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ON ESTIMATES FOR THE WEIGHTS IN GAUSSIAN
QUADRATURE IN THE ULTRASPHERICAL CASE

KLAUS-JURGEN FORSTER AND KNUT PETRAS

ABSTRACT. In this paper the Christoffel numbers aff'_)g for ultraspherical weight
functions w,

L w(x) = (1 —.\'2)1_1/2 , are investigated. Using only elementary
functions, we state new inequalities, monotonicity properties and asymptotic
approximations, which improve several known results. In particular, denoting
by 0,(,1‘)" the trigonometric representation of the Gaussian nodes, we obtain for
A€ [0, 1] the inequalities

9 . (1 =4
I sin® 0,(,")" jo A0 =4 > _Az) -
+ 4 : 2(n + A)*sin 0,(,‘)"

< a(A)G sinZ" b‘(")

S T v

and similar results for 4 ¢ (0. 1). Furthermore, assuming that 0,(,{)" remains
in a fixed closed interval, lying in the interior of (0, n) as n — oo, we show

that, for every fixed 4 > —1/2,

PR T . N N /“ l _ /1
al(f)(' = - stA 0‘(,”" I — —( ) -
ontd ‘ 2n + A sin? 0%

(1= AV [3(A + 1)(A —2) + 4sin” g%
B AL=A[3A+ 1)(A-2)+4smn ,,‘,,]} +0(n—7)_

8(n+ 4)*sin* g1

l. INTRODUCTION
For fixed real 4 > —1/2 let w, be the ultraspherical weight function

=12

(1.1) w,(x):=(1-x""  xe(=1,1),

A

and let P,(f) be the corresponding orthogonal polynomial of degree » normal-
ized by P,(,'t)(l) = ("*24=1). Furthermore, let x:f)n < x;)n << x,(f“)n be the

zeros of P,(f) in increasing order and let 0 < Oif)n < 0;‘),1 << Hff)n < be
their trigonometric representation xf,‘.)n = —COos 61(,“)" .
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244 K.-J. FORSTER AND KNUT PETRAS

In this paper we consider quadrature formulae Q, of (algebraic) degree
deg(Q,) = m > 0 which are linear functionals of the type

(12) Qn[f] ::Zau,nf(xl/.n)’ _1S'xl.n<x2.n<.”<xﬂ.nsl’
v=1
/ feow,(x)dx = Q,[f1+ R,[f],

=0 foru=0,...,m,
{p]{
#0 foru=m+1,

(1.3)

where the n nodes X, and the weights a, , are real numbers, p, denotes
the monomial p#(x) = x", and R, is the so-called ‘error functional’ of Q, .
Of all quadrature rules that have received attention, Gaussian quadrature is the
most investigated (cf. Gautschi [19] and the bibliography cited therein). The
Gaussian quadrature formula QL)‘)G

(14) Zau. 1/.

v=1

is determined uniquely by its having maximal degree deg(Q, A)G) =2n-1.The
respective nodes x( )16 are the zeros of P , and the respective welghts au )f ,

the so-called ‘Chrlsloﬁel numbers’, are given by

N 2-24 .
i LR

1P(;.)' (WG —2’ 140
[T(AH)]*T(n + 1) [P, (/)] ?

n v.n

(cf. Szegd [36, §15.3]). By the symmetry of the weight function w, the
(AG (MG (WG _

. (MG - R . ; .
Gaussian formula Q"7 is symmetric, i.e., x,”) = —x/7_  and a” 0 =
(4)G

Aoy p v =1,....n). Therefore, it suffices to consider v = 1,2, ...,
[(n+ 1)/2]. In particular, we have that

(2)G
(n+1)/2.n

(2)G
= O’ a ! =

n
(n+1)/2.n 51‘(§+ )F(§+A+%) for odd n.

(1.6)

If A ¢ {0, 1}, for the other nodes x, )”‘ and weights al . » €lementary rep-
resentations as in (1.6) are not known, but the knowledge of their asymptotic
behavior and of explicit upper and lower bounds may be important for various
theoretical and practical investigations in quadrature; see, €.g., the monographs
on quadrature of BraB [5] and Davis and Rabinowitz [10] as well as the remarks
1n §5.

For the nodes x,’ );’ several authors have obtained inequalities or asymptotic
approximations; see, e.g., Szeg6 {36, pp. 116 ff], Tricomi {37], Ahmed, Mul-
doon, and Spigler [2] and, in particular, Gatteschi [17]. For Gaussian weights
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ESTIMATES FOR THE WEIGHTS IN GAUSSIAN QUADRATURE 245

(A)CG

a,’, 1tis well known (cf. Szegd [36, §15.3] and Davis and Rabinowitz [10])
that

W6 _ W . 24 (A
(1.7) a”~"_n+).sm g, (1 +5Vn), 11m (51,,1 =0,

provided that the nodes x )G remain in a fixed closed interval lying in the

interior of [—1, 1] and that /1 is fixed. Whitney [38] improved (1.7) by showing
the asymptotic estimate (cf. also Ossicini [28])

