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On Estimating the Largest Eigenvalue
With the Lanczos Algorithm*

By B. N. Parlett, H. Simon and L. M. Stringer

Abstract. The Lanczos algorithm applied to a positive definite matrix produces good
approximations to the eigenvalues at the extreme ends of the spectrum after a few iterations.
In this note we utilize this behavior and develop a simple algorithm which computes the
largest eigenvalue. The algorithm is especially economical if the order of the matrix is large
and the accuracy requirements are low. The phenomenon of misconvergence is discussed.
Some simple extensions of the algorithm are also indicated. Finally, some numerical
examples and a comparison with the power method are given.

1. Introduction. Let A be a positive definite matrix of order n with eigenvalues

0 < A, < A2 <  • • •   < \,.
For some applications a rough approximation to \,, i.e., the spectral norm of A, is
all that is wanted, for others a rough approximation to A„/\,, i.e., the condition
number of A. At the other extreme are nuclear engineers, who often want a good
approximation to A„, 6 significant decimals at least and the eigenvector as well.

In [1] O'Leary, Stewart, and Vandergraft consider the power method and the
associated sequence of Rayleigh quotients px, p2, p3, . . . . They point out that the
often miserable asymptotic convergence rate of the pk is irrelevant unless it is
necessary to have

K-Pk  <1Q2  (say)
n n — i

They show that even for the nastiest distribution of A, for a 1000 by 1000 matrix we
can expect to have pk with one correct decimal after 21 steps.

These observations are interesting, but it does not follow that the power method
is the appropriate algorithm for rough approximations to \\. We should add that [1]
does not claim that the power method is the preferred algorithm although an eager
reader might well draw that conclusion.

Here are some points we wish to make.
1. If the user is only interested in the rough order of magnitude of A„, then the

appropriate action is to compute max, a,, and \\A\\X, the maximum column sum.
This yields a lower bound and an upper bound with no multiplications. If A is
large and sparse, then ||^4 lli/\, cannot get close to its upper bound Vñ . A better
estimate of the ratio is Vm , where m is the average number of nonzero elements
per row.
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154 B. N. PARLETT, H. SIMON AND L. M. STRINGER

If it is not convenient to access the elements of A, then the techniques described
below should be considered. If something better than an order of magnitude
estimate of \, is wanted, then these techniques should definitely be considered. For
interactive or hand held computation the power method with Rayleigh quotients,
as in [1], may be preferable to our Lanczos algorithm when only one digit in \\A\\ is
wanted.

2. The choice of tolerance on the error, which is often delegated to the user, is
not a trivial matter. If the user says he wants only one correct decimal and
\ = 103, then he must be content with any answer exceeding 950. Are all such
high eigenvalues indistinguishable for his purposes? He may, on reflection, wish to
change his tolerance.

Sometimes users do want an approximation ¡i which is closer to \, than to An_I,
but not by much, say i\ - ju)/(/t - \,-X) < 1/10, unless An_1 is very close to \,,
say (\, — An_,)/An < 10"6. This is, of course, a more difficult specification to meet.
These points are pursued further in Section 6. In our opinion the required
accuracy should increase linearly with n.

3. In [1] the authors focussed on the eigenvalue distribution which causes the
slowest convergence of the Rayleigh quotients pk. In practice, as those who have
used the power method are painfully aware, the most troublesome distributions are
quite different. A difficulty which afflicts both the power method and the Lanczos
algorithm is misconvergence. Consider the following values: A„ = 1000, \_x = 985,
\,_2 = 983, \,_3 = 981, \,_4 = 955, .... It happens, not infrequently, that the pk
converge quite nicely to 985 and settle down there for several steps. After a while
the pk will start to increase again noticeably and soon converge to the correct value
of 1000.

An impatient criterion for termination will mistake the pause at 985 for conver-
gence to that value. On the other hand a cautious algorithm will be inefficient in
timing comparisons. This topic is pursued further in Sections 2 and 6. It would be
interesting to quantify the trade-off. As so often occurs in numerical analysis, the
real difficulty is the criterion for stopping.

