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ON ESTIMATING THE ENDPOINT OF A DISTRIBUTION

By PETER HALL

Australian National University

We propose a method of estimating the endpoint, §, of a distribution
when only limited information is available about the behaviour of the distri-
bution in the neighbourhood of §. By using increasing numbers of extreme
order statistics we obtain an estimator which improves on earlier estimators
based on only a bounded number of extremes. In a certain particular model
our estimator is equal to a maximum likelihood estimator, but it is robust
against departures from this model.

1. Introduction and summary. Let f be a density with support confined to the
positive half line and which satisfies f(x) = x*L(x) as x — 0*, where 2 = 0 and L is slowly
varying at the origin. Define f;(x) = f(8-x), —o < x < ®. The problem of estimating the
location parameter @ has been addressed by several authors; see for example Polfeldt
(1970a, 1970b), Woodroofe (1972, 1974), Weiss and Wolfowitz (1973), Akahira (1975a,
1975b) and Akahira and Takeuchi (1979). It has generally been assumed that the distri-
bution is completely specified except for the parameter 8, and in this case the technique of
maximum likelihood is a natural choice for estimation. However, if the density f can be
described with some accuracy only in the neighbourhood of the origin, then the estimator
of 4 should be a function of a relatively small proportion of the sample.

Recently attention has centered on just this case. Cooke (1979, 1980) built upon work of
Robson and Whitlock (1964) and proposed estimators based on linear combinations of a
fixed number of extreme order statistics. However, when %2 = 1 Cooke’s restriction to a
bounded number of extreme values can waste valuable information about the parameter
8. We shall propose a very different solution to this problem, and advocate the use of
increasing numbers of order statistics. Our estimator is asymptotically efficient in compar-
ison to other estimators computed using the same amount of information.

Cooke’s work is confined to the case where % is known, and it seems difficult to extend
his approach beyond that situation. We shall examine the case of unknown %, and show
that the penalty paid for this lack of information is to increase the variance of the estimator
of @ by a factor of 22 (% = 1). Thus, if % is close to 1 there is a relatively small loss in not
knowing the value of k.

We suggest that estimation proceed as though the density were given by g(x) =
¢(k + 1)x* in some domain (0, ¢), rather than by f. (Here ¢ > 0 is an unknown constant.)
Our estimate of @ is that value which would maximise the likelihood of the r largest order
statistics X, n—r+1, * + + , Xun, if the true density were g5 (x) = c(k + 1)(§ — x)f. This fictitious
assumption serves only to derive a formula for calculating the estimator #. We shall show
in Section 2 that the estimator’s limiting distribution has minimum variance in a class of
robust estimators based on the first r order statistics. Here the term “robust” is used to
denote that the asymptotic distribution of the estimator is unchanged if the very specific
model g is generalized to the model

1) f(x) =clk+1x*{1+0(x9)} as x— O,

or more generally, 1 — F(x) = cx***{1 + O(x°)}, where F is the distribution function.
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Under this assumption our estimators converge at a considerably faster rate than those
proposed by Cooke (1979, 1980) for the case 2 = 1. Admittedly this improvement is
achieved at the expense of some tightening of the restrictions on f, for we are assuming
that the slowly varying function L has the form L(x) = ¢ + O (x*) as x |, 0 for some constant
¢. However, as we shall show in Section 2, this assumption is a reasonable one in many
cases, and indeed it will often be possible to obtain some information about £ The
parameter c is assumed to be unknown and may be estimated at the same time as 6, but
for our purposes we shall regard ¢ as a nuisance parameter.

The improvements we have just described hold in the case £ = 1, and are not possible
for O < k < 1. In fact it follows from work of Polfeldt (1970a, 1970b) and Woodroofe (1974)
that even if f; is completely specified on (—x, #), the maximum likelihood estimator based
on the entire sample will converge at the same rate as the “naive” estimator, 8, = X.», if
O < k < 1. In this situation only limited improvements can be achieved by using more
than a fixed number of order statistics to construct the estimator, and we shall examine
such “finite” estimators in Section 3. We shall propose estimators which are asymptotically
unbiased. The results in Sections 2 and 3 cover the case where % is known, and in Section
4 we treat the case of unknown k. The proofs are placed together in Section 5.

Throughout this paper we shall use the notation » = 1/(k2 + 1), and let -3, —, and
—.s denote convergence in distribution, convergence in probability and almost sure
convergence, respectively. As far as possible we have tried to adopt the notation of Cooke
(1979, 1980).