( |/}1()2_- 12)|9u) (1 +‘5u n) lim 677 =0, 1>0,
n+Aysmte”, n—oee

v.n

4G
(1.8) 1o, ,1<

valid under the same conditions on v and 4 as above. Recently, Gatteschi [18]
obtained the following important asymptotic approximation, which is uniform

with respect to the parameter v = 1,2, ..., [¢gn] for fixed ¢ € (0, 1) as
n— 0o,
24 (4
a(i)G_ 2 Sin 01(/.)11
v.n . 2 .
(1.9) n+/1Ji—l/z,uJ;,H/z(fz—l/z.,,)

B )] (sin_z 6 - (0},";)‘2) +6% o)}
2n+ 1) : : :

where j, , is the kth positive zero of the Bessel function J . Shohat and
Winston [31] proved

2

()G | . 2041 (A) A+2 , 1
1.10 a > ———sin l — —— , A>—=,
( ) v.n n+j.+% l/‘n{ ”l+2/1+2 2
while Winston [39], resp. Laden [26], have shown the monotonicity properties

(A)G (A)G
(1 11) v,n <au+1 n?

’ (NG . —4i (4 NG . —4i A4
a, ,sin 6 >a | sin "0  fori>0, v<n/2,

and the validity of the reversed inequalities for A < 0. Note that all the above
inequalities in (1.10) and (1.11) are asymptotically not sharp in the sense of
(1.7). Inequalities for the first weight ai 419 have been obtained by Bernstein
[4] and Gatteschi and Vinardi [15]. Further explicit upper or lower bounds
for all Gaussian weights aff’)f, with the exception of crude bounds (see, e.g.,
Monegato [27]), do not seem to be known.

The main purpose of this paper is to prove various simple but very accurate
inequalities for the Gaussian weights aff’f involving only elementary functions.
The upper and lower bounds obtained are asymptotically sharp, provided that
v increases as n increases and limsup, , v/n < 1. Note that it follows
from (1.9) that for fixed v and increasing », asymptotically sharp results are
impossible without asymptotically sharp approximations of the zeros and values

of Bessel functions. Furthermore, for nodes ’((’)n remaining in a fixed closed
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246 K.-J. FORSTER AND KNUT PETRAS

interval in the interior of [—1, 1], we derive inequalities and asymptotic values
which are much sharper than those mentioned above.

2. STATEMENT OF THE RESULTS

Our first result improves the monotonicity properties (1.11) and makes them
asymptotically correct in the sense of (1.7).

Theorem 1. Let v < n/2; then, for the Gaussian weights ay o ifA€]0,1],
(2.1) ayysin 0}, <aly sin”" 05,’31 "
where equality holds if and only if 2 € {0, 1}. If A ¢ ( , then the above

result is valid if the inequality sign in (2.1) is reversed.

Remark 1. Complementing inequality (2.1), we state that, for 4 € [0, 1] and

v<n/2,

NG . —2i p(A) (WG . =24 () \1/2
(22) ayysin o) 2l sin e (0= )
where

\ \ 2 (;.
(2 3) p(/‘-) — A(l — A) C0s 0 COS 01/+l n
Y+ A sin? 0 (1 - 4) sin® 6%
v.n v+l.n

If 4 ¢ ( , then this result is valid if the inequality sign is reversed where

for A < 4/11 the inequality (2.2) for v = | only holds if (n+/1) sin’ 61,,1

A (A —1). Using (2.3), we see that the monotonicity property (2.1) is improvable
only by a factor of the order (1+u_30(1)) for n — oo and v < gn, g€ (0, 1)
fixed.

Remark 2. Note that it may be more helpful to consider the expression
u—kO(l), where the O-estimate holds, as n — oo, uniformly for v = 1,
2,...,[gn], with ¢ fixed, g € (0, 1), instead of O(n_k) as n — oo. If the

nodes xf,;)f remain in a fixed closed interval lying in the interior of [-1, 1],

then we have O(n_k) = u_kO(l), but under the only assumption that v in-
creases, the term u_kO( 1) additionally gives useful asymptotic results. Through-
out this paper note that [(n+4)sin 9,, "] ' = u_IO( 1) forevery fixed A > —1/2
and v < gn, g € (0, 1) ﬁxed as n — oo, which follows from the known
asymptotic approximation of 9 , (seealso (2.23)).

For odd n, 4 € {0, 1] and all v, one obtains from (2.1) the inequal-

ity af}“G < a(}‘)(; sin” 8" as well as the reversed inequality for A ¢

= Hn+1)/2, n v.on
(0, 1). Replacing anm/2 , Dby its representation (1.6), we obtain a simple
upper bound, which, as a special case, is contained in the next theorem. Using
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ESTIMATES FOR THE WEIGHTS IN GAUSSIAN QUADRATURE 247

the notations
n T(3+3)T(5+4)

(4)
2.4 c, == ,
(2:4) " T3+ )T (3+4+1)
(4) (MG

(2.5) (WG . { Cn = Gnrn)/2.m for odd ~,

D= 2/((n+ ) +2(1-1))) foreven n,
we have the following inequalities, which are asymptotically sharp in the sense
of (1.8).
Theorem 2. For the Gaussian weights au f we have, if . €[0, 1],
(2.6) a,(f’)f = cff)G sin’ 0,”, (1+ 8,(,{),1),
where

A(1 = 1) cos® 8%

(2.7) - ( ) ot <e? <o.

