
On Estimating End-to-End Network Path Properties*

Mark Allman

NASA Glenn Research Center

and

GTE Internetworking

21000 Brookpark Rd. MS 54-2

Cleveland, OH 44135

mal iman@grc, nasa. gov

Vem Paxson

AT&T Center for Internet Research at ICSI

and

Lawrence Berkeley National Labratory

1947 Center Street, Suite 600

Berkeley, CA 94704-1198

vern@aciri, org

Abstract

The more information about current network conditions available to

a transport protocol, the more efficiently it can use the network to

transfer its data. In networks such as the Internet, the transport proto-

col must often form its own estimates of network properties based on

measurements performed by the connection endpoints. We consider

two basic transport estimation problems: determining the setting of

the retransmission timer (RTO) for a reliable protocol, and estimating

the bandwidth available to a connection as it begins. We look at both

of these problems in the context of TCP, using a large TCP measure-

ment set [Pax97b] for trace-driven simulations. For RTO estimation,

we evaluate a number of different algorithms, finding that the perfor-

mance of the estimators is dominated by their minimum values, and

to a lesser extent, the timer granularity, while being virtually unaf-

fected by how often round-trip time measurements are made or the

settings of the parameters in the exponentially-weighted moving av-

erage estimators commonly used. For bandwidth estimation, we ex-

plore techniques previously sketched in the literature [Hoe96, AD98]

and find that in practice they perform less well than anticipated. We

then develop a receiver-side algorithm that performs significantly

better.

1 Introduction

When operating in a heterogeneous environment, the more informa-

tion about current network conditions available to a transport proto-

col, the more efficiently it can use the network to transfer its data.

Acquiring such information is particularly important for operation in

wide-area networks, where a strong tension exists between needing

to keep a large amount of data in flight in order to fill the bandwidth-

delay product "pipe," versus having to wait lengthy periods of time

to attain feedback regarding changing network conditions, especially

the onset of congestion.

In a wide-area network, such as the Internet, that does not pro-

vide any explicit information about the network path, it is up to the

transport protocol to torrn its own estimates of current network con-

ditions, and then to use them to adapt as efficiently as possible. A

classic example of such estimation and adaptation is how TCP in-

fers the presence of congestion along an Internet path by observing

packet losses, and either cuts its sending rate in the presence of con-

gestion, or increases it in the absence [Jac88].

In this paper we examine two other basic transport estimation

problems: determining the setting of the retransmission timer (RTO),

and estimating the bandwidth available to a connection as it begins.

We look at both problems in the context of TCP, using trace-based

analysis of a large collection of TCP packet traces. The appeal of

*This paper appears in ACM SIGCOMM '99.

analyzing TCP in particular is that it is the dominant protocol in use

in the Internet today [TMW97]. However, analyzing the behavior of

actual TCP implementations also introduces complications, because

there are a variety of different TCP implementations that behave in

a variety of different ways [Pax97a]. Consequently, in our analy-

sis we endeavor to distinguish between findings that are specific to

how different TCPs are implemented today, versus those that apply

to general TCP properties, versus those that apply to general reliable

transport protocols.

Our analysis is based on the Af_ subset of TCP trace data col-

lected in 1995 [Pax97b]. This data set consists of sender-side

and receiver-side packet traces of 18,490 TCP connections among

31 geographically-diverse lnternet hosts. The hosts were intercon-

nected with paths ranging from 64 kbps up to Ethernet speeds, and

each connection transferred 100 KB of data, recorded using tcpdump.

We modified tcpanaly [Pax97a] to perform our analysis.

The rest of the paper is organized as follows. In § 2 we look at the

problem of estimating RTO, beginning with discussions of the basic

algorithm and our evaluation methodology. We analyze the impact of

varying a number of estimator parameters, finding that the one with

the greatest effect is the lower bound placed on RTO, followed by the

clock granularity, while other parameters have little effect. We then

present evidence that argues for the intrinsic difficulty of finding op-

timal parameters, and finish with a discussion of the cost of retrans-

mitting unnecessarily and ways to detect when it has occurred. In

§ 3 we look at the problem of estimating the bandwidth available to

a connection as it starts up. We discuss our evaluation methodology,

which partitions estimates into different regions reflecting their ex-

pected impact, ranging from no impact, to preventing loss, attaining

steady state, optimally utilizing the path, or reducing performance.

We then assess a number of estimators, finding that sender-side esti-

mation such as previously proposed in the literature is fraught with

difficulty, while receiver-side estimation can work considerably bet-

ter. § 4 summarizes the analysis and possible future work.

2 Estimating RTO

For an acknowledgment-based reliable transport protocol, such as

TCP, a fundamental question is how long, in the absence of receiving

an acknowledgment (ACK), should a sender wait until retransmit-

ting? This problem is similar to that of estimating the largest possible

round-trip time (RTI') along an end-to-end network path. However,

it differs from RTr estimation in three ways. First, the goal is not

to accurately estimate the truly maximal possible RTT, but rather a

good compromise that balances avoiding unnecessary retransmission

timeouts due to not waiting long enough for an ACK to arrive, ver-

sus being slow to detect that a retransmission is necessary. Second,

the sender really needs to estimate the feedback time, which is the

round-trip time from the sender to the receiver i, lus the amount of

timerequiredforthereceivertogenerateanACKfornewlyreceived
data.Forexample,areceiveremployingthedelayedacknowledg-
mentalgorithm[Bra89]maywaitupto500msecbeforetransmitting
anACK.Thus,estimatingagoodvaluefortheretransmissiontimer
notonlyinvolvesestimatingapropertyofthenetworkpath,butalso
apropertyoftheremoteconnectionpeer.Third,if lossisduetocon-
gestion,itmaybehoovethesendertowaitlonger than the maximum

feedback time, in order to give congestion more time to drain from

the network--if the sender retransmits as soon as the feedback time

elapses, the retransmission may also be lost, whereas sending it later

would be successful.

It has long been recognized that the setting of the retransmission

timer cannot be fixed but needs to reflect the network path in use, and

generally requires dynamic adaptation because of how greatly R'ITs

can vary over the course of a connection [Nag84, DDK+90]. The

early TCP specification included a notion of dynamically estimating

RTO, based on maintaining an exponentially-weighted moving aver-

age (EWMA) of the current Rqq" and a static variation term [Pos81].

This estimator was studied by Mills in [Mi183], which characterizes

measured lnternet RTlrs as resembling a Poisson distribution over-

all, but with occasional spikes of much higher RTf's, and suggests

changing the estimator so that it more rapidly adapts to incleasing

Rq"I's and more slowly to decreasing RTI"s. (To our knowledge, this

modified estimator has not been further evaluated in the literature.)

[Mi183] also noted that the balance between responding rapidly in

the face of true loss versus avoiding unnecessary retransmissions ap-

pears to be a fundamental tradeoff, with no obvious optimal solution.

Zhang [Zha86] discusses a number of deficiencies with the stan-

dard TCP RTO estimator: ambiguities in measuring RTFs associated

with retransmitted packets; the conservative RTO policy of retrans-

mitring only one lost packet per round-trip; the difficulty of choosing

an initial estimate; and the failure to track rapidly increasing R"Iq"s

during times of congestion. Karn and Partridge [KP87] addressed

the first of these, eliminating ambiguities in measuring RTTs. The

introduction of "selective acknowledgments" (SACKs) [MMFR96]

addressed the second issue of retransmitting lost packets too slowly.

Jacobson [Jac88] further refined TCP RTO estimation by introducing

an EWMA estimate of R'VI" variation, too, and then defining:

RTO = SRTT + k . RTTVAR (1)

where SRTT is a smoothed estimate of RqT (as before) and R77VAR

is a smoothed estimate of the variation of R'IT. In [Jac88], k = 2, but

this was emended in a revised version of the paper to k = 4 [JK92].

While this estimator is in widespread use today, to our knowledge

the only systematic evaluation of it against measured TCP connec-

tions is our previous study [Pax97b], which found that, other than

for over-aggressive misimplementations, the estimator appears suf-

ficiently conservative in the sense that it only rarely results in an

unnecessary timeout.

The widely-used BSD RTO implementation [WS95] has several

possible limitations: (1) the adaptive R'VI" and RTF variation estima-

tors are updated with new measurements only once per round-trip,

so they adapt fairly slowly to changes in network conditions; (2) the

measurements are made using a clock with a 500 msec granular-

ity, which necessarily yields coarse estimates (though [Jac88] intro-

duces some subtle tricks for squeezing more precision out of these

estimates); and (3) the resulting RTO estimate has a large minimum

value of I second, which may make it inherently conservative.

With the advent of higher precision clocks and the TCP "times-

tamp" option [JBB92], all three of these limitations might be re-

moved. It remains an open question, however, how to best rcengineer

the RTO estimator given these new capabilities: we know the current

estimator is sufficiently conservative, but is it too conservative? If

so, then how might we improve it, given a relaxation of the above

limitations? These are the questions we attempt to answer.

2.1 The Basic RTO Estimation Algorithm

In Jacobson's algorithm, two state variables SRTT and RTTVAR es-

timate the current RTI" and a notion of its variation. These values

are used in Eqn 1 with k = 4 to attain the RTO. Both variables are

updated every time an RTI" measurement RTTmeas is taken. Since

only one segment and the corresponding ACK is timed at any given

time, updates occur only once per R'Iq" (also referred to as once "per

flight"). SRTT is updated using an EWMA with a gain of c_l:

SRTT +-- (1 - o,_l)SRTT + o_l RTTmeas (2)

1 which leads to efficientand Jacobson [Jac88] recommends c_1 = g,

implementation using fixed-point arithmetic and bit shifting. Simi-

larly, RTTVAR is updated based on the deviation tSRTT- RTTmeasl

using o2 = ¼.