4. The authors in [1] mention that the Lanczos algorithm is more powerful than
the power method but suggest that to invoke it to obtain a one-decimal approxima-
tion to A„ is overkill.

It is true that Lanczos codes are usually designed to find several eigenvalue/vec-
tor pairs, and the reliable ones are rather cumbersome. However, because of its
power the Lanczos algorithm

(i) uses almost the minimum number of matrix-vector multiplications, whatever
the required accuracy;

(ii) can cope with misconvergence much more adroitly than can the power
method.

For this special problem several features of general Lanczos codes can be dis-
carded, and the stripped down version is quite short; see (2.4). Both Lanczos and
the power method require about the same amount of working storage: 2 «-vectors
plus some extra cells. Last, but not least, the Lanczos code is well suited to either
high or low accuracy calculations.

A separate short program can use the output of the main one to compute the
associated eigenvector when that is required.
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ESTIMATING THE LARGEST EIGENVALUE 155

The aim of this paper is to present our algorithm and to show how it and the
power method perform on a variety of eigenvalue distributions. The phenomenon
of misconvergence is explored in the process. A simple modification of our
program yields increasingly good approximations to \,/r\x.

2. The Lanczos Process. The simple Lanczos algorithm for a symmetric n X n
matrix A computes a sequence of Lanczos vectors vx, v2, v3, . . . as follows:

(2.1)

choose an arbitrary vx, \\vx\\ = 1
u, = Av,
ÏOTJ = 1, 2, . . . do
«j = uh
rj = UJ - aJvj

ßj = II Oll

uJ+l = AvJ+x- ßjVj.

One pass through step 3 is a Lanczos step. These equations can be condensed in
matrix form as

(2.2) AVj- VjTj = ßjVj+xe/,

where Vj = (u„ v2, . . . , v¡), ej = (0, 0, 0, ..., 1) and

(2.3) TJ =

A
ßi

0
ßi

ßj-2

0
«/-I

ßj-l

ßj-l

The algorithm terminates if ßj = 0, and this will happen for some j < n in exact
arithmetic. The eigenvalues of the tridiagonal matrix Tj, also called the Ritz values,
are the Rayleigh-Ritz approximations to eigenvalues of A from the subspace
spanned by the vectors t>,, v2, . . . , Vj. More details on the Lanczos process can be
found in [2].

Let dj be the largest eigenvalue of Tj.
Usually the extreme Ritz values are, even for j « 2\fn , good approximations to

the corresponding eigenvalues of A. We therefore propose the following strategy
for finding X„:

fory" = 1, 2, 3, . . . do
1.1:    take a Lanczos step

(2.4) 1.2:     compute a narrow interval which contains #y

1.3:     compute a bound on |fy - X|
1.4:     if the bound is small enough then stop.

The details of 1.2, 1.3, and 1.4 will be discussed in the following sections.
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156 B. N. PARLETT, H. SIMON AND L. M. STRINGER

Our FORTRAN program for algorithm (2.4) consists of 55 executable state-
ments. This number does not include separate subroutines for computing 1.1, 1.3,
and 8kix). None of these exceeds 14 statements.

As Section 6 reveals, we have no guarantee that the eigenvalue X to which #,
converges is \. However, our convergence criterion will not be met until the
(uncomputed) Ritz vector belonging to fy is a reasonable approximation to X's
eigenvector. This level of caution seems to prevent misconvergence in practice at a
moderate cost. The yet more cautious criterion described in Section 6 prolongs the
algorithm by 50-100%. The old-fashioned criterion of stopping when the change
in the d,'s is less than the tolerance is just not reliable enough as our examples
show.

The storage requirements of our algorithm are quite modest because one Lanc-
zos step can be implemented in a way that requires only storage for the «-vectors u
and v and 2/ storage for the a- and ßj. But as j < n (as typical example take
n = 500 and j < 50), the main storage requirement lies in the 2n which is
comparable to the power method.