(n+A)>sin? 6 +2(1-2) " "

Equality in (2.7) holds if and only if A€ {0, 1} or x *)G =0. For A ¢ (0,1),
the above results are also valid if the inequality signs m (2.7) are reversed, and
where for A < —4/11 the upper bound in (2.7) for v =1 or v = n only holds
if (n+4)*sin* 8% > 24 -1).

Remark 3. For 4 > 1 the results of Theorem 2 can be improved as follows.
Using

cy) for odd n,

2 6. ) (| A . (2A-D@E-1 )
(2.8) ¢, "n—l( (n+Dn+22-1)  (n+ 1)} (n+21-1)

for even n,

instead of cff)G in (2.6), we have that

(A - )2 cos’ 0}1)”
29) (n+A)sin* 0% — (A - 1)(4-2)
< W6 (A — 1) cos’ o\,

<
T T n+ 4 = (A= 1)(A - 2)]sin 0

v.n

for A €[l1, 2] and that the reversed inequalities hold for 4 > 2. In particular,
for A = 2, the upper and lower bound in (2.9) are equal, which gives the
following simple representation for the weights af/z_)f of the Gaussian formula

26,
Q"

G n .4 (2
26 _ smO()

l
2.10 a = b+ '
(2.10) von = 10 "-"{ (n+1)(n+3)5in29,(,2,),.}
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248 K.-J. FORSTER AND KNUT PETRAS

For the nodes x'* (2)

,.n» Dot that tan[(n +2)6," 1= (n+2)tan Hf,zy)n .

The following inequalities yield an asymptotic approximation which is sharp-
er than that given in (1.8). In particular, we have that for A € [0, 1], resp.
A ¢ (0, 1), the geometric mean of the bounds (2.6) and (2.7) again is a lower,

resp. upper, bound for the Gaussian weights.

Theorem 3. For the Gaussian weights a¥% we have, if €0, 1],

v.n
2 40 1/2
WG (G . 23 A4 A(l —A4)cos 8,(/’)”
a,,=c¢, sin" 67" {1- el i1
2.11) (n+4)sin" 0" +24(1-4)
" -1
d_ A=A [1+(=1)7] _ g
A(n+DP+A01=0PF " 7
where
2 pn(4) 2 pld)
(2.12) 0<g‘“ </1(1—/1)cos 0u,n[4—cos Gy’n]

UM T (n+ A+ A(1 - )P sint 0%

For A ¢ (0, 1), the representation (2.11) is valid with

A= eos 0,4 —co’ 671 f (A - 1) ’
(2.13)  2[(n+A)7sin® 6, — A4 DY (n+4)*sin* 6 —A(A-1)
S g1(//1.)n S 0 ’

where for A < —4/11 the lower bound in (2.13) for v =1 or v = n only holds
if (n+ /l)2 sin’ Gil’)n > A(A = 1). Equality in (2.12) or (2.13) is valid if and only
if 1€{0,1} or xY9=0.

v.,n

As a consequence of the above inequalities we have for fixed A and for
n— oo

a’= I _ine" 11- “12"’11 —+v o)},
(2.14) vann4 4 : 2(n+4)*sin® 61,

v<gn, qge(0,1) fixed.

For nodes x,(f‘)n that remain in a fixed closed interval lying in the interior of
[-1, 1] as n — oo, note that the asymptotic approximation (2.14) cannot be
derived from (1.9).

In the above theorems we have used the quantity cff)G in order to obtain
equality of our lower and upper bounds when # is odd and v = (n +1)/2.

The following lemma shows that further simplifications are possible.
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ESTIMATES FOR THE WEIGHTS IN GAUSSIAN QUADRATURE 249

Lemma 1. For fixed . > —1/2 we have

W= nii{l+i(i;1)[(n+l)2—(l—1)2

—1
(2.15) +%(1—2)(1—3)} +0(n‘6)},

n — 0.

Furthermore, for every n € N, there exists a éff) €[0, 1] such that

W _ AA-1) 2 2 L) -
(2.16) ! _nH{H i+ 2 = (= D+ 870 - 2)(3- 3)] }

In particular, we have, for all n € N,

217y s Zdig 21(’1_1) forie (0, 1),
n+4 2l(n4+ A7+ A1 = A) + 2/4]

and the reversed inequality (2.17) if 1 ¢ [0, 1].

As a first consequence we obtain the following simple inequalities, which, in
particular, show that for A € (0, 1) the asymptotic approximations (1.7), resp.
(2.14), are indeed upper, resp. lower, bounds.

Corollary 1. If 4 € [0, 1], then

T . 244 A(l=4) (WG T .24 A
2.1 | - - < < 0.
(2.18) ———sin 9,,,n{ 20+ ) sin’ 00 <a,, <80,
For 4 ¢ (0,1),
T . 20,
5 sin 0,
(2.19) , _
< af)g <2 _sin® 0" {1+ > i(;l ll) ,
' +4 ~ 2(n+ ) sin” 6 — 24(A - 1)

where for A < —4/11 the upper bound in (2.19) for v =1 or v = n only holds
if (n+ /1)2 sin’ Hg'l_)n > A(A = 1). Equality in (2.18) and (2.19) holds if and only
if ,€{0,1}.