Any time a packet retransmitted due to the RTO expiring is itself

lost, the TCP sender doubles the current value of the RTO. Doing so

both diminishes the sending rate in the presence of sustained conges-

tion, and ameliorates the possible adverse effects of underestimating

the RTO and retransmitting needlessly and repeatedly.

SRTI" and RTTVAR are initialized by the first RTl'meas measure-

ment using SR77" +-- R"ITmeas and RTTVAR _-- -_R'Iq"meas. Prior

to the first measurement, RTO = 3 sec.

Two important additional considerations are that all measure-

ment is done using a clock granularity of G seconds, i.e., the

clock advances in increments of G, I and the RTO is bounded by

RTOmi n and RTOmax. In the common BSD implementation of

TCP, G = 0.5 sec, RTOmi n = 2G = 1 sec, and RTOmax = 64 sec.

As will be shown, the value of RTOmi n is quite significant. Also,

since the granularity is coarse, the code for updating RTTVAR sets a
minimum bound on RTTVAR of G, rather than the value of 0 sec that

can often naturally arise.

Three oft-proposed variations for implementing the RTO estima-

tor are to time every segment's RTT. rather than only one per flight;

use smaller values of G; and lower RTOmi n in order to spend less

time waiting for timeouts. RFC 1323 [JBB92] explicitly supports the

first two of these, and our original motivation behind this part of our

study was to evaluate whether these changes are worth pursuing.

2.2 Assessing Different RTO Estimators

There are two fundamental properties of an RTO estimator that we

investigate: (1) how long does it wait before retransmitting a lost

packet? and (2) how often does it expire mistakenly and unnecessar-

ily trigger a retransmit? A very conservative RTO estimator might

simply hardwire RTO = 60 sec and never make a mistake, satisfy-

ing the second property, but doing extremely poorly with regards to

the first, leading to unacceptable delays; while a very aggressive es-

timator could hardwire RTO = 1 msec and reverse this relationship,

flooding the network with unnecessary retransmissions.

Our basic approach to assess these two properties is to use trace-

driven simulation to evaluate different estimators, using the follow-

ing methodology, which mirrors the RTO estimator implementation

in IWS95]:

1. For each data packet sent, if the RTO timer is not currently

active, it is started. The timer is also restarted when the data

packet is the beginning of a retransmission sequence.

2. For each data packet retransmitted in the TCP trace due to a

timeout, we assess whether the timeout was unavoidable, mean-

ing that either the segment being retransmitted was lost, or all

_The BSD timer implementation also uses a "heartbeat" timer that expires

every G seconds with a phase independent of when the timer is actually set.
We included this behavior in our sirnulatitms.

Mi°i°umRTOWACKs sent after the segment's arrival at the receiver (up un-

til the arrival of the retransmission) were lost. This check is

necessary because some of the TCPs in the .A/'2dataset used ag-

gressive RTO estimators that often fired prematurely in the face

of high R'I'Ts [Pax97a], so these retransmissions are not treated

as normal timeout events.

3. If the timeout was unavoidable, then the retransmission is clas-

sified as a "first" timeout if this is the first time the segment is

retransmitted, or as a "repeated" timeout otherwise. The estima-

tor is charged the current RTO setting as reflecting the amount

of time that passed prior to retransmitting (consideration (1)

above), with separate bookkeeping for "first" and "repeated"

timeouts (for reasons explained below). The RTO timer is also

backed off by doubling it.

4. If the timeout was avoidable, then it reflects a problem with

the actual TCP in the trace, and this deficiency is not charged

against the estimator we are evaluating.

5. For each arrival of an ACK for new data in the trace, the ACK

arrival time is compared with the RTO, as computed by the

given estimator. If the ACK arrived after the RTO would have

fired we consider the expiration a "bad" timeout, reflecting that

the feedback time of the network path at that moment exceeded

the RTO.

If the ACK covers all outstanding data the RTO timer is turned

off.

If the ACK also yielded an RTT measurement (because it ac-

knowledged the segment currently being timed, or because ev-

ery segment is being timed), SRTT and RTTVAR are updated

based on the measurement and the RTO is recomputed.

Finally, the RTO timer is restarted.

6. The sending or receiving of TCP SYN or FIN packets is not

assessed, as these packets have their own retransmission timers,

and if interpreted as simple ACK packets can lead to erroneous
measurements of R'l"r.

Note this approach contains a subtle but significant difficulty. Sup-

pose that in the trace packet P is lost and 3 seconds later the TCP's

real-life RTO expires and P is retransmitted. We treat this as a "first

timeout," and charge the estimator with the RTO, R, it computed for

P. Suppose R = 100 msec. From examining the trace it is im-

possible to determine whether retransmitting P after waiting only

100 msec would have been successful. It could be that waiting any

amount of time less than 3 seconds was in fact too short an interval

for the congestion leading to P's original loss to have drained from

the network. Conversely, suppose P is lost after being retransmitted
3 seconds later. It could be that the first loss and the second are in

fact uncorrelated, in which case retransmitting after waiting only R

seconds would yield a successful transmission.

The only way to assess this effect would be to conduct live experi-

ments, rather than trace-driven simulation, which we leave for future

work. Therefore, we assess not whether a given retransmission was

effective, meaning that the retransmitted packet safely arrived at the

receiver, but only whether the decision to retransmit was correct,

meaning that the packet was indeed lost, or all feedback from the re-

ceiver was lost. Related to this consideration, only the effectiveness

of an RTO estimator at predicting timely "first" timeouts is assessed.

For repeated timeouts it is difficult to gauge exactly how many of the

potential repeated retransmissions would have been necessary.

Given these considerations, for a given estimator and a trace i let

7', be the total time required by the estimator to wait lot unavoid-

able first timeouts. Let g, be the number of "good" (necessary) first

timeouts, and b, the total number of-bad" timeouts, including multi-

ple bad timeouts due to backing off the timer (since wc can soundly

1,000 msec

750 msec

500 msec

250 msec

0 msec

RTO = 2,000 msec

RTO = 1,000 msec

RTO = 500 msec

144,564 8.4 0.63%

121,566 6.5 0.76%

102,264 4.8 1.02%

92,866 3.5 2.27%

92,077 3.1 4.71%

229,564 15.6 2.66%

136,514 8.2 6.14%

85,878 4.5 12.17%

Table I: Effect of varying RTOmi n, G = 1 msec

assess that all of these repeated retransmissions were indeed unnec-

essary). If bi -I- gi > 0, that is, trace i included some sort of timeout,

then define pi -- bl the normalized number of bad timeouts in
-- bi q-gl '

the trace; otherwise define pi = 0. Note that pi may not be a par-

ticularly good metric when considering transfers of varying length.

However, this study focuses only on transfers of 100 KB.

For the 3th good timeout, let RTO_ be the RTO setting of the ex-

piring timer, and R'I"T_ be the most recently observed RTr (even

if it was not an R'IT that would have been measured for pur-

poses of updating the SRTT and RTTVAR state variables). Let

= RTO i /R'Tq" i , so _i reflects the cost of the timeout in units

of RTTs. We can then define an average, normalized timeout cost of

'g'i = Ej[_], or 0 if trace i does not include any good timeouts.

For a collection of traces, we then define W = _-_'_iTi as the total

time spent waiting for (good) first timeouts; W = Ei:g_ >o['¢'i] as

the mean normalized timeout cost per connection that experienced at

least one good timeout; and B = Ei[pi] as the mean proportion of

timeouts that are bad, per connection, including connections that did

not include any timeouts (because we want to reward estimators that,

for a particular trace, don't generate any bad timeouts).

W can be dominated by a few traces with a large number of time-

out retransmissions, for which the total time waiting for first time-

outs can become very..,high, so it is biased towards highlighting how

bad things can get. W is impartial to the number of timeouts in a

trace, and so better reflects the overall performance of an estimator.

B likewise better reflects how well an estimator avoids bad timeouts

overall. For some estimators, there may be a few particular traces

on which they retransmit unnecessarily a large number of times, as

noted below.

Finally, of the 18,490 pairs of traces in A/'2, 4,057 pairs were elim-

inated from our analysis due to packet filter errors in recording the

traces, the inability to pair packets across the two traces (this can

occur due to packet filter drops or IP ID fields changed in flight by

header compression glitches [Pax97c]), or tcpanaly's inability to de-

termine which retransmissions were due to timeouts. This leaves us

with 14,433 traces to analyze, with a total of 67,073 timeout retrans-

missions. Of those, 53,110 are "first" timeouts, and 34% of the traces

have no timeout retransmissions.

2.3 Varying the Minimum RTO

It turns out that the setting of RTOmi n, the lower bound on RTO.

can have a major effect on how well the RTO estimator performs,

so we begin by analyzing this effect. We first note that the usual

setting for RTOmi n is two clock "ticks" (i.e., RTOmi n = 2(7), be-

cause, given a "heartbeat" timer, a single tick translates into a time

anywhere between 0 and G sec. Accordingly, for the usual coarse-

grained estimator of (7 --- 0.5 sec, RTOmi n is 1 sec, which we will

see is conservative (since a real BSD implementation would use a

timeout between 0.5 sec and I sec). But for G = 1 msec, the two-

tick minimum is only 2 msec, and so setting RTOmi n to larger values

can have a major effect.