2. The case k = 1, and k known. Let us assume for the time being that in some
neighbourhood of 6, the true density is given by

(2) filx) =ctk+ 1)@ —x), §—e<x<8, and f(x)=0, x=6,

where only 2 = 1 is known. (We do not specify f; for x = § — ¢.) We propose that the
estimator 6 be chosen to maximise the likelihood of the r largest order statistics X, ,—r+1
< +++ < X,,, where r = 2. A similar approach was employed by Hill (1975) when estimating
the exponent of a distribution with regularly varying tails. If X,, ,,_,+1 > @ — ¢, the likelihood
is given by

L.(X |8, ¢) = {n!/(n — )} {ctk + 1)) {[=1 (0 — Xnnojs1) 31 — ¢(@ — Xpn_rsr)* )"
It is readily deduced that é = r/n(§ — X, .—,+1)**", and 8 is the solution of the equation
3 EY Knnojsr — Xnn—rs)/(0 = Xnnjut) =7, 8> Xy,

Note that with probability one the left side is a strictly decreasing function of 8, and so the
likelihood equation has a unique root.

Having derived the estimator 6 we now drop our fictitious assumptions about the
underlying distribution. First of all we observe that under very general conditions, 6 is
strongly consistent for 4.

THEOREM 1. (Strong consistency.) Supposer =z 2 and r/n — 0 as n — . If Fo(x) <
1 for x < 8, if Fy(6) = 1 and F, is continuous at 0, then 0 —,_ 6.

Next we show that 8 is robust under departures of the form (1) from our imagined model
(2). Note that in the following result we do not even assume that the underlying distribution
is continuous.

THEOREM 2. Suppose 1 — Fy(x) = c(6 — x)**'(1 + O((8 — x)?)} as x 1 6, where ¢
>0.8etv=1/(k+1) and m = min(1, v¢). If k> 1, r=r(n) > @ and r = o (n™/m+1/2))
then n’rV**(6 — 9) is asymptotically normal N(0, (1 — 2»)/c”), while if k =1 and r =
O (n™ ™) then (n log r)2(§ — 9) is asymptotically normal N (0, ¢™Y).
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In many situations it will be reasonable to assume that the underlying distribution Fy is
that of X = § — Z*, where Z is a positive random variable whose density % satisfies A(0")
> 0 and A'(x) exists near the origin and is bounded. Here we should take /= % + 1, and
then m/(m + %) = %. In other cases it would be more correct to suppose that 1 — Fj(x)
= (6 — x)**'H( — x) for x < §, where H(0") > 0 and H'’(x) exists and is bounded. Then ¢
=1land m/(m + %) = 2/(k + 3).

The problem investigated in Theorem 2 is similar in some respects to that of nonpara-
metric density estimation. In both situations we are estimating a quantity which is defined
in terms of the local behaviour of the distribution, and since we lack parametric knowledge
about the behaviour of the distribution on the whole real line, we base our estimation on
order statistics from the neighbourhood under investigation. The parameter r plays the
same role as the “window size” in the context of density estimation, and the problems
associated with its use are very similar to those encountered in density estimation. If we
are prepared to strengthen the assumption in Theorem 2 to the model

1—Folx) =c(@—x)*"* {1+ C@H - x)’+ o((0 — x) )}

as x — 87, where C is a nonzero constant, then the techniques used to prove Theorem 2
may be extended to derive formulae for the bias and mean square error of 6, which are
functions of C, ¢, k and Zas well as r and n. Such formulae are analogues of better known
expressions in the case of density estimators; see, for example, equations (15) and (16) of
Rosenblatt (1971). An asymptotically optimal formula for r can be determined by
minimising the mean square error, but this expression depends on the unknown parameters
C and c, and is consequently of little practical value.

Our maximum likelihood approach may be used when somewhat more information is
available about f—for example, if we are prepared to assume that f(—x) = c(k + 1)x*{1
+ dix+ oo + dpx® + O(x*"))}, where dy, ds, - - - , ds are unknown constants and £, <
< von < é’m+1 are known constants. However the likelihood equation loses its simple
form, and the technique of maximum likelihood estimation is less attractive.

Let us temporarily revert to the assumption (2). If 2 > 1 then the equation

() an(xlﬁ,c)dx=1

may be differentiated once under the integral sign with respect to either @ or c. The
classical argument leading to the derivation of the information matrix and the Cramér-
Rao lower bound may be conducted as usual, even though our case is somewhat irregular
in that an endpoint of the distribution depends on an unknown parameter. Note that a
second differentiation of (4) with respect to # will not be valid unless % > 2, and so the
information matrix should be established in terms of the first derivatives rather than the
more commonly used second derivatives.