Using Theorems 1 and 2 and Lemma 1, various other simple inequalities
can be obtained immediately. As an example, we state the following upper and
lower bounds, which are both asymptotically sharp in the sense of (2.14).

Corollary 2. If A€ [0, 1], then

1/2

i . 2 A(l—=4) ~(A)
2.20 aMe = " sin? 9! {1— . 1+ ,
( ) v.n n+a v.n (Vl+/1)25in201(f‘)n ( .n)

where

(2.21) 0<%

rv.,.n

W oo 2(1-7)
T (n+A)*sin* 0%
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250 K.-J. FORSTER AND KNUT PETRAS

If 2 > 1, the representation (2.20) holds with

MA= D@+ 1)
A 2D _ 204 - D
(2.22) 4[(n + )% sin o (2 )] 2
<z® <§ A(A=-1)
= = 2[(n+4)sin® 0% —a(A—-1))*

Remark 4. For the trigonometric representation 0,(,'1)” of the node x,(f)nc the

following asymptotic approximation is valid for every fixed 1 > —% and v <
gn, qe (0, 1) fixed,as n — oo

0(1) = ¢(l) + 1(1 -A) {1 _ 6+/1(1 —/1)[9—20052(;511‘)"]
23 " 2n+ay 12(n + 2) sin’ 67|
+1/_40( )}Cot(,‘bu no
where
o Ww-liin
=2 b= TR 2

(see Tricomi [37], Gatteschi [16], and Lemma 4 in §3). In particular, for 4 €
[0, 1] the following inequalities hold (Gatteschi [17]) for v < (n+1)/2:

A Al =24

). ( )

(4) (4) (4
(2.25) o <o <¢

(4)
cotg .
v.n v.n 2()’1 /1)2 v.,h

Furthermore, if 4 € [0, 1] and | < v < (n + 1)/2 then, omitting the term
1/_40( 1) in (2.23), the right-hand side of (2.23) also is a lower bound for 0

[14]. Therefore, similar results as above, not requiring the explicit knowledge
of the nodes xl(f‘)n , Tesp. 6,/‘”, follow immediately. For the standard weight
function w =1, i.e,, A=}, for example, we obtain that

2n 1
2.26 /26 _ i -——— _tq ,
( ) au,n 2l’l+ 1 Sln¢u.n 2(2n+ 1)2 ( +£u,n)
where
cosquu’n 1
- 1\4 ;.. 4 <£u.n< 1\4 .:..4 ?
(2.27) 12(n + 5)"sin" @, , 2n+3)'sin" ¢,
41/—1
¢"~"_ 4n+2

Finally, we state asymptotic approximations for the Gaussian weights which
are sharper than (2.14).
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Theorem 4. Let A > —4; then, for n — oo and v < qn, g€ (0, 1) fixed,

1/2
= s ol f1 - —— AL
Mo+ 4 : (n+4)*sin” 0% +4(1-2)
(2.28) - ‘
A=) (1+2c0s’ 0% )
S+ e v 0(1)
4(n + 1)" sin 01(,,),1
T .24 A(l-4) 2 (4
= —sin - 222780 - (24— 1) cot
n+,{ ¢u,n{ 2(n-+—,{) [ ( ) ¢l/,n]
2.29
22 1=
+ 4 . 4 il) 0(1) P
24(n+4)"sin" ¢,
AY(0) 1= 92 (1 = A) + 6+ 12(1 = A)(1 + 4 — 34%) cos’
2.30) (0) (1=A)+6+12(1 - (1 + )cos” 6

+44%(1 = )34+ 1)cos' 0,
where ¢ff?n is defined in (2.24). Furthermore,

@we _ 1w A) n T _5
(2.31) a,, = z(xwl'n X, 0 Dwy(x,”,) <_n+icsc—n+i> (1+v "0O(1)).

Note that (2.31) improves upon the trapezoidal theorem for Gaussian for-
mulae of Davis and Rabinowitz [9, §3, equations (16) and (18)].

Remark 5. Consider the Lobatto quadrature formula Q(A)LO

(2.32) oM = ax r-1) +Za xPLoy 4 ale p(y

v= 2
defined uniquely by its having degree 2n — 3 (see, e.g., BraB3 [5, p. 92]). Using
the equations (cf. Krylov [24, pp. 160 fI])

(MLo _ _(A+1)G
v.,n — Tv—1.n=2>
(2.33) ) ~ o
(A)Lo (A+ DG (A+1)G 2
a=at L - =2, e,

results similar to those above can be obtained immediately for the Lobatto

formulae Q L% The values of al "0, resp. aff):o, as well as the value of
(ALo

(n+1)/2.n

§4.8]). Note in Theorems 2 and 3 that ¢/ ’+” a((fTLLl”)/z."H for odd n.

for odd n are known explicitly (see, e.g., Ghizzetti and Ossicini [20,

3. PROOF OF THE RESULTS

First, we state some preliminary lemmas on the zeros x n of P , which

will be helpful for investigations near the boundary of the mterval [ 1 1] . For
A€ (—=,0) we require simple bounds for xﬁ)n following directly from results

of Elbert [11].
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252 K.-J. FORSTER AND KNUT PETRAS

Lemma 2. Let A€ (—5,0] and n>2; then

By A+ A+ D]+ <+ sin? 07 <5(1+ 1) (A+ 1),

1,n

Proof. By results of Szego [35] and Buell [7] it is well known that

Jicip ) Ji—12.1
) AN T H A0 - -
for 2 ¢ [0, 1],

where as above, j,_, 2.1 denotes the smallest positive zero of the Bessel func-
tion J,_, /29 and that the reversed inequalities hold if A € (0, 1). Furthermore,
Elbert [11] has proved that
200+3) (A+3+2) 2 Jicij21)

> A+ 3 (A+5+4) for)te(—%, 0].