Granularity

500 msec

[WS95] (500 msec)

250 msec

100 msec

50 msec

20 msec

10 msec

1 msec

Table 2: Effect of varying granularity G, RTOmi n = 1 sec

Table 1 shows W, W and B for different values of RTOmi n, for

G = 1 msec. We see that W runs from 144,564 seconds for a mini-

mum of 1 sec to about 64% as much when using no minimum. The

column for W shows that the 1 sec minimum means that a typical

RTO costs a bit more than 8 RTI's, but much of this expense dis-

appears as we decrease the minimum. B, on the other hand, shows

that for a 1 sec minimum, on average only about 1 in 150 timeouts is

bad, while for no minimum, nearly 1 in 20 is (these bad timeouts are

not clustered among a particular small subset of the traces). Clearly,

adjusting the minimum RTO provides a "knob" for directly trading

off ti reel y response with premature ti meouts, with no obvious "sweet

spot" yielding an optimal balance between the two.

As noted above, "delayed" acknowledgments in TCP can result

in elevating RTTs by up to 500 msec, and in a number of com-

mon implementations, frequently elevate RTTs by up to 200 msec.

Accordingly, it is not clear that a minimum RTO of two ticks for

G = 1 msec is sound. However, for the bulk of our subsequent anal-

ysis, we consider estimators with no minimum bound, both to high-

light the contribution to estimator efficiency of factors other than the

quite-dominant minimum RTO, and to keep in mind that transport

protocols different from TCP might not introduce such a minimum.

For comparison, we include three static timers that use a constant

setting for RTO (except they double the RTO on repeated timeouts).

The table highlights the heavy cost of not using an adaptive timer.

The constant estimators generate about 10 times as many bad time-

outs as the adaptive estimators with similar relative performance fig-

ures (W). The values of B don't tell the whole story for the static

timers, however, because their bad timeouts are clustered among rel-

atively few traces. For example, RTO = 2,000 msec results in a bad

timeout in 538 traces, while for RTOmi n = 250 msec, which has a

similar value of B, spreads its bad timeouts over more than twice as

many traces.

2.4 Varying Measurement Granularity

With the above caution regarding the considerable importance of

RTOmi n in mind, we now look at the effect of varying G. In Table 2,

(7 ranges from 500 msec down to 1 msec. In order to compare the

different granularities on an even footing, we hold RTOmi n : 1 sec

constant, rather than having the relative differences between the

granularities overwhelmed by using RTOmi n = 2G. We include one

additional row, "[WS95]," which is the estimator as implemented in

[WS951. This implementation includes fixed-point arithmetic and

bit-shifting in order to estimate SRTT at an effective granularity of

62.5 msec and RTTVAR at a granularity of 125 msec, though RTO

itself is computed with a granularity of 500 msec.

We first note that for (7 _< 10l) msec, the performance for good

timeouts, both absolute (W) and relative (W) is essentially identical,

regardless of how fine the granularity becomes. But we steadily gain

in avoiding bad timeouts (minimizing B) as the granularity becomes

finer. The reason for the gain is that the more coarse granularities

will often take no action in the face of a minor change in RTT, while

the finer granularity estimator will adapt to rellect the change, and

Parameters

[ws95]

[ws95]-every

take-first (al, a2 = 0, RTOmin = 1 s)

take.first (al ,a2 = 0)

very-slow (_1 = sd6o,a2 : 4-1"6o)

slow-ever), (al = aA_,a2 = t-'_)

stow (al = _, a2 = 18)

std(eq = _,a2 = ¼)

std-every (at = _,a2 = ¼)

fast(a_ = ½,a2 = ¼)

take-last (al, a,, = 1)

take-last-ever)' (al, a2 = 1)

take-last (al, a2 = 1, RTOmin = 1 s)

245,668 15.4 0.23%

241,100 14.7 0.25%

158,199 8.5 0.74%

131,180 4.4 2.93%

113,903 3.9 3.97%

102,544 3.4 4.28%

96,740 3.4 3.84%

92,077 3.1 4.71%

94,081 3. I 5.09%

90,212 3.0 7.27%

93,490 3.3 19.57%

97,098 3.5 20.20%

145,571 8.5 1.30%

Table 3: Effect of varying EWMA parameters a_, a2

this gives it a slight edge.

Above G = 100 msec, however, we start trading off reduced per-

formance for avoiding bad timeouts. We can cut the average rate of

bad timeouts by nearly a factor of two by using G = 500 msec, but at

a cost of more than a lactor of two in pertbrmance. We also note that

the [WS95] estimator clearly performs better than G = 500 msec,

with both W and B lower. It gains by performing better on some

very-large-RTl" traces, because it is able to better reflect relatively

small RTT changes due to its finer effective granularities for SRTT

and RTTVAR.

2.5 Varying the EWMA Parameters

Table 3 shows the estimator's performance when varying a_ (per

Eqn 2) and c_2, holding G = 1 msec and RTOmi n = 0 msec fixed,

except where noted. The first two rows are the [WS95] implemen-

tation, which uses G = 500 msec, with the second row reflecting a

variant that derives an RT[" measurement from every ACK arriving

at the sender. We see that the more frequent SRTT and RTTVAR up-

dates have little effect on the estimator's performance, only making

it slightly more aggressive.

The remaining estimators all use G = 1 msec. The take-first ex-

treme of a_ = a2 = 0 simply uses the first R'VI" measurement

to initialize both SRTr +-- RTT and RTTVAR _-- ½RTT, yielding

RTO <--- 3RTT. It never changes SRTT, R77"VAR, or RTO again

(other than to back off RTO in the face of repeated retransmis-

sions, and undo the backing off when the retransmission epoch ends).

The first variant of it reflects using RTOmi n = 1 sec, the second,

RTOmi n = 0 sec. At the other extreme, we have take-last, which

always sets SRTT _-- RTI" and RTTVAR <-- ISRTTprev - Rqq" I.

The take-last-ever)' variant is the same except every packet is timed

rather than just one packet per round trip, and the final variant raises

the minimum RT[" to 1 sec.

In between these extremes we run the gamut from ver),-slow,

which uses one-tenth the usual parameters (which are given for the

std estimator), to fast, which uses twice the parameters, with some

time-every-packet variants.

From the table we see that the settings of the EWMA parameters

make little difference in how well the estimator performs. Indeed,

if our goal is to minimize the rate of bad timeouts and still remain

aggressive, we might pick the exceedingly simple take-first estima-

tor, which only barely adapts to the network path conditions; -_or we

might pick slow, which on average incurs 25% less normalized de-

lay per timeout, and occupies a sweet spot that locally minimizes

2Even though rake-first and take-last show overall decent performance

compared to the other RTO estimators, these RTO estimators could perform

extremely poorly over network paths that exhibit large, sudden changes in

RTT.

RTTVAR factor

k=16

k=12

k=8

k=6

adapt

W

168,002

144,053

118,858

105,681

94,220

k = 4 92,077

85,264k=3

k=2 78,565

RTOmi n = 750 msec, k = 6 128,266

RTOmi n = 750 msec 121,566

take-first25ormec, k = 6 163,799

RTOmi n = 500 msec, k = 6 112,514

RTOmi n = 500 msec 102,264

RTOmi n = 250 msec, k = 6 106,139

RTOmi n = 250 msec 92,866

[r¢l B
7.0 0.59%

5.7 0.81%

4.4 1.52%

3.8 2.43%

3.2 4.44%

3.1 4.71%

2.8 7.68%

2.5 13.64%

6.7 0.50%

6.5 0.76%

6.4 0.70%

5.1 0.69%

4.8 1.02%

4.0 1.29%

3.5 2.27%

Table 4: Effect of varying RTFVAR factor, k

B. As we found for [WS95], timing every packet makes little dif-

ference over timing only one packet per RTT, even though by timing

every packet we run many more measurements through the EWMAs

per unit time. This in turn causes the EWMAs to adapt SRTT and

RTTVAR more quickly to current network conditions, and to more

rapidly lose memory of conditions further in the past, similar in ef-

fect to using larger values for al and a2.

We note that as the timer more quickly adapts, B steadily in-

creases, with take-last-ever), generating on average one bad timeout

in every five, indicating correlations in RTF variations that span mul-

tiple round-trips. We can greatly diminish this problem by raising

Rq'_Fmin to 1 sec, but only by losing a great deal of the estimator's

timely response, and we are better off instead using the correspond-

ing take-first variant.

We also evaluated varying the EWMA parameters for RTOmi n =

500 msec. We find that W increases by roughly 50%, with the vari-

ation among the estimators further diminishing, while /3 falls by a

factor of 4-8, further illustrating the dominant effect of the RTO min-

imum.

Finally, a number of the paths in 2V'_ contain slow, well-buffered

links, which lead to steady, large increases in the RTT (up to many

seconds). We might expect take-first to do quite poorly for these

connections, since the first measured RTT has little to do with subse-

quent RTTs, but in fact take-first does quite well. The key is the last

part of step 5 in § 2.2 above: the RTO timer is restarted with each

arriving ACK for new data. Consequently, when data is flowing,

the RTO has an implicit extra RTF term [Lud99], and for take-first

this suffices to avoid bad timeouts even for RTTs that grow by two

orders of magnitude. Indeed, take-first does better for such connec-

tions than estimators that track the changing RTT! It does so because

more adaptive estimators wind up waiting much longer after the last

arriving ACK before RTO expires, while take-first retransmits with

appropriate briskness in this case. But this advantage is particular to

the highly-regularized feedback of such connections. It does, how-

ever, suggest the notion of a "feedback timeout," discussed briefly in

§4.