If 2 = 1 then not even a first differentiation is possible, and we are in a situation similar
to that described by Weiss and Wolfowitz (1973). Like these authors we shall establish a
lower bound for the variance by proving that the maximum likelihood estimator is
asymptotically equivalent to a maximum probability estimator. Now, there are two
unknown parameters in our problem, and their maximum probability estimators converge
at different rates. Indeed, in the notation of Weiss and Wolfowitz (1967) the vector ((n log
r)2, r'/?) is a normalizing factor for (4, é). The mathematics of our problem is considerably
more complicated than in Weiss and Wolfowitz (1973). However, it turns out that in the
exceptional case k£ = 1 the maximum likelihood estimator of 4 calculated with ¢ known has
asymptotically the same distribution as that calculated with ¢ unknown. That is, infor-
mation about c is of negligible assistance in estimating . (This is not true for % > 1, where
the relative efficiency of the two estimators equals %272) Therefore it is both more
informative and simpler to establish a mihimum variance bound for the estimation of ¢
when ¢ is known.
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THEOREM 3. Suppose the density is given by (2), and r — . If k> 1 and r = o(n™?)

then the Cramér-Rao lower bound to the variance of b is given by {1 + o(1)}(1 — 2»)/
c?n®r'=?, and so equals the asymptotic variance derived under the more general model
in Theorem 2. If k = 1 then this lower bound is not well defined, but when r = O(n*?), 8
is asymptotically equivalent to a maximum probability estimator calculated when c is
known. Therefore when k = 1, 6 has asymptotically minimum variance in the class of
asymptotically normal estimators.

Theorem 2 states that the first order asymptotic properties of our estimator 6 are
unaffected by departures of the type (1) from the model (2), provided r/n— 0 sufficiently
quickly. It follows from Theorem 3 that b is asymptotically efficient in the class of
asymptotically normal, unbiased estimators with this property. To see this, let d be such
an estimator and suppose for convenience that 2 > 1. Then there exist normalising
constants d, = d,(r) such that for each distribution satisfying (1), and for r/n tending to
zero sufficiently quickly, we have (§ — 8)/d, —o N (0, 1). In particular this is true in the
special case of the model (2), and so it follows from Theorem 3 that

lim inf, _.d2/{(1 — 2v)/c®n?r' ™} = 1.

But for the special case 6 = 6 we know from Theorem 2 that we may take d> =
(1 = 2v)/c¢®n®r'*, and so the minimum variance bound is asymptotically attained by 4.

3. The case k > 0, and 2 known. Suppose
(5) 1—Fy(x) ~c(@—x)*** as x186,

where % >AO and r = 2 is fixed. Then it can be shown thatAthe maximum likelihood
estimator 6 defined by equation (3) satisfies the relation n”(§ — 8) —4 Z,, where the
random variable Z, is the solution of the equation

(6) kY52 Qe Y)Y = (Bha Y)Y A{CZ + (i Y)Y =1, ¢Z, > -Y],

and Yy, - - -, Y, are independent exponential random variables. It may be proved using the
techniques of the proof of Theorem 2 that if 2 > 1, r'/?*7Z, —4 N (0, (1 — 2v)/c®), and if &
=1, (log rY?Z, -4 N(0, ¢ "). Therefore Z, —, 0 as r — o if 2 = 1, and the precision of the
estimator may be improved by using a larger value of r. However, this result does not
carry over to the case 0 <k < 1.

THEOREM 4. If0 < k <1 and Z, is defined by (6) then Z, -4, 0 asr — oo.

A similar argument will show that if we allow n and r to diverge to infinity together in
the manner of Section 2, then n"(é — 6) 4%, 0 in the case 0 < k < 1. Therefore when 0 < %
< 1 there is no obvious advantage in using a larger number of order statistics to form the
estimator. Robson and Whitlock (1964) and Cooke (1979, 1980) used the criterion of mean
square error to compare different estimators. Note however that the asymptotic distribu-
tions of their estimators are very different from one another, and so other criteria could
have been employed. For example, we could choose as an estimator a linear combination
of the r largest order statistics which has the property that its asymptotic distribution has
zero mean, and a variance which is a minimum among all such linear combinations.

Let A = (A;;) be the symmetric r X r matrix given by

ANj=T@v+ )T +7)/{T@+ DT}, j=<i,
and define 1, v and a to be the column vectors of length r with ith elements equal to 1,

(v + i)/T'(i) and a;, respectively, l <i=<r.

THEOREM 5. Suppose condition (5) holds, and r = 2 is fixed. The estimator of the
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form 8 = ¥, a,X,,,,_,+1 which is consistent and whose limiting distribution has zero
mean and minimum variance is obtained using the weights

a=A{(V'ATV)1 - I"A'V)V}/{(vTA IV (1TA'T) — 1TA V)3,

Further, n*(@ — 0) —o — Yo a;(3i=1 Yi/c)’, where Yi, ---, Y, are independent
exponential variables.

4. The case k > 1, but k otherwise unknown. As in Section 2 we begin with the
very restrictive model (2), and once we have derived an expression for our estimator we
greatly relax our assumptions. The likelihood is now a function of three unknowns, and
after eliminating ¢ we find that the estimators of # and % are the solutions of the equations

(7 k=r/{Yi5 log(l + &)} — 1

and £ Y4 &, = r, where &= $n,(0) Xon—j+1 — Xnn—r+1)/(6 — X, n—j+1). Therefore the
maximum likelihood estimator 8 is a solution of the equation

(8) r{l/z,,:l log(1 + &) — 1/2,=1 &t =1 0>X,.