2
(3.3)

Substituting (3.3) in (3.2) and using the standard inequalities 0 < x?—sin’x <
x*/3, (3.1) follows for n > 5. For n =3, 4,5 a calculation of 1— (x' )?

v,n’ ?
using the explicit representation of the symmetric polynomials Ps”, proves
(3.1). O

For large A we need the following bound.
Lemma 3. Let A > —1; then
(3.4) [(n NI %] sin’ 01 > (2+14)7.

Note that for large A and small » (in the sense of » = 0(4) as 4 — o0),
Lemma 3 gives sharper estimates than those using the first zero of the Bessel
function as in (3.2); in particular,

(3.5) tim x” =0 for limn/Ai=0andv=1,2,...,n
A— 00 ’ A—00

Since Jicipa = (A-5H+ 0()1_2/3)) as A — oo (cf. Abramowitz and Stegun
[1, equation 9.5.14}]), the limit (3.5) cannot be derived from (3.2).

Proof of Lemma 3. We first note that the function yfl}') defined by
(3.6) yP0) .= (sin6)* 2P M (cos8), € (0, n),

is a solution of the differential equation

i—1/2

2
1 (A-14
(3.7 v 4+ (cotf)y +{(n+ i)~ (—2)— y=0, 6€(0,n).
4 sin® @
This can be shown by explicit calculation, substituting yff) into (3.7) and
using well-known identities for P,(,") . Let o denote the first positive extremal
point of p'* in (0, n); then, for 1> 1,

o N "

(3.8) Way>o,  yWa=0, y (<o
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Therefore, (3.7) yields the inequality

, 2 A
A R/
T = > 0.
4 sina y

(3.9) (n+2)° -

Now, let /3 denote the smallest positive extremal point of (sin 0)’1_'/ 2y“"(&).

n
For 2>} wehave a < . By —cos 8 = x]” ni)l - cos 91 n+] (cf Abramow1tz

and Stegun [1,22.13.2]) and (3.9) we obtain [(n +/1) 4]sm 6’l n+l > (A- %)2
for A > % , which proves the lemma. 0O
Lemma 4. LetA>—— Then, for n — oo and v < gn, q€(0, 1) fixed,
oo g A(1-4) {1 B 6+A(l —/1)[9—2cos ¢> .n]
(3.10) v TV 2+ 4)? 12(n + 4)* sin® ¢\
+v tox )} cote”
where
VA v -1 +iz
(3.11) ¢, = PV
For nodes xy‘)nG remaining in a fixed closed interval in the interior of [-1, 1],

the above asymptotic approximation follows immediately from results of Tri-
comi [37] and Gatteschi [16].

Proof of Lemma 4. We first prove for every fixed A > —1 the much weaker ap-
proximation 6\ = ¢ +2(1 -1 2n+21"'[1+0(n™" sin”" 8% Jeots,
by use of Sturm’s comparison theorem applied to

W) () 2 Al =4)
u, +g, u, =0, g (0)=n+A) +—5—
(3.12) o

u”(6) = sin” 6P

sin® 6
(cos 6)

(cf. Szegd [36, equation (4.7.11)]) and using symmetry of P,(IZ) . Then a repeated
application of the asymptotic approximation

C(A)(n+ A+ 1)sin” )

1) )
2T(n + 27) Py (cos 0)
(3.13) —i b, cos[(n+/1+u)9 )2 ]+Mb L
' _l/=OSinU0 2 sn”“()’
M| < 2 =] ﬁ(“_i)(“”_” forv >0
“sinAz’ 0T T v 10 n+i+u ’

proved by Szegé [34] for p > A—1 and nonintegral 4, yields (3.10). For integral
A one can use the representation given in Szegd [36, equation (8.4.13)]. The
calculations are lengthy but straightforward. O
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Lemma 5. Let A > —4. Then, for n — oo and 2<v <qn, qe(0,1) fixed,

o) (*) 2n (1) \241/2
xu+l,n _xu—l,n = n +i[1 ——(qu,n) ]
(3.14) BH (5@ CH ()
P ”'”2) A V’"Z-H/_SO(I) :
2(n+A) 24(n + 4)
where
2
(A) _n Al =4)
(3.15) BY () =3+ 5
4 R
1-4)  (1+A)A(1—A)(2-2A)
3.16) CP(x) = 4 (277 — 12) +9 .
(3.16) CY(x):= T+ = T
Proof. Using Taylor’s expansion in (3.10), we obtain
] (4)
9u+l,n_0u,n
p i(l—l)ncosﬂw