2.6 Varying the RTTVAR Factor

The last RTO estimation parameter we consider is k, the multiplier of

RTTVAR when computing RTO, per Eqn 1. For the standard imple-

mentation, k = 4. Table 4 shows the effects of varying k from 2-16,

for G = 1 msec and RTOmi n = 0 sec. The adapt estimator starts

with k = 4 but doubles it every time it incurs a bad timeout.

k clearly provides a knob for trading off waiting time for unnec-

essary timeouts, with no obvious sweet spot. This balance changes a

o

8 _

5_. *or

¢._ ¢,a

,::5

-- R'I'-I-VAR i ,' _ "

.... MAX RTT I / /

/ /

//

//'/

10A-" 10_-2 1E_'O 1(_1 1(_2 1(_3

Ratio of Extra Wait Necessary : X

Figure 1: Extra waiting time necessary to avoid bad RTO

bit, however, when we increase RTOmi n, as shown in the second half

of the table. For example, we find that RTOmi n = 250 msec, k = 4

performs strictly better than the no-minimum k = 6 variant, and

RTOmi n = 250 msec, k = 6 performs better than the k = 8 vari-

ant. Even the extremely simple take-first e_timator, if using k = G

and RTOmi n = 250 msec, performs a bit better than the regular

RTOmi n = 750 msec estimator.

2.7 Can We Estimate RTO Better?

Having evaluated the effects of different estimator parameters and,

for the most part, only found tradeoffs and little in the way of com-

pelling "sweet spots," we now turn to the question of whether there

are indeed opportunities to devise still better estimators. A key con-

sideration for answering this question is: when we underestimate, by

how much is it? If, for example, underestimates tend to be off by less

than RTI', then that would suggest a modification to Eqn 1 in which

SRTT has a factor of 2 applied to it.

Let A denote the amount of additional waiting time needed to

avoid a bad RTO. Figure 1 plots the cumulative distribution of the

ratio of A to RTTVAR (solid), the maximum RTT seen so far (dot-

ted), and RTO (dashed), for the usual G = 1 msec estimator. The

ratio of A to RTTVAR ranges across several orders of magnitude, in-

dicating that finding a particular value of k in Eqn 1 that efficiently

takes care of most of the remaining bad timeouts is unlikely.

Also shown is that .4 is generally less than the current RTO and

also the maximum R'Iq' seen so far; this suggests adding one of those

values to RTO to make it sufficiently conservative to avoid bad time-

outs. However, doing so has much the same effect as other estimator

variants that wait longer based on other factors (e.g., the value of k).

For example, changing the standard k = 4 estimator shown in Ta-

ble 4 to use twice the computed RTO (i.e., add in an additional RTO

term) lowers/3 from 4.71% to 0.57%, but increases li," from 3.1 to

5.7--a bit better than just using k = 12, but not compellingly better.

For RTOmi n = 0.5 sec, the plot is very similar, with slightly

more separation between the RTO and MAX RTT lines. Thus, Fig-

ure 1 suggests a fundamental tradeoff between aggressiveness and

suffering bad timeouts.

A related question is: if a packet is unnecessarily retransmitted,

does it reflect a momentary increase in R'IT, or a sustained increase?

We find that about 62% of the bad timeouts were followed by RITs

less than the current RTO, so the bad timeout reflected a transient

R'IT increase. Another 24% were followed by exactly one more ele-

vated RTT, though a bit more than 2% were followed by 10 or more

elevated R'ITs. Thus, most of the time a significant R'IT increase is

quite transient--but there is non-negligible tail-weight for sustained

RTT increases.

2.8 Impact of Bad Timeouts

We finish our study of RTO estimators with brief comments concern-

ing the impact of bad timeouts.

Any time a TCP times out unnecessarily, it suffers not only a loss

of useful throughput, but, often more seriously, unnecessarily cuts

ssthresh to half the current, sustainable window, and begins a new

slow start. In addition, because the TCP is now sending retransmit-

ted packets, unless it uses the TCP timestamp option, it cannot safely

measure RTFs for those packets (per Kam's algorithm [KP87]), and

thus it will take a long time before the TCP can adapt its Rift esti-

mate in order to improve its broken RTO estimate. (See [Pax97a] for

an illustration of this effect.)

Bad timeouts can therefore have a major negative impact on a TCP

connection's performance. However, they do not have much of an

adverse impact on the network's performance, because by definition

they occur at a time when the network is not congested to the point

of dropping the connection's packets. This in turn leads to the ob-

servation that if we could undo the deleterious effects upon the TCP

connection of cutting ssthresh and entering slow start, then a more

aggressive RTO estimator would be more attractive, as TCP would be

able to sustain bad timeouts without unduly impairing performance

or endangering network stability.

When TCP uses the timestamp option, it can unambiguously de-

termine that it retransmitted unnecessarily by observing a later ACK

that echoes a timestamp from a packet sent prior to the retransmis-

sion. (A TCP could in principle also do so using the SACK option.)

Such a TCP could remember the value of ssthresh and cwnd prior to

the last retransmission timeout, and restore them if it discovers the

timeout was unnecessary.

Even without timestamps or SACK, the following heuristic might

be considered: whenever a TCP retransmits due to RTO, it measures

AT, the time from the retransmission until the next ACK arrives. If

AT is less than the minimum RTr measured so far, then arguably the

ACK was already in transit when the retransmission occurred, and

the timeout was bad. If the ACK only comes later than the minimum

RTr, then likely the timeout was necessary.

We can assess the performance of this heuristic fairly simply. For

our usual G = 1 msec estimator, a total of 8,799 good and bad

timeouts were followed by an ACK arriving with AT less than the

minimum measured Rq_I ". Of these, fully 75% correspond to good

timeouts, indicating that, surprisingly, the heuristic generally fails.
The failure indicates that sometimes the smallest R'l"r seen so far

occurs right after a timeout, which we find is in fact the case, per-

haps because the lull of the timeout interval gives the network path a

chance to drain its load and empty its queues.

However, if the threshold is instead f = _ of the minimum RTT,

then only 20% of the corresponding timeouts are good (these com-

prise only 1% of all the good timeouts). For f = _, the proportion

falls to only 2.5%. With these reduced thresholds the chance of de-

tecting a bad timeout falls from 74% to 68% or 59%, respectively.

We evaluated the modified heuristic and found it works well: for

f = ½, B drops from 4.71% to 2.39%, a reduction of nearly a factor

of two, and enough to qualify the estimator as a "'sweet spot."

3 Estimating Bandwidth

We now turn to the second estimation problem, determining the

amount of bandwidth available to a new connection. Clearly, if a

transport protocol sender knows the available bandwidth, it would

like to immediately begin sending data at that rate. But in the ab-

sence of knowing the bandwidth, it must form an estimate. For TCR

this estimate is currently made by exponentially increasing the send-

ing rate until experiencing packet loss. The loss is taken as an im-

plicit signal that the rate had grown too large, so the rate is effectively

halved and the connection continues in a more conservative fashion.

In the context of TCP, the goal in this section is to determine the ef-

ficacy of different algorithms a TCP connection might use during its

start-up to determine the appropriate sending rate without pushing
on the network as hard as does the current mechanism. In a more

general context, the goal is to explore the degree to which the timing

structure of flights of packets can be exploited in order to estimate

how fast a connection can safely transmit.

We assume familiarity with the standard TCP congestion control

algorithms [Jac88, Ste97, APS99]: the state variable cwnd bounds

the amount of unacknowledged data the sender can currently inject

into the network, and the state variable ssthresh marks the cwnd size

at which a connection transitions from the exponential increase of

"slow start" to the linear increase of "congestion avoidance." Ideally,

ssthresh gives an accurate estimate of the bandwidth available to the

connection, and congestion avoidance is used to probe for additional

bandwidth that might appear in a conservative, linear fashion.

A new connection begins slow start by setting cwnd to 1 segment, 3

and then increasing cwnd by 1 segment for each ACK received. If the

receiver acknowledges every k segments, and if none of the ACKs
1

are lost, then cwnd will increase by about a factor of "7 = 1 +

every RTI'. Most TCP receivers currently use a "delayed acknowl-

edgment" policy for generating ACKs [Bra89] in which k = 2 and

hence "7 = a which is the value we assume subsequently.7,

Note that if during one round-trip a connection has N segments

in flight, then during slow start it is possible, during the next RTI", to

overflow a drop-tail queue along the path such that (7 - 1)N = N/k

segments are lost in a group, if the queue was completely full carry-

ing the N segments during the first round-trip. Such loss will in gen-

eral significantly impede performance, because when multiple seg-

ments are dropped from a window of data, most current TCP imple-

mentations will require at least one retransmission timeout to resend

all dropped segments [FF96, Hoe96]. However, during congestion

avoidance, which can be thought of as a connection's steady-state,

TCP increases cwnd by at most one segment per R'I'T, which ensures

that cwnd will overflow a queue by at most one segment. TCP's fast

retransmit and fast recovery algorithms [Jac90, Ste97, APS99] pro-

vide an efficient method for recovering from a single dropped seg-

ment without relying on the retransmission timer [FF96].

Hoe [Hoe96] describes a method for estimating ssthresh by mul-

tiplying the measured RTr with an estimate of the bottleneck band-

width (based on the packet-pair algorithm outlined in [Kes91]) at the

beginning of a transfer. [Hoe96] showed that correctly estimating

ssthresh would eliminate the large loss event that often ends slow

start (as discussed above). Given that Hoe's results were based on

simulation, an important follow-on question is to explore the degree

to which these results are applicable to actual, measured TCP con-

nections.