We shall show during the proof of Theorem 6 that under the conditions of Theorem 2,
the probability that one or more solutions of equation (8) exist tends to 1 as n — c. For
the sake of deﬁmteness, let us define & to be the smallest solutlon of (8) if one or more
solutions exist, and 6= Xnn otherwise, Def'me i by (7) with 8 = 8. Our next result describes
the asymptotic behaviour of the estimators § and k.

THEOREM 6. Assume the conditions o[ Theorem 2, and suppose r = r(n) — « and

r = o(n m/erYDy If k> 1 then n'r/*7(@ — 0) —5 N(O, (1 — 2v)(1 — »)*/»%c®) and

1/2(k k) -5 N, (1 - v)z/v“), while if k = 1 then (n log r)V*(6 — 8) —o N(0, ¢™) and
r2(k — 1) = N(0, 4).

Thus, the estimator § computed with 2 unknown has much the same properties as that
computed with % known, except that its variance is reduced by a factor of 272

A lower bound for the quantity m/(m + %) is needed in order to carry out the estimation
procedure in Theorem 6. However, as was pointed out following Theorem 2, there will be
practical situations in which we know that m/(m + %) equals either % or 2/(k + 3), and
then the procedure can be conducted with very limited knowledge of k.

5. Proofs. Here the symbol C denotes a generic positive constant.

PROOF OF THEOREM L If false then since § > X, —,s 0, there exist e > 0 and a set A
with P(A) > 0 such that d>0+¢ lnfmltely oftenon A.Let B=A N (X, n.—r+1— 8}. Then
the left side of (3) is less than £ Y72} (X, ,,_,+1 Xon—rs1)/(% &) mﬁmtely often on B, and
this term is in turn dominated by 2kr(@ — X,,._r+1)/¢, which is o(r) on B. Therefore
equation (3) is not always satisfied on B — a contradiction.

PRrROOF OF THEOREM 2. There is no loss of generality in assuming that ¢ = 1, for the
contrary case may be handled by making the obvious transformation. And since 6 is a
location parameter we may suppose that 8 = 0.

Let Y3, Y3, - - - be independent exponential variables with mean 1. The sequence S, =
{Xr,n—j+1, 1 <j =<r)} has the same distribution as {F[exp{— YL, Yi/(n — i+ 1)}], 1<
= r} for each n = 1 (Rényi, 1953). Since we are only interested in the weak properties
of S, there is no real loss of generality in redefining

Xon—js1=Fexp{— SL, Y/(n—i+ 1)}]foralll<j=<n <.

Note that strong properties of this new sequence imply only weak properties of the original
sequence. ‘
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Under the hypothesis on F we have F~'(y) = —(1 — )" + O((1 —- )*“V) ag y — 1, and
therefore

Xnnojr1 = —[1 — exp{~3L, Yi/(n — i + DI} + O((/ny"""")
&) =—(ZL, Yi/(n — i + 1))’ + O(j/n)"™)
=—(TL, Yi/n)’ + O((j/n)™™) as.
uniformly in 1 < j = r. The likelihood equation (3) may now be rewritten as
10) kI [{(Tm Y = (XL, Y + O@™™/n™)}
x (n*f + (XL, Yo" + O /m™) ] =r.

Next we prove that under the conditions of Theorem 2,

(11) n*f —, 0.

Let —0 < £ < o and { # 0, and suppose that nd>¢ (respectively, < £). Then the left
side of (10) is less than (greater than)

B (=1 Y/3L, Y)Y — 14+ 0™ /j ™ HE (S Y + 1+ O(j/m)™)}
(12) =k YA (e Yi/SL, Y)Y — 1) — K 3‘=11 (X Y3/ (BL, V) - QL Y™}
+ O (P n™ + (/i)Y GIm)™ + /i)T77)) as.

The remainder here equals O(*"/n™ + r* Y5 j ) as. Let Uj= T, (Yi — 1).
Then

(SL, Yo =~ = »Ui/j™ + O(j 7" log log j)

and
ey Vi)’ = r* + vU /'™ + O(r " log log r) as.,
whence
P (S, Y™ = (L= ) — v X Uifj™ + O(1) as.
and

(13) RS (e Yy/3L, Y =1} =r—r'(1—») Xm Ui + U, + O0”) as.

Furthermore, Y- U/ = Yiei (Yi— 1) Tia j
Suppose first that » = %. Then

var(Yjo1 Up/j*+) = Tie (Tj=1 J77)? = Ollog 1)
(see condition (15) below), and also
5 (B Y /(BL, Y — BL Yoy ~r D=t j T ~ r'log ras.
Therefore in view of (13) the quantity in (12) may be written as
r — kir*(log 1) {1 + 0p(1)} + Op(r'™™/n™ + r(log n'?).