We should also remark that if A is sparse (say 10 nonzero elements per row) and
of narrow bandwidth w, then each step will require 15« operations, and so, even if
our algorithm took « steps, the total cost compares favorably with the 2w«2
operations required by techniques based on similarity transformations. Compari-
sons of this algorithm and the accelerated power method are given in Section 6.

3. Computing the Largest Eigenvalue of T¡. Computing the largest eigenvalue of a
tridiagonal matrix is neither a new nor a difficult task, and we could have used one
of the standard routines from EISPACK or any other similar package. As || Tj\\x is
easily computed, a bisection algorithm on the interval (^•_1, HT}^) would have
been the obvious choice.

In the special situation which we are considering here there is extra information
on hand at each Lanczos step. We have tried to develop an elegant procedure
which takes full advantage of the situation and converges quickly. A related
algorithm based on the simple recursion formula (3.1) is discussed in [3].

Let LDLT be the triangular factorization of 7) — xl. It turns out that 5,(x) =
Djj, called the bottom pivot, is computed from the simple recurrence:

8xix) = a, - x,       x ^a,,

(3-1}     (ôk(x)-«k-*-fik-i/Sk-iix)
\ if 8kix) = 0 then change jc slightly and start again

The function ó\(x) is a (j,j ~ 1) rational function, whose j zeros are the eigenval-
ues of Tj and whose j - 1 poles are the eigenvalues of 7}_,. Between its poles 5,(x)
is monotonically decreasing with a slope less than -1 provided (3.2) holds.

From the previous step we have a satisfactory approximation to it = dj_x, the
largest pole of S,(x). Our algorithm is based on the following notion: On the
interval ($;_,, oo) the function ó}(;c) can be adequately approximated by (2.1)
rationals of the form

(3.2) «-*)(;*-*)      („<„<£),
(IT  - X)

k = 2,3,
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ESTIMATING THE LARGEST EIGENVALUE 157

where f and p. are free parameters. Since we know it, the pole, accurately we are
simply using a quadratic for the function (77 — x)8jix). There is more discussion of
this model in [3], and we content ourselves with a picture. The model also has slope
< -1 (provided (3.2) holds).

10 r—

Figure 1
The function 8x2ix)for a typical example

We use the model in an iterative scheme based on the algorithm zeroin of
Dekker. Given an interval ix„ xu), with $■■ E (*,, xu), and a pair of distinct points
xk_x, xk e ix„ xu) along with ó)(jc,.), i = k — l, k, we interpolate 6}(;c) by (3.2) at
xk _, and xk in order to find f and pip < f ). Then we set

(3.3)

and then

(3.4)

Xk+l ~
iXu x,)/2

if S G (x, + tol/2, xu - tol/2),
otherwise,

<-**+,    if8jixk+x)<0,

<-*k+i   if5,(^+,)>0.
x, < toi. The last value of f is used as it at the next

step. The number of iterations at each step depends on toi = p&j, where p is the
required relative accuracy. For p = 10"' (p = 10-6), the average number of itera-
tions is approximately 1.5 (4).

We keep iterating until xu
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158 B. N. PARLETT, H. SIMON AND L. M. STRINGER

It should be mentioned that in certain cases this iteration need not be invoked at
all. Suppose we had stopped the iteration at the j — 1st Lanczos step with the
interval [x/.xj. Then, obviously, if after updating du = 8j(xu) we still have du < 0,
then this interval also contains #,, and no further computations are necessary at the
jth Lanczos step. If this is the case, we call such an interval stagnant. A stagnant
interval does not indicate convergence.

4. Computing a Bound on |#y — X|. Bounds on the Rayleigh-Ritz approximations
to the eigenvalues of A from a subspace are discussed in [2, Chapter 11]. As we do
not have any information on the gaps in the spectrum of A, we have to content
ourselves with the simple bound

\\Ay - y&,\\

There is at least one eigenvalue X of A, which satisfies (4.1). Here_y = VjS, and j is
a normalized eigenvector of 7} corresponding to dj. Fortunately we do not have to
compute/ explicitly, because using/ = V-s, TjS = fys, and (2.2), the bound (4.1)
becomes