= 1+ v - HY0Y Y+ 001
nH{ 2(n +2)*sin’ 6%, =D H0, ) W

3.17 A(1=A)ymcosd? G B
GI7 _ _= {1 -4 veln 2 -AHY 6 y+v0(1)

2(n + 2)* sin® 0,(/'1)1 . no vl

x A= 4) (n? = 6)(1 +2cos’ 8" ) o
i+ e L :
( "

n+4 n+ )’ sin 55,/" 12(n + 2)? sin® gfi)n
S(1+v0(1)),
where
) 1 (4> — 6)(1 +2cos> 8) — 9A (1 — A)
H™(0):= 7> 7.4 ’
(3.18) 2(n+ A) sin“ 0 24(n +A)"sin" 6
24 (4) 4
01/,n = (GUA,H + 01/+l n)/2
The assertion follows by noting xl(f‘)n = —cos 0,(2)” and again applying Taylor’s

expansion. 0O
Proof of Lemma 1. For fixed ¢ and A we consider the sequence

319) 4% -=cff)””{1+“’12_1)

n,&-
Using known asymptotic approximations for the gamma function (cf., e.g.,

Erdélyi and Tricomi [12]), we have (2.15) and the much weaker relation

(3.20) lim 4", = 1.

n—oo

-1
[n(n +2A) +é]_'} .
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A somewhat lengthy but straightforward calculation using the recurrence for-
mula of the gamma function shows that
5 ,

(3.21) db. >dv),
holds if and only if
A= 1) {4 = A7 =32 - )’ + 2(A+ )n)

+ 288+ EQP TR+ 8) —4A(A+ (A +2)} 2 0.
If 4¢:=(A+2)(A+ 1), then the last inequality is equivalent to

(3.22)

(3.23) A+2)A+ DAA-1DA-2)(A-3)>0.
If & =24-1, then (3.22) is equivalent to
(3.24) AA—1D)(A=2)(A- 3)[n2 +2A+1H)(n+1)-1]1<0.

Substituting these two special values for ¢ in (3.19) and using (3.20) and (3.21),
the assertion (2.16) follows. Using the same method for & = %/1, we obtain
(2.17). O

Proof of Theorems 1-4. We consider the following representation of the Gauss-
ian weights aff’)f which follows from (1.5):

(G (AG . 24 5(A)
(3.25) a,, =c¢,  sin Byyn{v

v.,hn

(4)

l,.n\ v, n

2 pl4
_ WG G ) A(1 = 2)cos” 6! ,),,
§ (n+2)sin® 6% +4(1-4)

(3.26)
A A -
{670y

with ¢Y% defined in (2.5) and

’ 7

2
vf%)n(e) = yff) sin’* 6{ [sin 9P,(1'“ (cos 0)] — 2Acos GP,(ID(COS 0)P,El) (cos 8)
2
(3.27) F((n+2) +A(1=2) +Acot’ ) [P,ﬁ“(cos e)] } ,
8e0,n)),
A(1 —A)cos’ 6
00 =001 - 202
(3.28) (n+4)sin® 6 + A(1 - 1)
fcG,n-9),
where
S _ o [TAPT(n + 1)
n n 22—2}. r 21 ?
(3.29) | nlin+24)

sin” @ := max 0,1(1_12) , 56[0,2.
(n+A) 2
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Using Lemmas 2 and 3, it follows that

6" >8 forn>2andi> (29~ 885)/2=-037447...
while

6\ <@ forn>2and i< (VI44l —41)/8 = ~0.37993....
For n = 2, we have by explicit calculation of xﬁ;:)z that 0(11’)2 > @ if and only
if A>(/13-7)/9 = —0.37716 . Note that from the inequalities obtained
by Buell [7, p. 311] one has 0 n > 6 forall A> —5 . Furthermore, standard

identities for P\*) (cf. Szegd [36, §4.7] ) yield

W, G+ 2/ 2 (1) platl) (A+1)
(3.30) PP (cos " ) =~ uorean o 0, P (cosB," )
and hence, for 1> -1,
, 2 Acos® 9+t
s ) e —
’ ' [(n +/1) A(l — )]sm HU g 1
A A+l -1
(3.31) C(0,7,06,7,0)
, ) A% cos” 61
_ EflAjll)G Sin2A+2 0'(/+nl_)l 1+ /+11/ n—1
) (n+/1) sin® HV  HA(1=4)
A A+l —1
(3.32) Sy (6 ))

with ¢ “(’H defined in (2.8). An explicit calculation gives
() (T 4 (T
vun(z):=vzn<z>
(3.33) =" sin™ 6 {[(n +A A= DIPY O + [P;*)'(O)]z}
= l.

Therefore, to prove Theorem 2 as well as Remark 3, it suffices to show that

" >U (7[/2) for A € [0, 1],
(3.34) v, ( 6 (0, n)
' <v] (n/2) forAg¢(0, 1]
" <v n/2 for 1 € [0, 1], _ _
(3.35) v, ,(0) e, n-80),
' >1) 7z/2 for 1 ¢ [0, 1],

and that equality in (3.34) and (3.35) holds if and only if 4 € {0, 1} or 0 =
n/2. To verify this, we apply standard methods introduced by Szego [36, §7.3]
and Bernstein [4]. First note that an explicit calculation yields, in the notation
of (3.12),

(3.36) Yﬁﬂxe>=y#){gﬁ%enufken2+[¢?k0n2}.
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It follows that
Ay A (A 2 @
(3.37) v, (0) =2, 1, (O g,” (6).
The function g,(f) is monotonic in (0, n/2), resp. (n/2, n), and therefore
(3.34) holds. Similarly, we have

2 . _ _
(n+4) +/1(1—l)vf,t)n(6)’ 0@ n-0),

(3.38) v (6) =
> gP(9)
and (cf. Szego [36, §7.31])

'

v(l)
(3.39) ‘2.