Comparing this with the right side of (10) we deduce that if r = O(n™™*1/?) then for ¢ >
0, P(n"0>$)—>0 and for £ <0, P(n"0<£)—>0
If v < % then var(Yj=1 Uj/j'**) = O(r'~%) (see condition (15)) and

(Tt Y0) /(3 YO — (3L, Y)Y ~ P70/ = »)(1 = 20) as.
Therefore in view of (13) the quantity (12) may be written as
r—k&r'7v(l — )71 = 20) {1 + 0,(1)} + O,(r™*™/n™ +r' Y17 + ri/?),
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and (11) follows as before.
In view of (11) the left side of (10} is equal to

G- YL Yy - 1)
= k8 Y52 (T Yo /(S YO = (3L, Y7} + Opr™*™/n™ + ' (n8)? 351 57

compare the expression (12). Using the estimates derived during the proof of (11) we may
rewrite this as

(14) r—rQ =) Y U/j™ + U, — kn’ba(r) (1 + 0,(1)}
+ Op(rlﬂn/nm + rv(nvé)Z 2;=1 j—3v)’

where a(r) = r'?log rif » = %, and a(r) = r'»/(1 — v)(1 — 2») if » < %. The variance of

U,—r*(1 — ») Y51 U;/j ' may be derived using condition (15) below, and then Lindeberg’s

theorem may be used to prove that this quantity is asymptotically normal distributed.
Next we prove that

r. Jyltey — ST ro . 2-1-ey2 410gr if v="%
(15) Var(2_1=1 IJJ/J ) = Q=1 (2 =iJ ) {2r1—2v/(1 _ V)(]. _ 21/) if v< b,

Now,
Yict Yjmi Thei GRY T = B Ty Thes GR)TH
= Y=t (They Tha + Thepn TLDGRY T
=Y J T R+ T T D BT
=2 J T B kT = D J T ~ 25 /(L - ),

as required. .
Theorem 2 follows on equating the quantity (14) to r, and solving for 8. For example,
when » < 7 we have

kn*ba(r) = U, — r’(1 — ») Yie1 Ui + 0p(r% + n*| 8] a(r))
= Yt (Yi= D{1 = (1 = ) Djei J ) + 0,(r2 + 17| 6] (1)),
and the series on the right has variance equal to
S -r -y i Y =r =20 - T j
+ (=) Y (T J )
=r/(1—2v) + o(r),

using (15).

PrOOF OF THEOREM 3. As in the proof of Theorem 2 we may assume that c = 1,8 =
Oand X, ,—ji1 = F '[exp{-YL, Y;/(n — i+ 1)}],1 = j =< n < . We consider first the case
k>1.

LemMma 1. Ifr/n— O then
(16) dlog L./30 =k Y5 {3L, Yi/(n — i+ 1)}
—(n =k +1)(Tm Yi/(n—i+ 1)) + Ry,
where E(R}) = O((r**/n'™)%).
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PrOOF. In our case X, , j,; = —[1 —exp{-3L, Yi/(n — i + 1)}7, and so
9108 Ln/30(s=0 = k Tju1 (=X n_js1)"L
= =Nk + D)(Xnpri1)* {1 = (=X ir )1}
(an = kY [1 - exp(=3L, Yi/(n — i + )}
— (= + DI1 - exp{(=FL Yi/(n — i + 1))
-exp{¥in1 Yi/(n — i + 1)}.

Nowforx>0,x'< (1 —e™)! = e’/(e” — 1) < e"/x < x7! + ¢, and therefore x~* <
1-e™)7"<x(1+ xe* < x™ + x'%* Consequently

(18)  Xj=[1 - exp{(~3L, Yi/(n — i + 1)} = 3., (ZL Y/ (n—i+ 1)} + Ry,
where )
0<Ru<Fimi (ZL Yy/(r =i+ 1D} exp(SL, Yi/(n — i + 1)} < Cr(S,/n)exp(CS,/n)

with S, = ¥ ¥,. Furthermore, since x > 1 — e~* > x(1 — %x) and kv < 1 then x* >
(1—e™)* > x*(1 — x), whence *(1 + xe*) > x*e* > (1 - e~ )e* > x*(1 — x). Therefore

[1 — exp(=3iet Yo/ (n — i + 1)}]* exp{3s Yi/(n—i+ 1)} ={3 Yi/(n — i + )}* + Ry
where
[ Riz| < {Th1 33/ (n — i + 1)} exp(Th, Yi/(n — i+ 1)} < C(S,/n)*" exp(CS,/n).

Combining this with (17) and (18) we deduce that (16) holds with | Ry = C{r(S/n)"™ +
n(S,/n)*"} exp(CS,/n). Now 8, is Gamma (r), and it follows from elementary calculus
that E{S? exp(CS,/n)} = O(r*) as n — oo, for any @ > 0 and C > 0. Therefore E(R?) =
O((r*/n')?).