ßiWA(4.2) W-^T^-
We may assume that \\y\\ > 0.9 (see [2] for justification). As we know Ö, from the
Lanczos process, we only have to compute a, = ejs, the bottom element of the
normalized eigenvector s. This can be done by setting t, = 1 and then solving
(Tj — dj)x = 0 for x = itx, ti, ■ ■ ■ , tj)T from bottom to top, except that the top
equation is not satisfied: instead we have (a, — dy)£, + ß2t2 = p. There is no need
to store the t¡; instead we accumulate their squares in r and set Oj = 1/Vt .
Moreover, the residual norm |jui|/Vt is available as a check; it should be small.
The vector x will be a satisfactory approximation to s provided that the starting
vector for Lanczos is not almost orthogonal to X's eigenvector.

The bound 1.1 ßjOj can be used in a twofold way: it enables us to monitor the
convergence of the Ritz values &., and it provides a useful starting point for the
iteration in Section 3.

5. Starting the Iteration for #,. Suppose that the interval [xp*~l}, x¡/~l)] was not
stagnant at the j — 1st Lanczos step, so we have to find a new interval and two
starting points for the iteration. (An upper index (J) refers here to quantities
computed at they'th Lanczos step.) But if [x\j~X), x^/~X)] is not stagnant, then we
have 8jixj/~X)) > 0. Hence we can set

(5.1) x^ = x^xK

It is tempting to use xj-^ in starting the iteration since its 5-value is available.
However, when high accuracy is required, xj^ is occasionally too close to the pole
to be useful. We can get a first starting point using the bound from Section 4:

(5.2) x? = tr + $_xOj_x.

As the quantity y8,_ ,o,_, indicates roughly how far we are away from some X at the
j — 1st Lanczos step, (5.2) is a natural choice.
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ESTIMATING THE LARGEST EIGENVALUE 159

Then we compute x^ by

(5.3) xf = (xf + xP)/2.
Although we could have used something more sophisticated than bisection (e.g.,
interpolating at xx and oo), our computational experience has shown that this
additional work does not reduce the number of iterations significantly. Therefore
we chose the simple formula (5.3).

Finally we took as an upper bound

(5.4) x? = max{x¥\cxj}+ßj_x.

This was motivated by the fact that only in exact arithmetic is x^ an upper bound
for &j, whereas (5.4) is always safe.

At the second Lanczos step, when no previous values for xu, x¡ are available, we
compute #2 directly as the largest eigenvalue of T2 and then set x¿2) = &2 + toi,
x/2) = ^2 — toi. In this way we can begin our new iteration at the third Lanczos
step in the manner described above.

6. Misconvergence. Both the power method and the Lanczos algorithm sample
the effect of the matrix A at a. limited number of vectors, and both can suffer from
misconvergence. The simplest, but extreme, case is when the starting vector is
orthogonal to the dominant eigenvector and (as happens in exact arithmetic) to all
subsequent vectors as well. Then our algorithm will quietly deliver XJI_, instead of
X„ without warning of failure.

In practice, if the starting vector is somewhat orthogonal to the dominant
eigenvector, and the separation of \, and \,_x is poor, then it can take many
iterations before any Ritz value #, exceeds X„_,. In such cases the #, may well
settle down very close to X„_j for perhaps 10 (or even 100) consecutive iterations
before some #, exceeds #,_, + toi. Such situations are not at all pathological, as
our examples show.

Some quantitative insight into the duration of these false stagnations can be
gleaned from an error bound which can be found in [2, Chapter 12, p. 247]. Let uV
be the angle between the starting vector and X/s eigenvector, and let Cj denote the
jth Chebyshev polynomial. Then

(6.1) K- ft
K

tan^„

ynCj-Ai + 2
\      An-2

\!-2_Al

where

(6.2) V,

We are not interested in how long it takes to compute X„ but in m, the smallest
value of j such that #, > Xn_,(l + p), where p is the relative accuracy required. To
be specific we estimate m by taking equality in (6.1), and, after making some slight
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160 B. N. PARLETT, H. SIMON AND L. M. STRINGER

simplifications, we get

(6-3) CM_,(1 + 2Y„ + 2Yn_1) = y^tan ,/,„.
Next we look for k, the first value of j for which |^- — Xn_,| < pXn_1. This value
may be approximated by ignoring X„ in the standard error estimate to get

(6.4)
\-y »,
K- < tan »//„_,

Cjil+2yn_x)

We compute k by taking equality in (6.4),

(6-5) Q(l+2Y„_1) = p-,/2tan^_I.