There are several other mechanisms which mitigate the problems

caused by TCP's slow start phase, and therefore lessen the need to

estimate ssthresh. First, touters implementing Random Early Detec-

tion (RED) [FJ93, BCC+98] begin randomly dropping segments at

a low rate as their average queue size increases. These drops implic-

itly signal the connection to reduce its sending rate before the queue

overflows. Currently, RED is not widely deployed. RED also does

not guarantee avoiding multiple losses within a window of data, es-

pecially in the presence of heavy congestion. However, RED also

has the highly appealing property of not requiring the deployment of

any changes to current TCP implementations.

Alternate loss recovery techniques that do not rely on TCP's re-

3Strictly speaking, cwnd is usually managed in terms of bytes and not seg-

ments (full-sized data packets), but conventionally it is discussed in terms of

segments for convenience. The distinction is rarely important. Also, [APS99]

allows an initial slow start to begin with cwnd set to 2 segments, and an ex-

perimental extension to the TCP standard allows an initial slow start to begin

with cwnd set to 3 or possibly 4 segments IAFPgg]. We comment briefly on

the implications of this change below.

transmissiontimerhavebeendevelopedtodiminishtheimpactof
multiplelossesin aflightof data.SACK-basedTCPs[MM96,
MMFR96,FF96]providethesenderwithmorecompleteinforma-
tionaboutwhichsegmentshavebeendroppedbythenetworkthan
non-SACKTCPimplementationsprovide.Thisallowsalgorithmsto
quicklyrecoverfrommultipledroppedsegments(generallywithin
oneR'lq"followinglossdetection).OneshortcomingofSACK-based
approaches,however,isthattheyrequireimplementationchanges
atboththesenderandthereceiver.Anotherclassofalgorithms,
referredtoas"NewReno"[Hoe96,FF96,FH99],doesnotrequire
SACKs,butcanbeusedtoeffectivelyrecoverfrommultiplelosses
withoutrequiringatimeout(thoughnotasquicklyaswhenusing
SACK-basedalgorithms).Inaddition,NewRenoonlyrequiresim-
plementationchangesatthesender.Theestimationalgorithmsstud-
iedinthispaperallrequirechangestothesender'sTCPimplemen-
tation.So,weassumethatthesenderTCPimplementationwillhave
someformoftheNewRenolossrecoverymechanism.

3.1 Methodology

In this section we discuss a number of algorithms for estimating

ssthresh and our methodology for assessing their effectiveness. We

begin by noting a distinction between available bandwidth and bot-

tleneck bandwidth. In [Pax97b] we define the first as the maximum

rate at which a TCP connection exercising correct congestion control

can transmit along a given network path, and the second as the upper

bound on how fast any connection can transmit along the path due to

the data rate of the slowest forwarding element along the path.

Our ideal goal is to estimate available bandwidth in terms of the

correct setting of ssthresh such that we fully utilize the bandwidth

available to a given connection, but do not exceed it (more precisely:

only exceed it using the linear increase of congestion avoidance).

Much of our analysis, though, is in terms of bottleneck bandwidth,

as this is both an upper bound on a good ssthresh estimate, and a

quantity that is more easily identifiable from the timing structure of

a flight of packets, since for any two data packets sent back-to-back

along an uncongested path, their interarrival time at the receiver di-

rectly reflects the bottleneck bandwidth along the path. 4

Note that in most TCP implementations ssthresh is initialized to

an essentially unbounded value, while here we concentrate on lower-

ing this value in an attempt to improve performance by avoiding loss

or excessive queueing. Thus, all of the algorithms considered in this

section are conservative, yet they also (ideally) do not impair a TCP's

performance relative to TCPs not implementing the algorithm. How-

ever, if an estimator yields too small a value ofssthresh, then the TCP

will indeed perform poorly compared to other, unmodified TCPs.

As noted above, one bottleneck bandwidth estimator is "packet

pair" [Kes91]. In [Pax97b] we showed that a packet pair algo-

rithm implemented using strictly sender-side measurements per-

forms poorly at estimating the bottleneck bandwidth using real traf-

fic. We then developed a more robust method, Packet Bunch Mode

(PBM), which is based on looking for modalities in the timing struc-

ture of groups of back-to-back packets [Pax97b, Pax97c]. PBM's

effectiveness was assessed by running it over the NPD datasets (in-

cluding the.A/'2 dataset referred to earlier), arguing that the algorithm

was accurate because on those datasets it often produced estimates

that correspond with known link rates such as 64 kbps, TI, El, or

Ethernet.

PBM analyzes an entire connection trace betbre generating any

bottleneck bandwidth estimates. It was developed for assessing net-

work path properties and is not practical for current TCP implemen-

tations to perform on the fly, as it requires information from both the

sender and receiver (and is also quite complicated). However, for our

purposes what we need is an accurate assessment of a given network

4Providing the path isn't "multi-charmer' or subject to routing changes

[Pax97b].

path's bottleneck bandwidth, which we assume that PBM provides.

Thus, we use PBM to calibrate the efficacy of the other ssthresh es-

timators we evaluate.

Of the 18,490 traces available in .A/'2, we removed 7,447 (40%)

from our analysis for the following reasons:

Traces marred by packet filter errors [Pax97a] or major clock

problems [Pax98]: 15%. Since these problems most likely do

not reflect network conditions along the path between the two

hosts in the trace, removing these traces arguably does not in-

troduce any bias in our subsequent analysis.

Traces in which the first retransmission in the trace was "avoid-

able," meaning had the TCP sender merely waited longer, an

ACK for the retransmitted segment would have arrived: 20%.

Such retransmissions are usually due to TCPs with an initial

RTO that is too short [Pax97a, PAD+99]. We eliminate these

traces because the retransmission results in ssthresh being set

to a value that has little to do with actual network conditions,

so we are unable to soundly assess how well a larger ssthresh

would have worked. Removing these traces introduces a bias

against connections with particularly high RTTs, as these are

the connections most likely to engender avoidable retransmis-

sions.

Traces for which the PBM algorithm failed to produce a single,

unambiguous estimate: 4%. We need to remove these traces

because our analysis uses the PBM estimate to calibrate the dif-

ferent estimation algorithms we assess, as noted above. Remov-

ing these traces introduces a bias against network conditions

that make PBM itself fail to produce a single estimate: multi-

channel paths, changes in bottleneck bandwidth over the course

of a connection, or severe timing noise.

After removing the above traces, we are left with 11,043 connec-

tions for further analysis. We use trace-driven simulation to assess

how well each of the bandwidth estimation algorithms perform. We

base our evaluation on classifying the algorithm's estimate for each

trace into one of several regions, representing different levels of im-

pact on performance.

For each trace, we define three variables, B, L and E. B is the

bottleneck bandwidth estimate made using the PBM algorithm. L is

the loss point, meaning the transmission rate in effect when the first

lost packet was sent (so, if the first lost segment was sent with cwnd

corresponding to W bytes, then L = W/RTT bytes/second). If the

connection does not experience loss, L' is the bandwidth attained

based on the largest cwnd observed during the connection, s When

L > B or L' > B, the network path is essentially free of competing

traffic, and the loss is presumed caused by the connection itself over-

flowing a queue in the network path. Conversely, if L or L' is less

than B, the path is presumed congested. Finally, E is the bandwidth

estimate made by the ssthresh estimation algorithm being assessed.

In addition, define seg(:r) = (.r. R'VF)/segment size representing

the size of the congestion window, in segments, needed to achieve a

bandwidth of.r bytes/second, for a given TCP segment size and R'Iq'.

(Note that as defined, seg(x) is continuous and not discrete.)

3.1.1 Connections With Loss

Given the above definitions, and a connection which contains loss,

we assess an estimator's performance by determining which of the

following six regions it falls into. Note that we analyze the regions in

the order given, so an estimate will not be considered for any regions

subsequent to the first one it matches.

5Strictly speaking, it's the largest flight observed during the connection,

which might be smaller than twnd due to the connection running out of data

to send, or exhausting the (32-64KB) receiver window.

No Estimate Made. The estimator failed to produce an ssthresh

estimate before the first segment loss occurred in the trace.

No Impact. The estimate satisfies E > 3'L. This means that E is

a sufficiently large overestimate that the connection will behave

no differently using that estimate than it would if no estimate
were made.

Some Loss Prevention. When L < E < "yL holds, the given

ssthresh estimate prevents some, but not all, loss of data pack-

ets. While the estimate is greater than the loss point, it reduces

the size of the last slow start flight by N, = seg(q,L - E) seg-

ments. Therefore, up to N, segment drops may be prevented.

Steady-State. When _ < E < L holds, we classify the ssthresh

estimate as "steady-state." During congestion avoidance, which

defines TCP's steady-state behavior [Jac88, MSMO97], cwnd

decreases by half upon loss detection and then increases lin-

early until another loss occurs. So, given the loss point of L,
L

cwnd can be expected to oscillate between _- and L after the

connection's second loss event. _ By making an estimate be-
L

tween 5- and L, the estimator has found the range about which

the connection will naturally oscillate, assuming the loss point

is stationary.

Optimal. When the analysis reaches this point, we know that

E < _ since none of the above conditions hold. If seg(E) >
seg(B_ - 1 also holds, then the ssthresh estimate reduces the

queueing requirement, as follows. Since E is very close to or

larger than the bottleneck bandwidth, yet less than L_, we know
that the loss point is greater than the bottleneck bandwidth, yet

the ssthresh estimate is no less than the bottleneck bandwidth or

one segment less than the bottleneck bandwidth. (We consider

one segment less than the bottleneck bandwidth to be within

the range because both slow start and congestion avoidance will

take a single RTT to increase cwnd to correspond with B--and

we prefer to reach that point via congestion avoidance rather

than slow start, so we don't overshoot it.)