LEMMA 2. Letaj=3%_, (n—i+ 1) and T, = SL(Yi=V/(n—i+1). Ifr/n—
0and v <% then
(19) kXt (ZL Yi/n— i+ DY — (n - Mk + DY Yi/(n — i + 1)}
=k Y= (a7 = vTj/a}*) — (n - r)(k + D{a;”+ (1 —»)T,/a’} + R,
where E(R3) = O(n®r*) for all ¢ > 0.

Proor. Lgt £ > 0 and s be an integer between 1 and 7, and define E = E(s, ¢) =
{sup;= |7 YL, (Y; = 1)| <¢}. Then |T;| <¢/(n—r)on E if j = s, and so if ¢ is chosen
sufficiently small, | Tj/aj| = % on E for j = s. Therefore on E and for j = s,

QLY =i+ D)™ = a"(L + Ty/a;)™ = a;"(1 - ¥Ty/a;) + R,
where | Ry, | < CT7/a}*" and C does not depend on J. Also .
T Y/ =i+ DY~ = al™(U + T/a)"™ = a2 (1 4 (1= )To/a,) + Ray
where | Ry | < CT?/a}*. Therefore on E,
ke (B Y/ (=i + 1D} = (0= Dk + D{er Y n — i + 1))
=k (i7" — vTi/a}*) — (n — Nk + e + 1 — )T./al} + Ry
where, since | T;| < (n — )" | U;| and @ = j/n, | Ras| < Cn*(Tiay UAj* + U2/r™*) and

E{RLIE)} < Cin® {35y Yey E(U? U/ @G + E(UY)/r*"*)} < Con®.
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(Note that E(U?U?) = (EUHAEU})Y? = Cij.) Furthermore,
E[Y7 (T Yi/(n — i+ 1)} F < E{s(n/ Y1)}’ = ’n”E(Y7?)
and
E{Y5 (ai” — vTy/a}*))? < Cs'n™.

Combining these results and noting that E(Y1%) < o when » < % we deduce that (19)
holds on E, with E{RZI(E)} = O(s’n?).

Fix 8 > 0 and let s equal the integer part of 7%, Then P(E) = O(r™) for all A > 0 (see
Petrov, 1975, Theorem 27, page 283), and so for any variable Z, any p > 1 and ¢ = (1 —

r)7,
E(Z*(E)} < (E|Z|*)"P(P(E)}V* = (E|Z|*)"PO(r™).

Now, all terms on the right and left in (19) except R; are dominated by Z = Cn’(rY1" +
r'”+|U,|"+r| U.|), and if p is chosen in the range 1 < p < %» then E | Z|* < Cn*rr®.
Therefore (19) holds on E, with E{R2I(E)} = O(m®r™) for all A > 0. This completes the
proof of Lemma 2.

1-»

LEMMA 3. Ifr=o0(n*’) and v <% then k Y- aj* — (n — r)(k + )a;™" = o(n’r"/*™).

Proor. It is readily shown that a;j” = (n/j)"+ O{((j/n)"™ + n*/j**} uniformly in 1
<j=r,and a}” = (r/n)"™ + O{(r/n)** + 1/n'~*r"}, whence

EYia ai” — (n—=r)(k+ Da; "=k 31 (n/j) — (n — )k + 1)(r/n)"™
+ O(r*/n""" + n")
=07 =D’ {r'7/(1 - v) + O(1)}
— v+ O /nt™ + n’) = o(n’r'?).
LemMa 4. Ifr/n— 0 and v < % then E{vk Y1 Ti/a}* + (n — r)(k + 1)1 — »)T./
a?}? ~n®r'(1 - v)?/r*(1 — 20).
Proof. The term within braces equals
Q=2 T (Yi= D =i+ D7 {Tjmi a7 "™ + (n = 1)/ras},
and this variable has mean square equal to
(1= 9)? Yot (= i + 12 (mi a7 + (n — 1) va})?
~ (1= 9% By (Tt T + 1/0r° )
= (1= 9P (S (Tjei STV 4 260 Do j7 1 E ),

Lemma 4 now follows from (15).
Combining Lemmas 1-4 we deduce that if » < % and r = 0(n**) then

(20) 910 Ln/30 = —(vk Yoy Tifal™ + (n — Nk + 1)(1 = »T,/al} + Rs,
where E(R2) = o(n*r'"?), and also
(21) E(3log L,/36)* ~ n®>r' ®(1 — »)?/v*(1 — 2v).

Very similar techniques can be used to prove that 8 log L,/dc = —nT./c + R, where E(R})
= o(r), and when this is combined with (20) we may obtain

(22) E(3log Ln/ac)* ~r and E{(dlog L./80)(3log L./3c)} ~ n'r'™*/».
(The Cauchy-Schwartz inequality is used to handle the remainders Rs and Ry, and we
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have set ¢ = 1 in (20).) The information matrix (see, for example, Kendall and Stewart,
1973, page 28) may be computed using (21) and (22), and an inversion of this matrix yields
the desired Cramér-Rao lower bound.