The fundamental assumption underlying this section is that cos »//„« cos >/'„_,
(= 1/ V« , its expected value). The stagnation time which must be endured is
m — k.

There are still too many unknowns in (6.3) and (6.5), so let us consider a difficult
but not unreasonable case, namely yn = 2p, yn_x = 8p. (For example, p = 0.05,

\ « 1.0, Vi « 0.9, X„_2 « 0.5, X, « 0.)
The Chebyshev polynomials can be approximated by exponentials: wheny'Vy >

1 then, for small y,

(6.6) Cjil + 2y)

Using (6.6) in (6.3) and (6.6) yields

■ 2e

In tan \pn - \ In yn     In « + 2 In co - f (In p + In 2)
(6.7) m - 1 -

2Vy„ + Y„-i 4\/ï(Jp~
where we have written tan \pn = co tan \pn_, = wV« . Also

In n — In p      In « — In pA: =
4V8p 10p

2 In co — |ln p In 2
These crude approximations give

(6.8) m - k - 1
4V10p

In Table 1 we give the predicted and computed values of m — k — 1 for interesting
values of p and co. As m and k become comparable with n, the use of the
Chebyshev polynomial is not warranted, and the predictions become too large,
otherwise they are good guides. The point to notice is that misconvergence can
occur when cos \pn drops below only 0.1 of its expected value, i.e. co = 10.

Table 1
Predicted and computed values of m — k — 1

icomputed values in parentheses)

2*p = 10-'

2*p = 10-2

2*p = 10-3

2*p = 10^

10'

2(0)

7(6)

26(17)

95(16)

102

3(2)

12(12)

42(17)

147(19)

103

5(5)

17(18)

59(17)

198(17)
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The brief discussion is meant to demonstrate how frustrating it is to have to
choose an expression for the number of steps to wait before accepting a stagnant
interval as containing the largest eigenvalue.

There is a way out which is elegant and also sensitive to each matrix. Accept the
approximation from a stagnant interval as \as soon as a second Ritz value appears
in that interval.

The appearance of superfluous copies of Ritz values is entirely due to roundoff
error. A full explanation of this phenomenon is given in [2, Chapter 13] and we do
not wish to repeat that material here. Suffice it to say that immediately a Ritz value
stagnates at an eigenvalue X, at step k say, then the algorithm proceeds as though
the kth Lanczos vector had a tiny component of X's eigenvector x. It takes a certain
number of extra steps for the component of x in the subsequent Lanczos vectors to
grow. When it is dominant another copy of the eigenvalue appears, suddenly, in the
form of a new Ritz value hovering at X.

We know of no cases where a second copy of A7I_1 has appeared before some
Ritz value exceeds X„_1(l + p). The number of extra Lanczos steps is tolerable in
the easy cases but much larger in the difficult cases—as it should be (see Table 5).
Nevertheless, this apparent tripling of the number of Lanczos steps was sufficient
to deter us, perhaps wrongly. The criterion in Section 2 is slightly more susceptible
to misconvergence but keeps the number of steps closer to the minimum.

7. Some Extensions of the Algorithm.
1. The leftmost eigenvalue of IJ, say co,, converges to X, in the same fashion as fy

converges to \. The precise rates depend on the eigenvalue distributions. Thus 7}
contains increasingly good approximations to cond(/l), the condition number of A
for linear equations. Several lines of code must be added to compute co, at the same
time as fy.

It is wasteful, but feasible, to use our program as it stands on -A. We avoided
using || Tj\\ in the inner iteration to compute èj, so that this device would be valid. If
the output is negated, it will approximate X,.