*’ o
(8) = 7+ 27 +4(1 - 2)] {u" (Z)} &' (@),

6e(d,n-0).
This gives (3.35).
By (3.37) and (3.39) the functions v|") and v{", are monotonicin (0, 7/2).
Therefore, Theorem 1 is a direct consequence of the representations (3.25), resp.
(3.26).

To prove Theorem 3, we consider the following representation of the weights

- 24 pld 172
(3.40) 206 _ o S0, { (n+2)° +A(L-4) }
g(i)(g(i) )

C =
v.n n (A) (4)
U3,n(0u,n) n v.n

where the function vgl)n is defined by

vy (0) = «,W{("H)zﬂ(l —A)}”z

3.n n ’(,;‘)(9)
" 4 g2
3.41 AP - & (0)  3Mg, (0)] ) B
o {(g a0 semor )

for § € (6, n — 6). Using (3.12), we obtain

(A

i (4) 2
o0 = L+ 4 a1 -yl 0L

(3.42) y Y
-{g,‘,“ @)1 ()] 3/2}
(4) 2 "
_ W DAl -2 12 [u, (9)’] g, (6)
" yPl(n + 27 + (1= )] PTG
) ) (A)" (A . (y 3
Atglor - 361086 O gy D& _O1 4
g (o) 4 90
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Furthermore, we have
n/2 o
(4} (4) (£)
vy, (0) =05 (m/2) —/0 vy (1) dt

4 (4) ~ »
3.44 =1- ‘n 3 19 g @ 5y _ 5
( ) 4[(”4‘/{)2—{—,{(1 _i)][un (7[/ )] g,, (7[/ ) 81/’

A=A+ DT
An+ A +Aa(1 =P

n

where
, T
Ef/‘)n :/ vé“n(t)dt
=, U
(3.45) " ) oy "
_ _7n 2 o [T g ()
=D 2 -2 [ o (—*[g,gﬂ(z)]s/z d.

First let 4 € (0, 1). The term is curly brackets in (3.43) is positive if

(" ' 5
0 ] _
(346)  gP(0)> 28 0)& (0) 94U -A)1+2c05 0
2 g,(,") (8) 4 sin6 2+cos’d
and therefore if
SA(1—A)
3.47 n+ i)yl >4
( ) ( ) 4 sin’ 6

For 6 = 65'1’)” , this inequality follows from Lemma 3, so that the lower bound
in (2.12) is proved. Since the integrand of the last integral in (3.45) is negative,
we estimate [u()] by (Pl(n+4)° +2(1 - 1)~ (cf. (3.35), (3.36), and
(3.38)). Now, an explicit calculation of the resulting integral yields

A=) (1+2c0s* 0% —3h% )1 — A% ) —sin g

3.48 - AP sin” 67 ’
(348) &, < [(n+ )7+ (1 - ) sin* 67
(3.49) pi ML= Aeos’],

T (n+ A sin® 60+ A(1-2)

A.further estimation proves the upper bound in (2.12). For A ¢ [0, 1] and
9,(/’:),, € (6, n/2], the upper bound in (2.13) follows from the positivity of each

summand in the curly brackets in (3.43). To prove the lower bound in (2.13),
we notice that [uff)(t)]2 can be estimated from above by [yff)g,(,”(t)]_] (cf.
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(3.34) and (3.36)). Therefore, we have for 4 ¢ [0, 1] and 6\ € (8, 7 - 8)

[(n+ A +A(1 =)

~A)
€, 2 ~ ]
(3.50) ./”2g? 0 98" g v 1508, (OF
o BPOP7 207 gl
R R I s
4
(3.51) [ i L 16 2+cost
354(A-1) [g,(,”(t)]'/z 105 §jp? t[gr(lﬁ)(t)]yz

3 g0 15 g op
BgBnp 141gWwmle

By explicit calculation we now obtain a lower bound for Eff)n which is larger

than the left-hand side of (2.13).

For the proof of Theorem 4 we use the auxiliary function

(4) '
@ 9y = v (g 1 8, (0) @)

L) 2 _ai2 @' " .
P+ A - 2) ( g w>) NP

. ! L&, (@)1

8¢,

(4) 2 1/2 Y "
Yo ln+4)" +4(1-4)] 1 g% (o) 0

Its derivative is

) 2 12 A "
@’ Ve n+ A +A(1 = 4)] 1 g, (0) @)
- { Ww>([mwu”) }[%(m]

‘n(e 16

Therefore, the function 1)1’32(6) differs from v;’f)”(n/Z) only by a term of order
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O(n~%sin°9), so that