We turn finally to the case £ = 1. We shall use techniques from Weiss and Wolfowitz
(1967, 1973, 1974), and prove that the maximum likelihood estimator 6 derived without
knowing ¢ is asymptotically equivalent to a maximum probability estimator derived
knowing c. It is sufficient to show that there exist constants O < ¢, — 0 and a(n) — « with
a(n)/(n log r)*? - 0, such that for each s > 0 the inequality

f L.(X|6 + t/(nlog "2, ¢) dt
@3 °°

s+u

= (1 — &,)SUPjuj<atn) f L.(X|6 + t/(nlog )" ¢) dt

—s+u

holds with P, .-probability tending to 1 as n — «; this follows from the Theorem and the
remarks on pages 198-199 of Weiss and Wolfowitz (1967). For (23) it is sufficient to prove
that with

Valt) = L.(X| 8 + t/(n log )%, ¢)/L.(X |, ¢)

we have supjq<zeen {| log Va(£)+ %£2|/t?} — 0 in Py -probability, and this last result will
follow if we show that

(24) SUD|j<satn | (1t log r) " {8 log L.(X |0 + ¢/(n log r)"/%, ¢)/88*}c + 1| = 0
in Py -probability. But
—3%log La(X |8, ¢)/36> = 31 (0 — Xun—js1) 2+ 2¢(n — {1 — ¢(6 — Xpnrr1)*}
+4¢’(n ~ )0 — Xpn—rs1)* {1 = ¢(0 = Xpnrr1)*} 72,
and since X, n—r+1 —>as. 8 then (24) will follow if we prove that
(25) SUP|ti<sa(n) /tnlogr 2| (11 1og 1) Timy (0 + ¢ — Xpnji1) > — 1| —, 0.
Define a(n) = (log r)"/*. Now,
0 — Xy njir = (TLy Yi/n)? + O((j/n)*?)

= (J/n)"? + O{(j/n)** + n™"*(log log j)**} as.,

and so
Yici @+t —Xopj1) 2=nYij '+ O(n) as.
uniformly in | | < 8a(n)/(n log r)*/%. This proves (25).
PrOOF OF THEOREM 4. We may assume that ¢ = 1. If 2|Z,| < Y} then {Z, +

$i-1 Y)Y} ' = (X4a1 Vi) U + Ry; where |Ry;| = 2| Z.| /(%<1 Y:)®, and in this case the left
hand side of equation (6) may be written in the form

{51 )" Y51 Yi) ™ — r} + Rs,

where |Rs | = 2k | Z, [(Fi=1 Yi)* ¥5=1(T4=1 Y:) ™. Since » > % then the last written series
is O(1) a.s., and so under the hypothesis that Z. —, 0 we may rewrite (6) in the form

E{(Qi=1 Vi)' Djm1(Tim1 Yi) " =1} + 0p(r") =1
But (S Y1) = r* + Op(r'"2), and Yer (Ter Yi) ™ = 0, (r1"), s0 that
Yi=1(Tia Y 7 =117/ (1 = v) + 0, ().

This statement is obviously incorrect; consider for example what happens to the series
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on the left if Yy is perturbed by a nonzero amount. Therefore Theorem 4 is proved by
contradiction.

Theorem 5 may be proved using the method of Lagrange multipliers.

Proor oF THEOREM 6. We adopt notation from the proof of Theorem 2, and take ¢
=1 and 4 = 0. Equation (8) can be written as

(26) EYizit,i=r

whAere kis given by (7). Lgt 9,,, n =1, be any sequence of random variables which satisfies
n’g, —, 0, and set § = 6,. From estimates obtained during the proof of Theorem 2, in
particular the result (14), we may deduce that the left hand side of (26) equals

@ B/R)r — (1 = ») Y51 Ui [j + U — kn*boa(r) {1 + 0, (1)} )
+0, (r™™/n™ + r'(8,)? Yo j )]
as n — . We now examine the asympototic behaviour of k/k.
From the estimate (9) we may deduce that
1+ &y = Gn = Xnpri1)/ B ~ Xonju1)
= (Bhe1 Yo/ ket YOI+ 026, /(Tiea YO)* + O((r/n)™)]
X [1 = 00, /(Sher Yo) + O(Gi/n)™ + (08,)57)]
= (Bh=1 Yo/ Ty Y0 (1 = n76,[(Th=1 Y0 — (Ther Y0) 14+ O((r/n)™ +(n*6,)57%))
almost surely. Consequently
Y5=11og(1 + &) = v{(r — Dlog r — ¥7=1 log j}
(@8) +2{(r — Dlog(1 + U./r) — Y71 log(1 + U;/j)}
— 0, (T2t (5 Y7 — 0 = (Tim Yi) )
+ 0,(r* ™ /n™ + (n"6,)? 3ie1 j 7).
From Stirling’s formula we see that

(r—Vlogr—Yitlogj=log{r" Y/T(r)} =r— % log r + O(1),

and since
; . IR B . ot s .
7=ilog(l + U;/j) = Y51 Ui/j — 3 Zi=1 U} /j* + O(Fj=1 j*(j log log j)*?) as.