2. If the a, and /?, are designated as output parameters and if the Lanczos vectors
are put into secondary storage in the course of the Lanczos iteration, then it is easy
to compute an approximation to \,'s eigenvector. The algorithm is:

1. Call (2.4) to compute p « X„.
2. Call a subroutine to compute the eigenvector s oí T belonging to p, s =

(a„ o2,. .., Ojf.
3. Set z = 0. Recall the Lanczos vectors u, from storage, one by one, and

accumulate z = z + v¡a¡.
4. Normalize z.

Since the elements a, should dwindle to small values for i close toj, it would be of
some slight advantage to recall the Lanczos vectors in reverse order so that the
small contributions have a chance to accumulate to significant proportions rather
than having their lower order digits lost in the act of adding them to a vector which
is already of norm close to one.

3. Our program can be used to find X„ for the pencil (AT — \M)x = 0 if M can
be factored as LLT and the matrix A is interpreted as L~XKL~T. Of course A is kept
in this factored form.
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8. Numerical Results. In all our numerical tests** the algorithm described in (2.4)
produced the correct answer within the desired accuracy.

In a first series of numerical tests we compared the convergence properties of our
algorithm with the power method and Aitken extrapolation applied to the power
method. We considered several eigenvalue distributions of matrices of order
« = 500. Because of the invariance properties of the Lanczos method, there is no
loss of generality in considering only diagonal matrices A = diag(úf,, d2, . . . , d„).
We chose d¡ = /', d¡ = i2, d¡ = 1 //', and d¡ = cos((/ - l)ir/n). In order to give a fair
comparison between the different methods, we list in the following table first the
number of steps which each method must take in order to achieve the correct result
within the desired accuracy. The second number, in parentheses, indicates the
number of steps taken when the corresponding algorithm is stopped as soon as the
increment is <jp\,- The discrepancy between the two numbers shows how
unreliable the old-fashioned stopping criterion can be. The power method does not
seem to lend itself to a satisfactory alternative criterion whereas Lanczos does. This
is a significant difference.

Table 2
Comparison between Lanczos algorithm and power method

{meaning of the numbers is given above the first tableau)

p = rel. accuracy = 10_1

Eigenvalue distr. / p - «»((/- 1)-)

Power 5(4) 5(4) 5(5) 6(4)

Power + Aitken 4(3) 3(4) 3(5) 5(3)

Lanczos 4(5) 4(5) 4(5) 5(5)

p = rel. accuracy = 10 3

Eigenvalue distr. i p - «»((':~ 0 f)

Power 95(33) 89(31) 8(9) 490(23)
Power + Aitken 51(22) 44(26) 6(7) 138(19)

Lanczos 23(20) 16(16) 6(6) 48(15)

p = rel. accuracy = 10"6

Eigenvalue distr.                  i                       p                   — cos((i — 1) —

Power                   1169(497)           583(341)           13(14) > 2500(691)
Power + Aitken              467(81)           209(404)           10(11) > 2500(797)

Lanczos                       60(48)              43(43)              7(8) 501(117)

From this table we can draw several conclusions. Considering the required
accuracy, it seems that it does not pay to use Lanczos if only one digit is wanted.
But this conclusion is premature. A quick glance in Table 4 reveals that there are

** All results were obtained at the D.E.C. VAX-11/780 of the Computer Science Division, Electrical
Engineering Computer Science Department, University of California, Berkeley.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ESTIMATING THE LARGEST EIGENVALUE 163

examples where even for this modest accuracy requirement the power method
cannot deliver the correct result. For the sake of reliability, it therefore pays to use
the Lanczos algorithm even in these cases.

However, already for three digits accuracy the considerable savings in the
number of iteration steps provided by the Lanczos algorithm becomes obvious.
This advantage of our algorithm is even more dramatic, if one wants six digits
accuracy.

The examples which we have chosen can be regarded as typical for three classes
of eigenvalue distributions: easy distributions with the largest eigenvalue well
separated from the rest of the spectrum id] = l/i), intermediate distributions with
all the eigenvalues quite evenly spread out id¡ = i, d¡ = i2), and difficult distribu-
tions with the eigenvalues clustered near the end of the spectrum id¡ =
cos((/ — l)ir/ri)). Using this classification, one could condense the information
from Table 2 in the statement: The more difficult the distribution of the eigenval-
ues and the higher the desired accuracy is, the more efficient is the Lanczos
algorithm.