Thus, assuming the connection lasts long enough, the queue

will still be filled to L. However, we will fill the queue more

slowly and smoothly than with slow start. Furthermore, when

we exceed the queue during congestion avoidance, it is only by

one segment, whereas during slow start we will exceed the ca-

pacity of the queue by as much as 3, times the capacity. 7 When a

connection falls into this region, the queue length is initially re-

duced by No = (L - E). RTT bytes. Since this region reduces

queueing, prevents loss, yet fully utilizes the network path, we

deem it "optimal."

Reduce Performance. Finally, if none of the above conditions hold

then E < _ and E < B (these bounds are not tight). We there-

fore set ssthresh too low and force cwnd growth to continue

linearly, rather than exponentially. When an estimator under-

estimates min(_,B) by more than half in 50+% of the con-

nections in which performance would be reduced, we consider

this to be an especially bad estimate. In this case, the reported

percentage of connections experiencing reduced performance is
marked with a "*"

6The size of cwnd when detecting the first loss event is roughly ")L.

Therefore. the first halving of cwnd causes it to be approximately 22L. Each
subsequent loss event should only overflow the queue slightly and therefore

c_L'ndwill be reduced to L.

7Some implementations of congestion avoidance add a constant of

I times the segment stze to cwnd for every ACK received during conges-

tion avoidance. This non-standard behavior has been shown to lead to some-

nines overflowing the queue by more than a single segment every time cwnd

approaches L [PAD+99].

Algorithm

PBM _ 23% 46% 9% 10% 11% 31% 0%

TSSF 42% 1% 1% 3% 0% 4% 52%*
C_/t u=o.l_"n- 62% 20% 6% 9% 2% 17% 2%
C_A,,--¢].O5_"n- 53% 37% 5% 4% 0% 9% 1%"
CSA "--_1 45% 32% 8% 10% 2% 19% 4%*

,=2 38% 24% 9% 13% 3% 25% 13%

TCSA 62% 14% 6% I1% 1% 19% 5%

TCSA t 70% 10% 6% 9% 2% 17% 2%

Recvmi n I 1% 32% 6% 13% 4% 23% 34% °

Recvavg I 1% 52% 10% 14% 9% 34% 3%

Recvme d I 1% 48% 10% 14% 10% 34% 7%*
Recvmax I !% 65% 7% 8% 8% 23% 0%*

Table 5: Connections with Loss (8,257 traces)

3.1.2 Connections Without Loss

The following regions use L' to assess the impact ofssthresh estima-

tion on connections in the dataset that do not experience loss. Each

trace is placed into one of the following four regions. (Again, note

that we analyze the regions in the order given, so an estimate will not

be considered for any regions subsequent to the first one it matches.)

No Estimate Made. The estimator failed to produce an ssthresh

estimate.

Unknown Effect. When E > L' holds, the estimate does not limit

TCP's ability to open cwnd, as it is above the maximum cwnd

used by the connection. Since we do not have a good measure

of the limit of the network path, nothing more can be assessed

about the performance of the estimator.

Optimal. When seg(E) _> seg(B) - 1 holds, the estimate is greater

than the bottleneck bandwidth and therefore does not limit per-

formance. However, we also know that E < L' due to the

above region. Therefore, the estimate reduces the initial queue-

ing requirement similar to the "optimal" region in § 3.1.1.

Reduce Performance. At this point, E < min(L', B - seg -_ (1))

holds, indicating that the estimate failed to provide exponen-

tial window growth to L', which is a known safe sending rate.

Furthermore, our failure to reach L' is not excused by provid-

ing exponential cwnd growth long enough to fill the pipe (B

bytes/second). We again mark with a "*" those connections for

which the reduction is often particularly large.

3.2 Benchmark Algorithm

As noted above, we use PBM as our benchmark in terms of accu-

rately estimating the bottleneck bandwidth. For ssthresh estimation,

we use a revised version of the algorithm, PBM', to provide some

sort of upper bound on how well we might expect any algorithm to

perform. (It is not a strong upper bound, since it may be that other al-

gorithms estimate the available bandwidth considerably better than

does PBM', but it is the best we currently have available.) The differ-

ence between PBM' and PBM is that PBM' analyzes the trace only

up to the point of the first loss, while PBM analyzes the trace in its

entirety. Thus, PBM' represents applying a detailed, heavyweight,

but accurate algorithm on as much of the trace as we are allowed to

inspect before perforce having to make an ssthresh decision.

As shown in Tables 5 and 6, the PBM' estimate yields ssthresh

values that rarely hurt performance, regardless of whether the con-

nection experiences loss. Each column lists the percentage of traces

which, for the given estimator, fell into each of the regions discussed

in _ 3.1.1. The Tot. column gives the percentage of traces for which

the estimator improved matters by attaining either the prevent loss,

Algorithm

PBM j 0% 56% 44% 0%

TSSF 13% 2% 2% 82%*
u:O 1

CSAn= 3" 24% 42% 13% 22%
CSA v=O'°5._ 19% 59% 1I% 10%

CSA _;==0"1,_ 14% 48% 11% 27%
t"_ A;"=_'2 13% 34% 11% 43%*

TCSA 24% 25% 8% 44%

TCSA t 27% 33% 11% 28%

Recvmi n 1% 15% 2% 83%"

Recvavg 1% 46% 23% 31%*

Recvme d 1% 45% 28% 26%
Recvmax 1% 71% 27% 1%

Table 6: Connections without Loss (2,786 traces)

steady-state, or optimal regions. This column can be directly com-

pared with the last column (reduce performance) to assess how a

given estimator trades off improvement in some cases with damage

in others.

We see that PBM' provides snme benefit (_teady state, prevention

of loss, or optimal) to 31% of the connections that experience loss,

and, when no loss occurs, the estimate falls in the optimal region

for 44% of the connections. The remaining estimates are overesti-

mates, in the case when the connection experiences loss, or have an

unknown impact (but, do not harm performance) in the connections

that do not have dropped segments. This indicates that much of the

time the available bandwidth is less than the raw bottleneck band-

width that PBM measures, which accords with the finding given in

[Pax97b].

3.3 Sender-Side Estimation Algorithms

The following is a description of the sender-side bandwidth estima-

tion algorithms, and the corresponding ssthresh estimates, investi-

gated in this paper. TCP's congestion control algorithms work on the

principle of "self-clocking" [Jac88]. That is, data segments are in-

jected into the network and arrive at the receiver at the rate of the bot-

tleneck link, and consequently ACKs are generated by the receiver

with spacing that reflects the rate of the bottleneck link. Therefore,

sender-side estimation techniques measure the rate of the returning

ACKs to make a bandwidth estimate. These algorithms assume that

the spacing injected into the data stream by the network will arrive

intact at the receiver and will be preserved in the returning ACK flow,

which may not be true due to fluctuations on the return channel al-

tering the ACK spacing (e.g., ACK compression [ZSC91, Mog92]).

These algorithms have the advantage of being able to directly adjust

the sending rate. In the case of TCP, they can directly set the ssthresh

variable as soon as the estimate is made. However, a disadvantage

of these algorithms is their reliance on the ACK stream accurately

reflecting the arrival spacing of the data stream.

3.3.1 Tracking Slow Start Flights

The first technique we investigate is a TCP-specific algorithm that

tracks each slow start "flight." The ACKs for a given flight are used

to obtain an estimate of ssthresh. While this algorithm is TCP spe-

cific, the general idea of measuring the spacing introduced by the

network in all segments transmitted in one RTT should be applica-

ble to other transport protocols. We parameterize the algorithm by

_, the number of ACKs used to estimate the bottleneck bandwidth.

For our analysis, we used T_= 3. Let F be the current flight size, in

segments. The Tracking Slow Start Flights (TSSF) algorithm is then:

• Initialize the current segment S to the first data segment sent,

and F to the initial value of c_t'/ld in segments.

G

, !
o

115 2'.o

_=

rn
E3

!
|

!
o

[]
o

21s 31o 31s .io
Time

Figure 2: Delayed ACK leading to timing "lull"

/
|

o

o

o

• For the current ,5' and F, check whether S's ACK and the n - 1

subsequent arriving ACKs are all within the sequence range of

the flight. If so, then we use this flight to make an estimate.

Otherwise, we continue to the next flight. However, if any of

the ACKs arrive reordered or are duplicates, the algorithm ter-

minates. When looking forward for the n- 1 subsequent ACKs,

the algorithm ignores any ACKs for a single segment, as they

were presumably delayed.

• To find the next flight, advance S by F segments. If N= is the

number of ACKs for new data that arrive between the old value

of 5' and its new value, then the size of the next flight is F + N,_

(the slow start increase).

• When we find a suitable flight, we estimate the bandwidth as
the amount of data ACKed between the first and the nth ACK,

divided by the time between the arrivals of these ACKs.

As the second rows of Tables 5 and 6 show, the performance of

the TSSF algorithm is quite poor. The overwhelming problem with

this estimator is underestimating the bandwidth, which would cause

a reduction in performance.

The underestimation is caused in part by TCP's delayed acknowl-

edgment algorithm. RFC 1122 [Bra89] encourages TCP receivers

to refrain from ACKing every incoming segment, and to instead ac-

knowledge every second incoming segment, though it also requires

that the receiver wait no longer than 500 msec for a second segment

to arrive before sending an ACK. Many TCP implementations use

a 200 msec "heartbeat" timer for generating delayed ACKs. When

the timer goes off, which could be any time between 0 and 200 msec

after the last segment arrived, if the receiver is still waiting for a sec-

ond segment it will generate an ACK for the single segment that has

arrived. Using this mechanism can fail to preserve in the returning

ACK stream the spacing imposed on the data stream by the bottle-

neck link. The time the receiver spends waiting on a second segment

to arrive increases the time between ACKs, which is assumed by the

sender to indicate the segments were further spaced out by the net-

work, which leads to an underestimate of the bandwidth.