= 271 Uj/i + Op(log 1),
then
(r—1)log(1 + U,/r) — Yj=1log(1 + U;/j) = U, — ¥j=1 U;/j + O, (og r).
Estimates derived during the proof of (11) allow us to state that
i@ YD) 7 = r = D@ YO 7 = {r'7/( =) + Up/r" = T Up/j) + 0p(D),

and in view of (15), the right hand side here equals »r'~*{1 +0,(1)}/(1 — »).
Continuing the results from (28) down we find that

(1/rv) S5t log(L + &) = 1+ r U, = Y52} Up/j) = 06, (1 + 0, (D)} /(1 = »)
+ O ((r/n)™ + 0, Y51 j* + r 7t log ).
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We may now deduce from (7) that
29) vk=(1—») —r (U, = 352 Up/j) + 078, {1 + 0,(1)}/r"(1 — »)

+ 0, ((r/n)" + W0 r Y51 j + rtlog r).

This leads to an expression for }é/k, and when that is substituted into (27) and the resulting
formula simplified we obtain the following expression for the left hand side of (26):

r(L+r Y- U{1jA —») =1 =2) '} —» U./(1 — »)]
(30) + 10, {1 + 0,()}{1/r"(1 — »)* = (1 — »)a(r)/vr)
+ 0, ((r/n)" + W0, Y2r" ' Y51 j¥ + r ' log r)).
Let
Ve =Y U{1j(1 =) = (L =) /j'"} —v Uy (1 — »)
=Y (Y — I{T5=:1/7 0 = ») = PP = ») /j' 7] = v/(1 = »)}.

If » = % then the result (15) may be used to prove that V., = —{1 + 0,(1)} V7, where V}
=r*(1 — ») Y}=1 U;/7"** has asymptotic variance equal to {1 + o(1)}r log r. If » < % then
after some algebra and an application of (15) we find that

EWVH=Q0—-2) 231 VP + (A = ) Xt Chmif 7V + 200" T J™
= 2r" Biet (T J NV Ej=id ) + 1P = 20) /(1 = v)°
=r{2/(1—»)*+2(1 —»)/(1 — 20) + 20/(1 — »)
+ (= 22)/1 =)+ o)} —2r T =i T G- ).
It may be shown that
S N T i T = Yt ST Y1 BT+ T2l — /R ~ P2 = v) /(1= v),

and therefore E(V2) ~ r»?/(1 — »)*(1 — 2»). Lindeberg’s theorem can be used to prove
that if » = %, V, is asymptotically normally distributed with the appropriate variance
derived above.

To complete the proof of the first parts of Theorem 6 we consider the cases v < 2 and
v = % separately. If v < % then combining results from (30) down we see that with
probabili‘gy tending to 1 as n —  and under the conditions of Theorem 6, (26) admits a
solution 8, satisfying n'd, —, 0, and that any such sequence of solutions also satisfies

(31) n'r279, »p N(O, (1 — 2v)(1 — »)* /).

The same applies if » = ', except that in this case (31) should be replaced by the result
(n log r)'%9, — 9 N(0, 1). This proves that the probability that a solution of (8) exists
converges to 1 as n — o. Since any such solution exceeds X,., and | Xon | = —Xon = Op(n7™)
as n — o, then the smallest solution, 9, must satisfy P(n”@ > ¢) — 0 for each € > 0, and also

(32) limy_, .lim sup,_» P(n*d < — X) = 0.
Arguments like those leading to (11) may be used to strengthen (32) to
lim,.. P(n’f < —¢) =0 foreach &>0,

and the asymptotic normality of 6 now follows from the results contained earlier in this
paragraph.

Finally we prove the last parts of Theorem 6. Let 6, = 6 (our maximum likelihood
estimator) in equation (29). In the case v = % the random variable n*8,/r" is negligible in
comparison with » (U, — Yj=1 U;/j), and we may deduce from (29) that

k=rk—2r (U, = =1 Ui/j) + 0o (r™).
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From this it can be proved that r'/2(£ — k) >4 N(0, 4).
Now suppose » < %, Making the substitution

n'6,{1/r'(1 = »)® = (1 — »a(r)/vr} = —r"'V, {1 + 0,(1)}
in (29), we may deduce that
E=k+Q/vm) S (i = DA = )72 Tjes (7 = (1 = 20)/7)
— (1 = »)/v] + 0, (r */%).
The random variable
T (Y= DIA =2 25 (7 = (L= 20) /7Y = (1 =) /7]
is asymptotically normally distributed, with variance given by
Tia [ =2 5 (7 == 20/7') = A =0 v ~ r(L = v)*/5?,

using techniques developed earlier. Therefore r'/ 2(k — k) =2 N(0, (1 — »)?/v*), completing
the proof of Theorem 6.
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