On the other hand, the numbers in parentheses illustrate quite well that for all
three algorithms the most difficult decision is when to stop. Clearly the tolerance
\,\p is too big.

One might be tempted to use therefore something like ^pX„. But, as pointed out
in Section 6, such criteria cannot handle misconvergence properly. In the following
table this is illustrated with the example from Section 6. We consider a diagonal
matrix of order 100 with X„ = 1000, X, = 10, Xn_1 and \_2 determined from
y„ = 2p, yn_x = 8p, and the other eigenvalues evenly distributed in [X,, X„_2]. We
chose a random starting vector, but set its component in direction of X„'s eigenvec-
tor to e and normalized it afterwards. For varying values of p and e we obtained the
following table. Here the first number indicates the number of steps which were
necessary to obtain the correct result, the number in parentheses indicates the
number of steps our algorithm stagnated at X„_,.

Table 3
The Lanczos algorithm (2.4) for the contrived example

{stagnation time in paretheses)

2*p = 10"'

2*p = 10-
= in-32'p = 10

2*p = 10-

10°

5(0)

13(0)

36(0)

52(0)

10"

8(0)
24(0)

55(4)

68(12)

10-

9(0)

28(6)

59(14)

71(14)

It should be noted that in all the cases in Table 3 our algorithm was capable of
handling misconvergence, i.e., the bound ßjOj did not become less than \pt\ for
Ritz values near X„_,.

The advantages of the Lanczos algorithm together with our stopping criterion
will become apparent from the next table.
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Table 4
Comparison of Lanczos with the power method for the contrived example

Number of Steps 2p =
10" 10- 10- 10J 10"5

Lanczos (correct result) 28 59 71 91
Power method (increment < p\,/2)

Aitken extrapol. ( — ' — )

Here we have contrasted the results of our algorithm from the last column of
Table 3 with the corresponding results of the power method and Aitken extrapola-
tion. The latter two methods did not produce the correct results. The increments of
these two methods became small as indicated in the table, but both misconverged
very soon at \,_, for at least 150 steps. However, if we chose e = 10"3 (instead of
10"2), then also our algorithm suffered from misconvergence.

Nevertheless, it is important to stress that this is only due to the stopping
criterion we chose. In principle we could have also waited for the appearance of a
second copy of a stagnant Ritz value in order to be on the safe side (see Section 6).
As this resulted in many cases in a very high number of Lanczos steps, we chose
the above error bound stopping criterion as a compromise between reliability and
efficiency: It can handle difficult cases in which the power method suffers from
misconvergence, and it requires not too many additional Lanczos steps. This is
shown in Table 5, where we have listed the number of steps our algorithm took for
the matrices from Table 2. In parentheses is the minimum number of steps needed
for the given accuracy.

Table 5
Results for the Lanczos algorithm (2.4)

{minimum number of steps needed in parentheses)

Eigenvalue distr. +'-0
p = 10-1 6(4) 7(4) 5(4) 8(5)

p = 10" 46(23) 36(16) 7(6) 140(138)

p= 10-6 105(60) 76(43) 9(7) 501(501)
Stopping crit. from Section 6

p= 10"6
143 120 20 >1000

At first glance it might appear that our algorithm (2.4) is taking too many
unnecessary steps, but after the preceding discussion of misconvergence it should
be clear that this precaution is absolutely necessary. The price one has to pay in
order to obtain absolute reliable results is much higher. In the last row we have
listed the number of Lanczos steps before a second copy of the dominant Ritz
value appeared in a stagnant interval. This waiting time, which seems to guarantee
that we do not suffer from misconvergence, costs about 50-100% more Lanczos
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steps than our present algorithm. In a sense which deserves to be made more
precise we therefore believe that our algorithm is for practical purposes a useful
compromise between reliability and efficiency.
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