Furthermore, once a delayed ACK timer effect is injected into the

ACK stream, the flight is effectively partitioned into two mini-flights

for the duration of slow start, since data segments are sent in re-

sponse to incoming ACKs. The sequence-time plot in Figure 2 il-

lustrates this effect, in the plot, which is recorded from the sender's

perspective, outgoing data segments are indicated with solid squares

drawn at the upper sequence number of the segment, while incoming

ACKs are drawn with hollow squares at the sequence number they

acknowledge.

The first flight shown, which consists of two segments, elicits a

single ACK that arrives at time T = 2.0. But the flight of three

segments that this ACK triggers elicits two ACKs, one for two seg-

ments arriving at T = 2.6, but another for just one segment at time

T = 2.8. The latter reflects a delayed ACK. The next flight of five

packets then has a lull of about 200 msec in the middle of it. This

lull is duly reflected in the ACKs for that flight, plus an additional de-

layed ACK occurs from the first sub-flight of three segments (times

T = 3.3 through T = 3.5). The resulting next flight of 8 seg-

ments is further fractured, reflecting not only the lull introduced by

the new delayed ACK, but also that from the original delayed ACK,

and the general pattern repeats again with the next flight of 12 seg-

ments. None of the ACK flights give a good bandwidth estimate, nor

is there much hope that a later flight might.

This mundane-but-very-real effect significantly complicates any

TCP sender-side bandwidth estimation. While for other transport

protocols the effect might be avoidable (if ACKs are not delayed),

the more general observation is that sender-side estimation will sig-

nificantly benefit from information regarding just when the packets

it sent arrived at the receiver, rather than trying to infer this timing

by assuming that the receiver sends its feedback promptly enough to

generate an "echo" of the arrivals.

3.3.2 Closely-Spaced ACKs

The ssthresl, estimation algorithms in [Hoe96] and [AD98] are based

on the notion of measuring the time between "closely spaced ACKs"

(CSAs). By measuring CSAs, these algorithms attempt to consider

ACKs that are sent in response to closely spaced data segments,

whose interarrival timing at the receiver then presumably reflects

the rate at which they passed through the bottleneck link. However,

neither paper defines exactly what constitutes a set of closely-space
ACKs.

We explore a range of CSA definitions by varying two parameters.

The first, v, is the fraction of the RTI" within which the consecutive

ACKs of the closely-spaced group must arrive in order to be consid-

ered "'close." We examined v values of 0.0125, 0.025, 0.05, 0.1 and

0.2. The second parameter, n, is the number of ACKs that must be

close in order to make an estimate. We examined n = 2, 3, 4, 5. The

bandwidth estimate is made the first time rt ACKs arrive (save the

first) within v • Rq"l" sec of their predecessors. This algorithm has

the advantage of being easy to implement. Also, it does not depend

on any of the details of TCP's congestion control algorithms, which

makes the algorithm easy to use for other transport protocols. A dis-

advantage of the algorithm is that it is potentially highly dependent
on the above two constants.

Our goal was to find a "sweet spot" in the parameter space that

works well over a diverse set of network paths. Rows 3-6 of Tables 5

and 6 show the effectiveness of several of the points in the parameter

space. Values of v and n outside this range performed appreciably
worse than those shown.

We chose n = 3, v = 0.1 as the sv,'eet spot in the parameter space.

However, the choice was not clear cut, as both n = 2, v = 0.05 and

n = 2, v = 0.1 provide similar effectiveness. All of the parameter

values shown, including the chosen sweet spot, reduce performance

for a large number of connections that do not experience loss and

yield no performance benefit in over 60% of the connections that did

experience loss (due to an inability to form an estimate or overesti-

mating).

3.3.3 Tracking Closely-Spaced ACKs

The ssthresh estimation algorithm in [AD98] assumes that the ar-

rivals of closely-spaced ACKs are used to form tentative ssthresh

estimates, with a final estimate being picked when these settle down

into a form of consistency. We used a CSA estimator with n = 3 and

v = 0.1 (the sweet spot above) to assess the effectiveness of their

proposed approach. For their scheme, we take multiple samples and

use the minimum observed sample to set ssthresh. We continue esti-

mating until the point of loss, or we observe a sample within 10% of

the minimum sample observed so far (in which case we are presumed

to have converged). We show the effectiveness of using the "tracking

closely-spaced ACKs" (TCSA) algorithm in Tables 5 and 6. As with

the CSA method described above, the TCSA algorithm does not have

a performance impact on the connection in over 75% of the connec-

tions with loss. Furthermore, the number of connections for which

the performance would be reduced is increased by roughly a factor

of 2 for both connections that experienced loss and those that did not

when comparing TCSA with CSA.

Since TCSA shows an increase in the number of connections

whose performance would be reduced, it clearly often estimates too

low, so we devised a variant, TCSA', that does not depend on the

minimum observation (which is likely to be an underestimate). We

compare each CSA estimate, Ei, with estimate Ei-1 (for i > 1). If

these two samples are within 10% of each other, then we use the av-

erage of the two bandwidth estimates to set ssthresh. Tables 5 and 6

show that TCSA' is comparable to TCSA in most ways. The excep-

tion is that the number of underestimates that would reduce perfor-

mance is decreased when using TCSA', so it would be the preferred

algorithm.

3.4 Receiver-Side Estimation Algorithm

The problems with sender-side estimation outlined above led to the

evaluation of the following receiver-side algorithm for estimating the

bandwidth. Estimating the bandwidth at the receiver removes the

problems that can be introduced in the ACK spacing by delay fluctu-

ations along the return path or due to the delayed ACK timer.

A disadvantage of this algorithm is that the receiver cannot prop-
erly control the sender's transmission rate. s However, the receiver

could inform the sender of the bandwidth estimate using a TCP op-

tion (or some other mechanism, for a transport protocol other than

TCP). For our purposes, we assume that this problem is solved, and

note that alternate uses for the estimate by the receiver is an area for

future work.

The receiver-side algorithm outlined below is TCP-specific. Its

key requirement is that the receiver can predict which new segments

will be transmitted back-to-back in response to the ACKs it sends,

and thus it can know to use the arrivals of those segments as good

candidates for reflecting the bottleneck bandwidth. Any transport

protocol whose receiver can make such a prediction can use a related

estimation technique, in particular, by using a timestamp inserted by

the sender, the receiver could determine which segments were sent

closely-spaced without knowledge of the specific algorithm used by
the sender. This is an area for near-term future work.

For convenience, we describe the algorithm assuming that se-

quence numbers are in terms of segments rather than bytes. Let Ai

denote the segment acknowledged by the ith ACK sent by the re-

ceiver. Let DI denote the highest sequence number the sender can

transmit after receiving the ith ACK. If we number the ACK of the

initial SYN packet as 0, then Ao = 0. Assuming that the initial con-

gestion window after the arrival of ACK 0 is one segment, we have

Do = 1. To accommodate initial congestion windows larger than

one segment [AFP98], we increase Do accordingly.

The basic insight to how the algorithm works is that the receiver

knows exactly which new segments the arrival of one of its ACKs at

the sender will allow. These segments are presumably sent back to

back, so the receiver can then form a bandwidth estimate based on

their timing when they arrive at the receiver.

SThe TCP receiver could attempt to do so by adjusting the advertised win-

dow to limit the sender to the estimated ssthJesh value, even also increasing it

linearly to reflect congestion avoidance But when doing so, it diminishes the

efficacy of the "fast recovery" algorithm [Ste97, APS99], because it will need

to increase the artificially limited window, and, according to the algorithm, an

ACK that does so will be ignored from the perspective of sending new data

in response to receiving it.

l0

Any time the receiver sends the 3' + 1st ACK, it knows that upon

receipt of the ACK by the sender, the flow control window will slide

Aj+_ - Aj segments, and the congestion window will increase by

1 segment, so the total number of packets that the sender can now

transmit will be Aj+l - Aj + 1. Furthermore, their sequence num-

bers will be Dj + 1 through Dj+_, so it can precisely identify their

particular future arrivals in order to form a sound measurement. Fi-

nally, we take the first K such measurements (or continue until a data

segment was lost), and from them form our bandwidth estimate. For

our assessment below, we used K = 50.

(We note that the algorithm may form poor estimates in the face of

ACK loss, because it will then lose track of which data packets are

sent back-to-back. We tested an oracular version of the algorithm

that accounts for lost ACKs, to serve as an upper bound on the effec-

tiveness of the algorithm. We found that the extra knowledge only

slightly increases the effectiveness of the algorithm.)

This algorithm provides estimates for more connections than any

of the other algorithms studied in this paper, because every ACK

yields an estimate. Tables 5 and 6 show the receiver-based algo-

rithm using four different methods for combining the K bandwidth

estimates. The first "Recv" row of each table shows the effective-

hess of u_ing the utinimum of the [(measurements as the estimate.

This yields an underestimate in a large number of the connections,

decreasing performance (34% of the time when the connection expe-

riences loss and 83% of the time when no loss is present). The next

row shows that averaging the samples improves the effectiveness

over using the minimum: the number of connections with reduced

performance is drastically reduced when the connection experiences

loss, and halved in the case when no loss occurs. However, the flip

side is the number of cases when we overestimate the bandwidth in-

creases when loss is present in the connection. Taking the median

of the K samples provides similar benefits to using the average, ex-

cept the number of connections experiencing reduced performance

increases by a factor of 2 over averaging when loss occurs. Finally,

using the maximum of the K estimates further increases the number

of overestimates for connections experiencing loss. However, using

the maximum also reduces the number of underestimates to nearly

none, regardless of whether the connection experiences loss. Of the

methods investigated here, using the maximum appears to provide

the most effective ssthresh estimate. However, we note that alternate

algorithms for combining the K estimates is an area for near-term

future work.