(4)
v,

.2 . 1/2
PG _ WG sin™" 6, {(n +).)2+A(1—/1)}

T el U gl
(3.54 ) ;
) [, A=A (14 cos® 6\, 32%(1—2) cos’ Y,
4[gr(zi)(01(//{.)n)]2 Sin4 61(/;:)11 4[gr(1)')(01(/):)n]3 Sil’l6 6’(/;:)”

=cC

.24 ’ 1/2
aesin” 0 (e atva-n)"
"oy ,(m/2) gL;')(Gf,;“)n)

(3.55) 2 )
Al =4)(1 +cos”6,,) _6
Al T o(1)
41" (8" )’ sin* 6"

v.on v.on

n+A)7?sin? 0% + (1 -

v.n

Al = 4) cos’ 6 v
AG . 2 —4 v
= CL‘)G sin”’ 0" $1 - . -

' ( A)

(3.56)

A(1=2)(1+2cos* 8% 1 (=1)"sin* ¥ _
. l+ ( )( 41/..714 ( ) 1/.n)+l/ 60(1) .
4(n+A)*sin* 0%

Applying (2.15) to this equation, we obtain (2.28). For the proof of (2.29) and
(2.30) we only have to substitute the estimates (3.10) for 0,(/’:),1 into (2.28). The
last relation (2.31) in Theorem 4 follows from (2.28) using Lemma 5. O

The corollaries can be shown by substituting the estimates of Lemma 1 for

cf:') into the respective estimates of Theorems 2 and 3. The bounds (2.26) in

Remark 4 are obtained using, in addition, the bounds for the zeros of P,E}') in
(2.25). The calculations are lengthy but elementary. By (3.42 ff) the function
Ug'::)n is monotonic in (0, n/2). Therefore, Remark 1 follows directly from the
representation (3.40).

4. NUMERICAL EXAMPLES

Using Lemmas 2 and 3, all estimates stated in the above theorems and corol-
lartes remain bounded for all v, » € N and fixed 4 > —% . By results of Buell
[7] it follows that this is also valid for 4 < —]il if v#1 and v # n. For the
standard weight function w = 1, ie., 4 = % Table | indicates the precision
of the bounds obtained, even for small v and n. A further estimation using
inequalities for the first nodes given by Szegd [35] and Gatteschi and Vinardi
[15] shows that for this weight function the absolute value of the relative error
of the lower bounds stated in Corollary 1 is smaller than 0.5% for all » and v
and at most 0.05% and 0.005% for 1 <» < n and 2 < v < n—1, respectively,
while for the value Ef,l./j) in Corollary 2 we have by (2.21) that £."/%) < 3—'01%

v.on
for I1<v<(n+1)/2.
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5. APPLICATIONS

For brevity, we restrict consideration to the standard weight function w =
1, e, A= % Most of the proofs of the results below require additional
investigations. Much more precise results, also for other values of 4, as well as
the respective proofs will be given elsewhere.

1. Applying the above results, and modifying methods used in [13], it can be
shown that the weights a, , of every positive quadrature formula Q, of the
type (1.2) (i.e,, a, , > 0 for all v) having degree deg(Q,) > 2m — 1 satisfy
the inequality

2172
I/.n]

(5.1) a, ,<&{ll-x +Ex, 1}
This improves asymptotic results previously obtained for special positive inter-
polatory quadrature formulae (see Kiitz [25]).

2. In order to investigate the numerical stability of quadrature formulae, one
possible measure is the sum of the squares of the weights of Q, , the so-called
‘variance’ of Q, (see, e.g., Chebyshev [8], Ostrowski [29], Allasia [3], and Katz
[23]). Applying Corollary 2, it can be shown that

2 n

n | G .2 7z21
. S > 1.
(5.2) 2n+1<2(a”‘n) <5 n>1

v=I
This improves an asymptotic result of Kahaner [22]. Note that for every quadra-
ture formula Q, the above sum has at least the value 4/n if deg(Q,) > 0. The
inequalities (5.2) show that the variance of the Gaussian formulae differs from
the variance of such ‘Chebyshev-type formulae’ at most by a factor 1.24.

3. To estimate the error Rf of the Gaussian formula Qf for integrands
with low continuity, Stroud [32] proposed to investigate the so-called ‘error co-
efficients’ of low order of the Gaussian formulae (see also Davis and Rabinowitz
10, p. 292]). Numerical examples given in Stroud and Secrest [33] for small
n indicate that these are not much greater than those of the respective optimal
formulae. This is confirmed by applying Theorem 2 to Peano kernels of small
order. We obtain, e.g.,

2
(53) RIS gropVars. RIS g max (£ ()],
where Var f is the variation of f. These error coefficients cannot be improved
asymptotically as n — oo (see [30]). Note that for the respective optimal
formulae using n nodes we have the error coefficient 1/n instead of n/(2n+1)
for the first class { f|Var f < 1} of functions, and also 1/n instead of 7r2/(8n)
for the second class {f|f € Cl[—l, 1], max .. |f'(x)] < 1} of functions
considered in (5.3); see, e.g., BraB3 [5].
4. In Himmerlin [21, Problem 2], Professor H. Bra3 conjectured that Rg[f]
= O(n'z) for every bounded convex function f as n — co. Applying Theorem
4, we can prove the validity of this conjecture and thus show that the Gaussian
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rule has asymptotically the best possible (see Brall [6]) order of convergence,
even in this wide class of functions.
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