal EFB networks. Also, note that an obvious applica- 
tion of the ideas introduced here is in the implementation of 
block-digital filter structures [9], which involve block-quantizers. 
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A Hybrid Floating-Point Logarithmic Number 
System Processor 

FRED J. TAYLOR 

Ahsrroct -The attributes of the traditional floating-point processor and 
the logarithmic number system are combined. The result is a hybrid system 
which offers some advantages over the familiar floating-point system. Tbe 
new system, called the (FU)‘, does not require exponent alignment during 
addition, supports high-speed addition and multiplication, has an efficient 
accumulator structure, and admits a simple VLSI realization. 

INTRODUCTION 

When a large dynamic range and high precision are required, a 
floating-point representation is often adopted. Although stan- 
dardization is on the way, there are many floating-point formats 
currently in use today. However, the problem with any of these 
choices is that compared to fixed point, floating-point arithmetic 
operations are slow and complex. Furthermore, the time it takes 
to perform a floating-point addition can vary markedly depend- 
ing upon the relative values of the data to be added. As a result, 
developing efficient real-time code, in floating point, can result in 
temporal inefficiency. In addition, the multiplier and addition 
floating paths are sufficiently different so as to demand (in most 
commercial hardware realizations) two or more separate hard- 
ware units. As a result the utilization of a hardware floating point 
unit can be as low as 50 percent. 

In this work, a variation of the floating-point theme is pre- 
sented. It possesses the precision and dynamic range of the 
floating-point system without the high overhead and reduced 
throughput (due to the exponent alignment requirement) of float- 
ing point addition. This new concept, shall be referred to as the 
Florida University Floating (Point) Unit or (FU)2. 

FLOATING-POINT FORMAT 

In a floating-point system, a real number X can be approxi- 
mated by 

X= rn,fx (1) 

where r is the radix, m, is the signed (M + l)-bit mantissa, and 
e, is the signed (E + l)-bit exponent. In this form, the precision 
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