Finally, we varied the number of bandwidth _amples, K, used to

obtain the average and maximum estimates reported above to deter-

mine how quickly the algorithms converge. We find that when aver-

aging the estimates, the effectiveness increases slowly but steadily as

we increase _K"to 50 samples. However, when taking the maximum

sample as the estimate, little benefit is derived from observing more

than the first 5-10 samples.

4 Conclusions and Future Work

Our assessment of different RTO estimators yielded several basic

findings. The minimum value for the timer has a major impact on

how well the timer performs, in terms of trading off timely response

to genuine lost packets against minimizing incorrect retransmissions.

For a minimum RTO of I sec, we also realize a considerable gain

in performance when using a timer granularity of 100 msec or less,

while still keeping bad timeouts below I%. On the other hand, vary-

ing the EWMA constants has little effect on estimator performance.

Also, an estimator that simply takes the first RTI" measurement and

computes a fixed RTO from it often does nearly as well as more

adaptive estimators. Related to this finding, it makes little difference

whether the estimator measures only one RTI" per flight or measures

an R'lq" for every packet. This last finding calls into question some

of the assumptions in RFC 1323 [JBB921, which presumes that thcre

is benefit in timing every packet. Given that such benefit is elusive,

the other goals of [JBB92] currently accomplished using timestamp

options should be revisited, to consider using a larger sequence num-

ber space instead. We finished our RTO assessment by noting that

timestamps, SACKs, or even a simple timing heuristic can be used

to reverse the effects of bad timeouts, making aggressive RTO algo-

rithms more viable.

Our assessment of various bandwidth estimation schemes found

that using a sender-side estimation algorithm is problematic, due to

the failure of the ACK stream to preserve the spacing imposed on

data segments by the network path, and we developed a receiver-side

algorithm that performs considerably better. A lingering question is

whether the complexity of estimating the bandwidth is worth the per-

formance improvement, given that only about a quarter of the con-

nections studied would benefit. However, in the context of other uses

or other transports, estimating the bandwidth using the receiver-side

algorithm may prove compelling.

Our study was based on data from 1995, and would benefit con-

siderably from verification using new data and live experiments. For

RTO estimation, a natural next step is to more fully explore whether

combinations of the different algorithm parameters might yield a sig-

nificantly better "sweet spot." Another avenue for future work is to

consider a bimodal timer, with one mode based on estimating R'lq"

for when we lack feedback from the network, and the other based

on estimating the variation in the feedback interarrival process, so

we can more quickly detect that the receiver feedback stream has

stalled. For bandwidth estimation, an interesting next step would

be to assess algorithms for using the estimates to ramp up new con-

nections to the available bandwidth more quickly than TCP's slow

start. Finally, both these estimation problems merit further study in

scenarios where touters use RED queueing rather than drop-tail, as

RED deployment should lead to smaller R"fT variations and a source

of implicit feedback for bandwidth estimation.

5 Acknowledgments

This paper significantly benefited from discussions with Sally Floyd

and Reiner Ludwig. We would also like to thank the SIGCOMM

reviewers, Sally Floyd, Paul Mallasch and Craig Partridge for helpful

comments on the paper. Finally, the key insight that the receiver can

determine which sender packets are sent back to back (§ 3.4) is due

to Venkat Rangan.

References

[AD98]

[AFP981

lAPS99]

[BCC+98]

[Bra89]

Mohit Aron and Peter Druschel. TCP: Improving

Startup Dynamics by Adaptive Timers and Congestion

Control. Technical Report TR98-318, Rice University

Computer Science, 1998.

Mark Allman, Sally Floyd, and Craig Partridge. In-

creasing TCP's Initial Window, September 1998. RFC

2414.

Mark Allman, Vern Paxson, and W. Richard Stevens.

TCP Congestion Control, April 1999. RFC 2581.

Robert Braden, David Clark, Jon Crowcroft, Bruce

Davie, Steve Deering, Deborah Estrin, Sally Floyd, Van

Jacobson, Greg Minshall, Craig Partridge, Larry Peter-

son, K. Ramakrishnan, S. Shenker, J. Wroclawski, and

Lixia Zhang. Recommendations on Queue Manage-

ment and Congestion Avoidance in the lnternet, April

1998. RFC 2309.

Robert Braden. Requirements for lnternet Hosts - Com-

munication Layers, October 1989. RFC 1122.

II

[DDK+90]

[FF961

[FH991

[FJ931

[Hoe96]

[Jac88]

[Jac90]

[JBB92]

[JK92]

[Kes91]

[KP871

[Lud99]

[Mi183]

IMM96]

[MMFR96]

[Mog92]

[MSMO971

Willibald Doeringer, Doug Dykeman, Matthias Kaiser-

swerth, Bernd Werner Meister, Harry Rudin, and Robin

Williamson. A Survey of Light-Weight Transport Pro-

tocots for High-Speed Networks. IEEE Transactions on

Communications, 38(11):2025-2039, November 1990.

Kevin Fall and Sally Floyd. Simulation-based Com-

parisons of Tahoe, Reno, and SACK TCP. Computer

Communications Review, 26(3), July 1996.

Sally Floyd and Tom Henderson. The NewReno Modi-

fication to TCP's Fast Recovery Algorithm, April 1999.

RFC 2582.

Sally Floyd and Van Jacobson. Random Early Detec-

tion Gateways for Congestion Avoidance. IEEE./ACM

Transactions on Networking, 1(4):397--413, August

1993.

Janey Hoe. Improving the Start-up Behavior of a Con-

gestion Control Scheme for TCP. In ACM SIGCOMM,

August 1996.

Van Jacobson. Congestion Avoidance and Control. In

ACM SIGCOMM, 1988.

Van Jacobson. Modified TCP Congestion Avoidance

Algorithm, April 1990. Email to the end2end-interest

mailing list. URL: ftp://ftp.ee.lbl.gov/email/

vanj.90apr30.txt.

Van Jacobson, Robert Braden, and David Borman. TCP

Extensions for High Performance, May 1992. RFC

1323.

Van Jacobson and Michael Karels. Con-

gestion Avoidance and Control, 1992.

ftp://ftp.ee.lbl.gov/papers/congavoid, ps Z.

Srinivasan Keshav.

to Flow Control.

September 1991.

A Control Theoretic Approach

In ACM SIGCOMM, pages 3-15,

Phil Kam and Craig Partridge. Improving Round-Trip

Time Estimates in Reliable Transport Protocols. In

ACM SIGCOMM, pages 2-7, August 1987.

Reiner Ludwig. A Case for Flow-Adaptive Wireless

Links. Technical report, Ericsson Research, February

1999.

David Mills. Internet Delay Experiments, December

1983. RFC 889.

Matt Mathis and Jamshid Mahdavi. Forward Acknowl-

edgment: Refining TCP Congestion Control. In ACM

SIGCOMM, August 1996.

Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn

Romanow. TCP Selective Acknowledgement Options,

October 1996. RFC 2018.

Jeffrey C. Mogul. Observing TCP Dynamics in Real

Networks. In ACM SIGCOMM, pages 305-317, 1992.

Matt Mathis, Jeff Semke, Jamshid Mahdavi, and Teunis

Ott. The Macroscopic Behavior of the TCP Congestion

Avoidance Algorithm. Comp,ter Communication Re-

view. 27(3), July 1997_

[Nag84]

[PAD+99]

[Pax97a]

[Pax97b]

[Pax97c]

[Pax98]

[Pos81]

[Ste971

[TMW97]

[WS95]

[Zha86]

[ZSC91]

John Nagle. Congestion Control in IP/TCP Internet-

works, January 1984. RFC 896.

Vern Paxson, Mark Allman, Scott Dawson, William

Fenner, Jim Griner, lan Heavens, Kevin Lahey, Jeff

Semke, and Bernie Volz. Known TCP Implementation

Problems, March t999. RFC 2525.

Veto Paxson. Automated Packet Trace Analysis of

TCP Implementations. In ACM SIGCOMM, September

1997.

Vern Paxson. End-to-End lnternet Packet Dynamics. In

ACM SIGCOMM, September 1997.

Vern Paxson. Measurements and Analysis of End-to-

End lnternet Dynamics. Ph.D. thesis, University of Cal-

ifornia Berkeley, 1997.

Vern Paxson. On Calibrating Measurements of Packet

Transit Times. In ACM SIGMETRICS, June 1998.

Jon Postel. Transmission Control Protocol, September

1981. RFC 793.

W. Richard Stevens. TCP Slow Start, Congestion

Avoidance, Fast Retransmit, and Fast Recovery Algo-

rithms, January 1997. RFC 2001.

Kevin Thompson, Gregory Miller, and Rick Wilder.

Wide-Area lnternet Traffic Patterns and Characteris-

tics. IEEE Network, 11 (6): 10-23, November/December

1997.

Gary R. Wright and W. Richard Stevens. TCP/IP ll-

lustrated Volume Ih The Implementation. Addison-

Wesley, 1995.

Lixia Zhang. Why TCP Timers Don't Work Well. In

ACM SIGCOMM, pages 397--405, August 1986.

Lixia Zhang, Scott Shenker, and David Clark. Obser-

vations on the Dynamics of a Congestion Control Al-

gorithm: The Effects of Two- Way Traffic. In ACM

SIGCOMM, September 1991.
g

12

